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Abstract

The classical Eulerian polynomials are defined by setting

An(t) =
∑
σ∈Sn

t1+des(σ) =
n∑
k=1

An,kt
k

where An,k is the number of permutations of length n with k − 1 descents. Let
An(t, q) =

∑
π∈Sn t

1+des(π)qinv(π) be the inv q-analogue of the classical Eulerian
polynomials whose generating function is well known:∑

n>0

unAn(t, q)

[n]q!
=

1

1− t
∑
k>1

(1− t)kuk

[k]q!

. (0.1)

In this paper we consider permutations restricted in a Ferrers board and study their
descent polynomials. For a general Ferrers board F , we derive a formula in the form
of permanent for the restricted q-Eulerian polynomial

AF (t, q) :=
∑
σ∈F

t1+des(σ)qinv(σ).

If the Ferrers board has the special shape of an n×n square with a triangular board
of size s removed, we prove that AF (t, q) is a sum of s + 1 terms, each satisfying
an equation that is similar to (0.1). Then we apply our results to permutations
with bounded drop (or excedance) size, for which the descent polynomial was first
studied by Chung et al. (European J. Combin., 31(7) (2010): 1853-1867). Our
method presents an alternative approach.
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1 Introduction

Let Sn denote the symmetric group of order n. Given a permutation σ ∈ Sn, let Des(σ) be
the descent set of σ, i.e., Des(σ) = {i|σi > σi+1, 1 6 i 6 n−1}, and let des(σ) = |Des(σ)|
denote the number of descents of σ. For D ⊆ {1, 2, . . . , n − 1}, we denote by αn(D) the
number of permutations π ∈ Sn whose descent set is contained in D, and by βn(D) the
number of permutations π ∈ Sn whose descent set is equal to D. In symbols,

αn(D) := |{σ ∈ Sn : Des(σ) ⊆ D}|, βn(D) := |{σ ∈ Sn : Des(σ) = D}|.

Let D = {d1, d2, . . . , dk} where 1 6 d1 < · · · < dk 6 n − 1. For convenience, also let
d0 = 0 and dk+1 = n. Then the following formulas for αn(D) and βn(D) are well-known
(see, for example, [14, p.69]):

αn(D) =

(
n

d1, d2 − d1, . . . , n− dk

)
(1.1)

βn(D) = n! det

[
1

(dj+1 − di)!

]
= det

[(
n− di
dj+1 − di

)]
, (1.2)

where (i, j) ∈ [0, k]× [0, k] in the matrix of equation (1.2).
A q-analogue of the above formulas is given by considering the permutation statistic

inv(σ), where inv(σ) =
∑

i<j χ(σi > σj). By convention, the symbol χ(P ) is 1 if the
statement P is true and 0 if not. See [14, Example 2.2.5]. Explicitly, let

αn(D, q) =
∑

π∈Sn:Des(π)⊆D

qinv(π), βn(D, q) =
∑

π∈Sn:Des(π)=D

qinv(π).

Then

αn(D, q) =

[
n

d1, d2 − d1, . . . , n− dk

]
=

[n]!

[d1]![d2 − d1]! · · · [n− dk]!
(1.3)

βn(D, q) = [n]! det

[
1

[dj+1 − di]!

]
= det

[[
n− di
dj+1 − di

]]
, (1.4)

where (i, j) ∈ [0, k]× [0, k] as before. Here we use the standard notation

[n] := (1− qn)/(1− q), [n]! := [1][2] · · · [n],

[
n

k

]
:=

[n]q!

[k]![n− k]!

for the q-analogue of the integer n, the q-factorial, and the q-binomial coefficient, respec-
tively. Sometimes it is necessary to write the base q explicitly as in [n]q, [n]q!, and

[
n
k

]
q
,

etc., but we omit q in this paper as we do not use the analogues of any other variables.
The classical Eulerian polynomials are defined by setting

An(t) =
∑
σ∈Sn

t1+des(σ) =
n∑
k=1

An,kt
k,
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where An,k is called the Eulerian number that denotes the number of permutations of
length n with k − 1 descents. Let A0(t) = 1. The polynomials An(t) have the generating
function (see e.g. Riordan [12])∑

n>0

An(t)
un

n!
=

1

1− t
∑
k>1

(1− t)k−1uk

k!

