
On log-concavity of a class of
generalized Stirling numbers

Feng-Zhen Zhao∗

School of Mathematical Sciences
Dalian University of Technology

Dalian 116024, China.

fengzhenzhao@yahoo.com.cn

Submitted: Sep 19, 2011; Accepted: Apr 8, 2012; Published: Apr 16, 2012

2010 Mathematics Subject Classifications: 05A20, 11B73, 11B83

Abstract

This paper considers the generalized Stirling numbers of the first and second
kinds. First, we show that the sequences of the above generalized Stirling num-
bers are both log-concave under some mild conditions. Then, we show that some
polynomials related to the above generalized Stirling numbers are q-log-concave or
q-log-convex under suitable conditions. We further discuss the log-convexity of some
linear transformations related to generalized Stirling numbers of the first kind.

Keywords: Stirling numbers; log-concavity/log-convexity; q-log-concavity/q-log-
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1 Introduction

For a given sequence a = (a0, a1, · · · , an, · · · ) of real numbers, we let sa(n, k) and Sa(n, k)
denote the generalized Stirling numbers of the first and second kinds, respectively. That
is, sa(n, k) and Sa(n, k) are defined respectively by

n∑
k=0

sa(n, k)xk = (x|a)n (1.1)

and
∞∑
n=k

Sa(n, k)xn =
xk

(1− a0x)(1− a1x) · · · (1− akx)
, (1.2)
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where

(x|a)n =

{
(x− a0)(x− a1) · · · (x− an−1), n > 1,

1, n = 0,

sa(0, 0) = 1,

sa(n, k) = 0 for n < k,

sa(n, 0) = (−1)na0a1 · · · an−1,
Sa(n, 0) = an0 for n > 1,

Sa(n, n) = 1 for n > 0.

It is well known that sa(n, k) and Sa(n, k) are generalizations of a series of combina-
torial numbers. In particular, when an = n, sa(n, k) and Sa(n, k) reduce to the Stirling
numbers of the first kind s(n, k) and the second kind S(n, k), respectively. If an = −1,
sa(n, k) becomes the binomial coefficient

(
n
k

)
and, if an = 1 + mn, sa(n, k) becomes the

Whitney number of the first kind [1]. In addition, when an = np or an =
(
n+p−1

p

)
with p

to be a nonnegative integer, Sun [14] gave a combinatorial interpretation of sa(n, k) and
Sa(n, k). For more properties of sa(n, k) and Sa(n, k), we refer the reader to [14, 15]. In
this paper, we focus on the log-concavity of sa(n, k) and Sa(n, k).

We next recall some definitions and notations involved in this paper.

Definition 1.1. Let {xn}n>0 be a sequence of nonnegative numbers.

(1) If x2
j > xj−1xj+1 (or x2

j 6 xj−1xj+1) for each j > 1, {xn}n>0 is called log-concave (or
log-convex ).

(2) If x0 6 x1 6 · · · 6 xm−1 6 xm > xm+1 > · · · for some m, {xn}n>0 is called unimodal,
and m is called a mode of the sequence.

Log-concavity and log-convexity are important properties of combinatorial sequences
and they have been found many applications in many subjects such as combinatorics,
algebra, geometry, probability and statistics; see for instance [2, 8, 13].

Definition 1.2. Let q be an indeterminate and {fn(q)}n>0 be a sequence of polynomials
in q. If, for each n > 1, f 2

n(q)−fn−1(q)fn+1(q) (or fn−1(q)fn+1(q)−f 2
n(q)) has nonnegative

coefficients as a polynomial in q, we say that {fn(q)}n>0 is q-log-concave (or q-log-convex ).

The q-log-concavity and q-log-convexity of polynomials play an important role in
proving the log-concavity and log-convexity of combinatorial sequences; see for instance
[16]. For the q-log-concavity and q-log-convexity of classical polynomials, see for instance
[5, 6, 7, 12].

Definition 1.3. Let {a(n, k)}06k6n be a triangular array with a(n, k) > 0.
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(1) For a given sequence {xn} of nonnegative numbers, define a linear transformation
by

zn =
n∑

k=0

a(n, k)xk, n = 0, 1, 2, · · · . (1.3)

If the log-concavity of {xn} implies that of {zn}, we say that the linear transforma-
tion (1.3) has the preserving log-concavity (PLC) property and the corresponding
triangle {a(n, k)}06k6n is called PLC.

(2) For a given integer 0 6 r 6 n, let

Ar(n; q) =
n∑

k=r

a(n, k)qk.

If, for each r > 0, the sequence {Ar(n; q)}n>r of polynomials is q-log-concave in n,
we say that the triangle {a(n, k)}06k6n has the LC-positive property.

See [16] for more details about the PLC property and the LC-positive property.

Definition 1.4. [2] A sequence of positive numbers whose generating function has only
real zeros is called a Pólya frequency sequence (or a PF sequence).

The zeros of the generating function of a finite sequence play an important role in
studying the log-concavity of the sequence. A classical approach of proving the log-
concavity of a finite sequence is to use the Newton’s inequality. In particular, from the
Newton’s inequality, a PF sequence must be log-concave. See [9] for more information
about the PF sequences.

Denote by ca(n, k) = (−1)n+ksa(n, k), which is obviously a generalization of the un-
signed Stirling numbers of the first kind. It is well known that the sequence of the unsigned
Stirling numbers of the first kind and the sequence of the Stirling numbers of the sec-
ond kind are both log-concave; see [3, 17]. The purpose of this paper is to discuss the
log-concavity of ca(n, k) and Sa(n, k). Meanwhile, we investigate the q-log-concavity and
q-log-convexity of some polynomials related to ca(n, k) and Sa(n, k).

Given a sequence a = (a0, a1, · · · , an, · · · ), we define 〈x|a〉n by

〈x|a〉n =

{
(x + a0)(x + a1) · · · (x + an−1), n > 1,

1, n = 0.

Throughout the paper, we assume that a = (a0, a1, · · · , an, · · · ) is a nonnegative sequence.

2 Log-concavity of ca(n, k) and Sa(n, k)

Recall that the Stirling numbers of two kinds, (−1)n+ks(n, k) and S(n, k), are both log-
concave. We discuss the log-concavity of ca(n, k) and Sa(n, k) in this section. To this end,
we first give some lemmas.
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Lemma 2.1 (Newton’s inequality). [10] If the polynomial b0 + b1x+ b2x
2 + · · ·+ bnx

n has
only real roots, then

b2k > bk+1bk−1
k(n− k + 1)

(k − 1)(n− k)