=
1− t

1− teu(1−t) . (1.5)

Let An(t, q) =
∑

π∈Sn t
1+des(π)qinv(π) be the inv q-analogue of the Eulerian polynomials.

Stanley [13] showed that∑
n>0

unAn(t, q)

[n]!
=

1− t
1− tE(u(1− t); q)

, (1.6)

where

E(z; q) =
∑
n>0

zn

[n]!
.

By simple manipulations we can see that an equivalent form of (1.6) is∑
n>0

unAn(t, q)

[n]!
=

1

1− t
∑
k>1

(1− t)k−1uk

[k]!

. (1.7)

Alternative proofs of (1.7) have been given by Gessel [9] and Garsia [8].
In this paper we consider permutations with restricted positions, and extend the above

results to descent polynomials of permutations in a Ferrers board. Traditionally a per-
mutation σ ∈ Sn is also represented as a 01-filling of an n by n square board: Reading
from left to right and bottom to top, we simply put a 1 in the ith row and the jth column
whenever σi = j for i = 1, . . . , n. Given integers 0 < r1 6 r2 6 · · · 6 rn, the Ferrers
board of shape (r1, . . . , rn) is defined by

F = {(i, j) : 1 6 i 6 n, 1 6 j 6 ri}.

In the following we identify a permutation σ with its 01-filling representation, and say
that σ is in a Ferrers board F if all the cells (i, σi) are in F .

In Section 2 we extend the formulas (1.3) and (1.4) to the set of permutations on a
fixed Ferrers shape with n rows and n columns, and derive a permanent formula for the
restricted q-Eulerian polynomial

AF (t, q) :=
∑
σ∈F

t1+des(σ)qinv(σ).

In Section 3 we focus on the Ferrers board that is obtained from the n× n square by
removing a triangular board of size s, and prove that the restricted q-Eularian polynomial
is a sum of s+ 1 terms, each determined by an equation that generalizes (1.7).
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Finally in Section 4, we apply our results to permutations with bounded drop (or
excedance) size, for which the descent polynomial was first studied by Chung, Claesson,
Dukes and Graham [4]. Our method presents an alternative approach to the results in
[4].

Notation on lattice path
Here we recall some notation and results about the counting of lattice paths with

a general right boundary. These results offer the main tool to describe permutations
restricted in a Ferrers board. For a reference on lattice path counting, see Mohanty [11].

A lattice path P is a path in the plane with two kinds of steps: a unit north step N
or a unit east step E. If x is a positive integer, a lattice path from the origin (0, 0) to the
point (x, n) can be coded by a length n non-decreasing sequence (x1, x2, . . . , xn), where
0 6 xi 6 x and xi is the x-coordinate of the ith north step. For example, let x = 5 and
n = 3. Then the path EENENNEE is coded by (2, 3, 3).

In general, let s be a non-decreasing sequence with positive integer terms s1, s2, . . . , sn.
A lattice path from (0, 0) to (x, n) is one with the right boundary s if xi < si for 1 6 i 6 n.
If x > sn, then the number of lattice paths from (0, 0) to (x, n) with the right boundary s
does not depend on x. Let Pathn(s) be the set of lattice paths from (0, 0) to (sn, n) with
the right boundary s, and LPn(s) be the cardinality of Pathn(s). For a given sequence
s = (s1, s2, . . . , sn), let

LPn(s; q) =
∑

P∈Pathn(s)

qarea(P ),

where area(P ) =
∑n

i=1 xi is the area enclosed by the path P , the y-axis, and the line
y = n. Hence LPn(s) = LPn(s; 1). In this paper we will also allow the entries si to satisfy
s1 > s2 > · · · > sn, in which case

LPn(s; q) = LPn((sn, sn, . . . , sn); q) =

[
sn + n− 1

n

]
.

In particular LPn((n+ 1, n+ 1, . . . , n+ 1); q) =
[

2n
n

]
. It is also easy to see that

LPn((1, 2, . . . , n); q) = Cn(q),

where Cn(q) is Carlitz-Riordan’s q-Catalan number [2].

2 Descents of permutations in Ferrers boards

Let F be a Ferrers board with n rows and n columns, which is aligned on the top and
left. Index the rows from bottom to top, and columns from left to right. Let ri be the
size of row i. Hence 1 6 r1 6 r2 6 · · · 6 rn = n.

For a set D = {d1, d2, . . . , dk} with 1 6 d1 < · · · < dk 6 n−1, let βF (D) be the number
of permutations in F with the descent set D, and αF (D) be the number of permutations
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in F whose descent set is contained in D. The inv q-analogues of αF (D) and βF (D) are
defined by

αF (D, q) =
∑

σ∈F :Des(σ)⊆D

qinv(σ), βF (D, q) =
∑

σ∈F :Des(σ)=D

qinv(σ).

Clearly αF (D, 1) = αF (D) and βF (D, 1) = βF (D). The Inclusion-Exclusion Principle
implies that

αF (D, q) =
∑
T⊆D

βF (T, q), βF (D, q) =
∑
T⊆D

(−1)|D−T |αF (T, q).

We shall show that αF (D, q) and βF (D, q) can be expressed in terms of LPn(s, q), the
area enumerator of lattice paths with proper right boundaries and lengths.

Let’s first compute αF (D, q). To get a permutation σ in F satisfying Des(σ) ⊆ D, we
first choose x1 < x2 < · · · < xd1 such that 1 6 xi 6 ri, and put a 1 in the cell (xi, i) for
1 6 i 6 d1. Then choose xd1+1 < xd1+2 < · · · < xd2 such that 1 6 xi 6 ri, and put a 1 in
the cell (xi, i) for d1 < i 6 d2, and so on.

We say that the cell (i, j) is a 1-cell if it is filled with a 1. It is clear that an inversion
of σ corresponds to a southeast chain of size 2 in the filling, i.e. a pair of 1-cells {
(xi1 , i1), (xi2 , i2) } such that i1 < i2 while xi1 > xi2 .

For 1 6 i 6 d1, the 1-cell in the ith row (i.e. y = i) has exactly xi − i many other
1-cells lying above it and to its left. Hence the 1-cell in the ith row contributes xi − i to
the statistic inv(σ), and all the 1-cells in the first d1 rows contributed

(x1 − 1) + (x2 − 2) + · · ·+ (xd1 − d1)

to the statistic inv(σ).
Note that 0 6 x1 − 1 6 x2 − 2 6 · · · 6 xd1 − d1, and xi − i < ri − i + 1. Hence the

number of choices for the sequence (x1, . . . , xd1) is exactly the number of lattice paths
from (0, 0) to (rd1 − d1 + 1, d1) with the right boundary (r1, r2 − 1, . . . , rd1 − d1 + 1), and∑d1

i=1(xi − i) is the area of the corresponding lattice path. Therefore the first d1 rows of
F contribute a factor of LPd1((h1, . . . , hd1); q) to αF (D, q).

Let h = (h1, h2, . . . , hn) where hi = ri − i+ 1. Let the i-th block of F consist of rows
di−1 + 1 to di. Applying the above analysis to the i-th block of the Ferrers board F for
i = 2, . . . , k + 1, we get that

Theorem 2.1

αF (D, q) =
∑

σ∈F :Des(σ)⊆D

qinv(σ) =
k∏
i=0

LPdi+1−di((hdi+1, . . . , hdi+1
); q) (2.1)

where we use the convention that d0 = 0 and dk+1 = n.
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Accordingly,

βF (D, q) =
∑
T⊆D

(−1)|D−T |αF (T, q)

=
∑

16i1<i2<···<ij6k

(−1)k−jf(0, i1)f(i1, i2) . . . f(ij, k + 1)

where

f(i, j) =


LPdj−di(hdi+1, . . . , hdj); q) if i < j
1 if i = j
0 if i > j.

(2.2)

Following the discussion of Stanley [14, p.69], we obtain that

Theorem 2.2 βF (D, q) is the determinant of a (k + 1) × (k + 1) matrix with its (i, j)
entry f(i, j + 1), 0 6 i, j 6 k. That is,

βF (D, q) = det[fi,j+1]k0 (2.3)

where f(i, j) is given by (2.2).

When the Ferrers board F is an n× n square, hi = n− i+ 1, and

LPj−i((hi+1, . . . , hj); q) =

[
n− i
j − i

]
.

Theorems 2.1 and 2.2 reduce to the classical results∑
π∈Sn

Des(π)⊆D

qinv(π) =

[
n

d1, d2 − d1, . . . , n− dk

]

and ∑
π∈Sn

Des(π)=D

qinv(π) = det

[[
n− di
dj+1 − di

]]k
0

.

For a general Ferrers board with n rows and n columns, let’s check two extreme cases:
D = {1, 2, . . . , n− 1} and D = ∅.

• Case 1. D = {1, 2, . . . , n− 1}: Theorem 2.1 yields the identity

∑
σ∈F

qinv(σ) = αF (= {1, 2, . . . , n− 1}, q) =
n∏
i=1

LP1((hi); q) =
n∏
i=1

[hi]. (2.4)

Note that permutation fillings of a Ferrers board with n rows and n columns cor-
respond to complete matchings of {1, . . . , 2n} with fixed sets of left endpoints and
right endpoints, and an inversion of the permutation is exactly a nesting of the
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matching; See de Mier [6] and Kasraoui [10]. To see this, for a given Ferrers board
F with n rows and n columns, one traverses the path from the lower-left corner to
the top-right corner, and records the path by its steps a1, a2, . . . , a2n where ai = E
if the ith step is East, and ai = N if the ith step is North. Let L = {i : ai = E}
and R = {i : ai = N}. Then 01-fillings of F considered here are in one-to-one
correspondence with the matchings of {1, . . . , 2n} for which the set of left endpoints
is L and the set of right endpoints is R. For example, in the following Ferrers board
F , traversing from the lower-left corner to the top-right corner, we get the sequence
EENENENN . Thus L = 1, 2, 4, 6 and R = 3, 5, 7, 8. The filling given in the figure
corresponds to the matching {(1, 7), (2, 3), (4, 5), (6, 8)}.

1

1

1

1

It follows that equation (2.4) is exactly the generating function of the statistic
ne2(M), which is the number of nestings in a matching M , counted over all the
matchings with given sets of left and right endpoints. That is,

∑
M

qne2(M) =
n∏
i=1

[hi],

which matches the known results in [7, 10].

• Case 2, D = ∅: We have

αF (∅, q) = βF (∅, q) = LPn((h1, . . . , hn), q)

Note that hn = 1, hence LPn((h1, . . . , hn), q) = 1 iff ri > i for all i, where the only
permutation in the Ferrers board F with no descents is the identity permutation;
otherwise Pathn(h1, . . . , hn) = ∅ and LPn((h1, . . . , hn), q) = 0.

Theorems 2.1 and 2.2 can be used to get a formula for the joint distribution of des(σ)
and inv(σ) over permutations in F . Let

AF (t, q) =
∑
σ∈F

t1+des(σ)qinv(σ). (2.5)

Theorem 2.3

AF (t, q) = (1− t)nper(M), (2.6)
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where M is an n× n matrix whose (i, j)-entry is given by

Mij =


t

1−tLPj−i+1((hi, . . . , hj); q) if i 6 j

1 if i = j + 1
0 if i > j + 1,

and per(M) is the permanent of the matrix M .

Proof. We have∑
σ∈F

t1+des(σ)qinv(σ) =
∑

D⊆{1,2,...,n−1}

t1+|D|βF (D, q)

=
∑

D⊆{1,2,...,n−1}

t1+|D|
∑
T :T⊆D

(−1)|D−T |αF (T, q)

=
∑

T⊆{1,2,...,n−1}

αF (T, q)
∑

D:T⊆D

(−1)|D−T |t1+|T |+|D−T |

= (1− t)n
∑

T={t1,...,tk}<

(
t

1− t

)1+k

∆T (LPn(h))

= (1− t)nper(M),

where M is an n × n matrix as described in Theorem , and ∆D(LPn(h)) denotes the
right-hand side of (2.1). 2

Remark 2.1 We remark that descents of permutations in a Ferrers board provide an
example of one-dependent determinantal point processes, as studied by Borodin, Diaconis
and Fulman [1]. Let U be a finite set. A point process on U is a probability measure
P on the 2|U | subsets of U . One simple way to specify P is via its correlation functions
ρ(A), where for A ⊆ U ,

ρ(A) = P{S : S ⊇ A}.
A point process is determinantal with kernel K(x, y) if

ρ(A) = det[K(x, y)]x,y∈A.

It is one-dependent if ρ(X ∪ Y ) = ρ(X)ρ(Y ) whenever dist(X, Y )> 2.
Borodin et al. showed that many examples from combinatorics, algebra and group

theory are determinantal one-dependent point processes, for example, the carries process,
the descent set of uniformly random permutations, and the descent set in Mallows model
[1]. For these three cases, the point processes are stationary, while the descent set of
permutations in a Ferrers board corresponds to a determinantal one-dependent point
process that is not stationary. Explicitly, for any set D = {d1, . . . , dk} with 1 6 d1 <
· · · < dk 6 n − 1, let PF (D) = βF (D)/(

∏n
i=1 hi). Using [1, Theorem 7.5] we obtain that

PF is a determinantal, one-dependent process with correlation functions

ρ(D) = αF (D) = det[K(di, dj)]
k
i,j=1
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and with correlation kernel

K(x, y) = δx,y + (E−1)x,y+1,

where E is the upper triangular matrix E = [e(i− 1, j)]ni,j=1 whose entries are given by

e(i, j) =


LPj−i(hi+1, . . . , hj) if i < j
1 if i = j
0 if i > j.

3 Permutations in the truncated board n× n−∆s

For a general non-decreasing sequence of positive integers s, LPn(s, q) can be computed
by a determinant formula (see, for example, [11]). But there is no simple closed formula.
In the special cases that the Ferrers board F is obtained from truncating the n×n square
board by a triangular board in the corner, we can describe the joint distribution of the
statistics des(σ) and inv(σ) by identities of their bi-variate generating functions.

Let ∆s be the triangular board with row size (s, s − 1, . . . , 1). For n > s, let Λn,s be
the truncated board n×n−∆s consisting of cells that are lying in 0 6 x, y 6 n and above
the line y = x− (n− s). In other words, Λn,s is the Ferrers board whose row lengths are
(n−s, n−s+1, . . . , n, . . . , n). See the following figure for Λn,s with with n = 7 and s = 4.

Now let D = {d1, . . . , dk} with 1 6 d1 < · · · < dk 6 n− 1. We shall compute the joint
distribution of 1 + des and inv over all permutations in Λn,s using the formulas obtained
in Section 2. Again let d0 = 0 and dk+1 = n. Let δi = di − di−1 for i = 1, . . . , k + 1, and
assume that j is the particular index to make dj 6 s < dj+1 occur.

First we compute αΛn,s(D, q). Let ri be the size of row i in Λn,s. Then

ri =

{
n− s− 1 + i if i 6 s
n if s < i 6 n.

Let hi = ri − i+ 1. Then

1. For 0 6 i < j,

LPdi+1−di((hdi+1, . . . , hdi+1
), q) = LPδi+1

((n− s, . . . , n− s), q) =

[
n− s− 1 + δi+1

δi+1

]
.
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2. For i = j,

LPdj+1−dj((hdj+1, . . . , hdi+1
), q) = LPδj+1

(((n− s)s−dj , n− s− 1, . . . , n− dj+1 + 1), q)

=

[
n− dj+1 + δj+1

δj+1

]
=

[
n− dj
δj+1

]
.

3. For i > j,

LPdi+1−di((hdi+1, . . . , hdi+1
), q) = LPδi+1

(((n− di, n− di − 1, . . . , n− di+1 + 1), q)

=

[
n− di+1 + δi+1

δi+1

]
=

[
n− di
δi+1

]
.

Summing over all permutations σ with Des(σ) ⊆ D in the Ferrers board Λn,s, we obtain

αΛn,s(D, q) =
∑
σ∈Λn,s

Des(σ)⊆D

qinv(σ) =

j∏
i=1

[
n− s− 1 + δi

δi

]
·

k∏
i=j

[
n− di
δi+1

]

=

j∏
i=1

[
n− s− 1 + δi

δi

]
·
[
n− dj
∆(Dj)

]
,

where ∆(Dj) represents the sequence δj+1, . . . , δk+1.
Hence the Principle of Inclusion-Exclusion leads to

βΛn,s(I, q) =
∑
σ∈Λn,s
Des(σ)=I

qinv(σ) =
∑
D⊆I

(−1)|I|−|D|
[
n− dj
∆(Dj)

] j∏
i=1

[
n− s− 1 + δi

δi

]
. (3.1)

Let Fn,s(q, t) be the bi-variate generating function of the statistics inv and des over all
permutations in the board Λn,s. That is,

Fn,s(q, t) =
∑
σ∈Λs

t1+des(σ)qinv(σ)

=
∑

I⊆{1,2,...,n−1}

t1+|I|
∑
σ∈Λn,s
Des(σ)=I

qinv(σ).

Let (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) and (a, q)∞ =
∏∞

i=0(1 − aqi). Our main
result here is an analog of the formula (1.7). Explicitly, we show that Fn,s(q, t) can be
expressed as a linear combination of s+1 terms, each of which satisfies a q-identity similar
to (1.7).
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Theorem 3.1 For n 6 s, Fn,s(q, t) = 0. For n > s, we have

Fn,s(q, t) = θ0F
(0)
n,s (q, t) + θ1F

(1)
n,s (q, t) + · · ·+ θsF

(s)
n,s(q, t), (3.2)

where the θk’s are defined by the formal power series

∞∑
k=0

θkz
k =

(
1− t

1− t

(
1

(z; q)n−s
− 1

))−1

, (3.3)

and for each i = 0, 1, . . . , s, the term F
(i)
n,s(q, t) is given by the identity

∑
n>s+1

zn

[n− i]!
F

(i)
n,s(q, t)

(1− t)n
=

t

1− t
∑

k>s+1−i

zk

[k]!

1− t

1− t
∑
k>1

zk

[k]!

. (3.4)

Proof. As before assume D = {d1, d2, . . . , dk} with d0 = 0 and dk+1 = n. Let j be the
index uniquely decided by dj 6 s < dj+1. For n > s+ 1, by the equation (3.1) we have

Fn,s(q, t) =
∑

I⊆{1,2,...,n−1}

t1+|I|
∑
D⊆I

(−1)|I|−|D|
[
n− dj
∆(Dj)

] j∏
i=1

[
n− s− 1 + δi

δi

]

=
∑

D⊆{1,2,...,n−1}

[
n− dj
∆(Dj)

] j∏
i=1

[
n− s− 1 + δi

δi

] ∑
I:D⊆I

(−1)|I|−|D|t1+|I|

=
∑

D⊆{1,2,...,n−1}

[
n− dj
∆(Dj)

] j∏
i=1

[
n− s− 1 + δi

δi

]
(1− t)n−1−|D|t1+|D|

=
n−1∑
k=0

t1+k(1− t)n−1−k
∑

δ1+δ2+...+δk+1=n

δ1+...+δj6s<δ1+...+δj+1

[n− dj]!
∏j

i=1[n− s− 1 + δi]!

[δ1]! · · · [δk+1]!([n− s− 1]!)j
.

Let di = l and γ = t
1−t . Then,

Fn,s(q, t)

(1− t)n

=
s∑
l=0

∑
k>0

γ1+k
∑

δ1+δ2+...+δk+1=n

l=δ1+...+δj6s<δ1+...+δj+1

[n− l]!
∏j

i=1[n− s− 1 + δi]!

[δ1]! · · · [δk+1]!([n− s− 1]!)j
.

=
s∑
l=0

 ∑
j

δ1+...+δj=l

γj
j∏
i=1

[
n− s− 1 + δi

δi

]
 ∑

k;δj+1>s+1−l
δj+1+δj+2+...+δk+1=n−l

γk+1−j[n− l]!
[δj+1]! · · · [δk+1]!

 (3.5)
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Let θ0 = 1 and for l = 1, . . . , s,

θl :=
∑
j

δ1+...+δj=l

γj
j∏
i=1

[
n− s− 1 + δi

δi

]
,

and

F (l)
n,s := (1− t)n

∑
k;τ0>s+1−l

τ0+τ1+...+τk=n−l

γk+1[n− l]!
[τ0]! · · · [τk]!

. (3.6)

Then

Fn,s(q, t) = θ0F
(0)
n,s (q, t) + θ1F

(1)
n,s (q, t) + · · ·+ θsF

(s)
n,s(q, t).

We show that θl and F
(l)
n,s(q, t) satisfy (3.3) and (3.4).

First, observe that for l > 0, θl is the coefficient of zl in the formal power series

∞∑
j=0

(
γ
∞∑
k=1

[
n− s− 1 + k

k

]
zk

)j

. (3.7)

Using the q-analog of the binomial theorem

∞∑
k=0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

,

we have

∞∑
l=0

θlz
l =

∞∑
j=0

(
γ
∞∑
k=1

[n− s+ k − 1][n− s+ k − 2] · · · [n− s]
[k]!

zk

)j

=
∞∑
j=0

(
γ · ((qn−sz; q)∞

(z; q)∞
− 1)

)j
=

(
1− γ(

1

(z; q)n−s
− 1)

)−1

.

This proves the formula (3.3).
To get the formula (3.4), observe that (3.6) can be written as

1

[n− l]!
F

(l)
n,s

(1− t)n
= [zn−l]

(
γ

∑
τ0>s+1−l

zτ0

[τ0]!
·
∞∑
k=0

γk(
∞∑
τ=1

zτ

[τ ]!
)k

)
.
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This leads to the identity

∑
n>s+1

zn−l

[n− l]!
F

(l)
n,s(q, t)

(1− t)n
=

t

1− t
∑

k>s+1−l

zk

[k]!

1− t

1− t
∑
k>1

zk

[k]!

.

In the case that s = 0, Fn,s(q, t) = F
(0)
n,s (q, t) = An(t, q), and equation (3.4) reduces to

the well-known identity (1.7) by letting u = z
1−t .

2

4 Permutations with bounded drop or excedance size

Permutations with bounded drop size is related to the bubble sort and sequences that can
be translated into juggling patterns [5], whose enumeration was first studied by Chung,
Claesson, Dukes, and Graham [4]. For a permutation σ, we say that i is a drop of σ if
σi < i and the drop size is i − σi. Similarly, we say that i is an excedance of σ if σi > i,
and the excedance size is σi − i. It is well-known that the number of excedances is an
Eulerian statistic, i.e., has the same distribution as des over the set of permutations.

Following [4], we use maxdrop(σ) to denote the maximum drop of σ,

maxdrop(σ) := max{i− σi|1 6 i 6 n},

and similarly, maxexc(σ) to denote the maximum excedance size of σ,

maxexc(σ) := max{σi − i|1 6 i 6 n}.

Let Bn,k = {σ ∈ Sn|maxdrop(σ) 6 k}. It is easy to see that |Bn,k| = k!(k + 1)n−k:
Just note that there are (k + 1)n−k ways to determine σn, · · · , σk+1 in the correct order,
one after another, and the remaining is clear (e.g., see [5, Thm.1]). In [4], Chung et al.
defined the k-maxdrop descent polynomials

Bn,k(t) :=
∑
σ∈Bn,k

tdes(σ)

and obtained recurrences as well as a formula for the generating function Bk(t, z) :=∑
n>0Bn,k(t)z

n.
In this section, we will use the analysis in the previous section to derive a variant

generating function for Bk(t, z). Explicitly, we get an exact formula for

Ek(t, z) :=
∑
n>k

Bn,k(t)z
n =

∑
n>k

 ∑
σ∈Bn,k

tdes(σ)

 zn. (4.1)
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First, let B′n,k = {σ ∈ Sn|maxexc(σ) 6 k}. It is clear that the map a1a2 . . . an 7→
(n + 1− an)(n + 1− an−1) . . . (n + 1− a1) is a bijection from Bn,k to B′n,k that preserves
the statistic des(σ) and inv(σ). It follows that

Bn,k(t) =
∑
σ∈B′n,s

tdes(σ) and hence Ek(t, z) =
∑
n>k

 ∑
σ∈B′n,k

tdes(σ)

 zn.

Note that B′n,k is the set of permutations σ ∈ Sn satisfying σi 6 i + k. It is easy to
check that it is exactly the set of permutations on the truncated board Λn,n−k−1. Hence
for n > k + 1, we have ∑

σ∈Bn,k

t1+des(σ)qinv(σ) = Fn,n−k−1(q, t)

and Theorem 3.1 with s = n− k − 1 gives a description of Fn,n−k−1(q, t).
To obtain the ordinary generating function for Bn,k(t), set q = 1. As before, let

γ = t/(1− t). Then formula (3.5) becomes the following equation for n > k + 1:

tBn,k(t)

(1− t)n
=

n−k∑
l=0

 ∑
j

δ1+...+δj=l

γj
j∏
i=1

(
k + δi
δi

)
 ∑

p;δj+1>n−k−l
δj+1+δj+2+...+δp+1=n−l

γp+1−j(n− l)!
δj+1! · · · δk+1!

 .

(Note that from the analysis, the upper limit of l can include n− k. )

Let θ
(k)
0 = 1 and for l > 1,

θ
(k)
l :=

∑
j;δ1+...+δj=l

δi>0

γj
j∏
i=1

(
k + δi
δi

)
,

and

c
(k)
n−l :=

∑
τ0>n−k−l

γ

(
n− l
τ0

)
·

∑
τ1+···+τp=n−l−τ0

τi>1

γp
(
n− l − τ0

τ1, . . . , τp

)
, for k > 0.

For k = 0, let c
(0)
n = δn,0. Then for any fixed k > 0 and n > k + 1, we have

tBn,k(t)

(1− t)n
=

n−k∑
l=0

θ
(k)
l c

(k)
n−l, (4.2)

Letting q = 1 and k = n− s− 1 in equation (3.3), we obtain

Θk(z) =
∑
n>0

θ(k)
n zn =

(
1− t

1− t

(
1

(1− z)k+1
− 1

))−1

. (4.3)
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For the coefficient c
(k)
i , using formula (3.5) with s = 0, we get that∑

τ1+···+τp=n
τi>1

γp
(

n

τ1, . . . , τp

)
=

An(t)

(1− t)n
,

where An(t) is the classical Eulerian polynomial defined by

An(t) =
∑
σ∈Sn

t1+des(σ), n > 0.

By convention, we set A0(t) = 1. It follows that for k > 0,

c(k)
n = γ

∑
p>n−k

(
n

p

)
An−p(t)

(1− t)n−p
= γ

k−1∑
p=0

(
n

p

)
Ap(t)

(1− t)p
. (4.4)

Writing as a generating function, we obtain that for k > 0,

Ck(z) =
∑
n>k

c(k)
n zn = γ

k−1∑
p=0

Ap(t)

(1− t)p
∑
n>k

(
n

p

)
zn

which leads to

Ck(z) =
t

1− t

k−1∑
p=0

Ap(t)

(1− t)p

(
zp

(1− z)p+1
−

k−1∑
n=p

(
n

p

)
zn

)
. (4.5)

For k = 0, C0(z) = 1.
Observe that equation (4.2) is true for n = k as well. In fact it is equivalent to the

identity

Ak(t) = t
k−1∑
p=0

(
k

p

)
(1− t)k−p−1Ap(t),

which can be readily checked by using the following expression of the Eulerian polynomial,
see, for example [3, Lemma 14.1, p.517],

An(t) = (1− t)n+1

∞∑
j=0

jntj, n > 0.

Therefore for all n > k,

Bn,k(t) =
(1− t)n

t

n−k∑
l=0

θ
(k)
l c

(k)
n−l,

Multiplying both sides by zn and summing over n > k, we have obtained the generating
function Ek(t, z).
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Theorem 4.1 Let

Ek(t, z) =
∑
n>k

Bn,k(t)z
n =

∑
n>k

 ∑
σ∈Bn,k

tdes(σ)

 zn.

Then E0(t, z) = 1/(1− z) and for k > 1,

Ek(t, z) =
1

t
Θk((1− t)z)Ck((1− t)z), (4.6)

where Θk(z) and Ck(z) are given in formulas (4.3) and (4.5). Explicitly,

Ek(t, z) =

k−1∑
p=0

Ap(t)

(
zp

(1− (1− t)z)p+1
−

k−1∑
n=p

(
n

p

)
(1− t)n−pzn

)
1− t

(1−(1−t)z)k+1

. (4.7)

Example 4.1 For the case k = 1, formula (4.7) gives

E1(t, z) =

1
1−(1−t)z − 1

1− t
(1−(1−t)z)2

=
z(1− (1− t)z)

1− z(2− (1− t)z)
.

Comparing with equation (5) in [4], and noting that the summation of Bk(z, y) in [4]
starts from n = 0, one checks easily that the two formulas agree with each other.
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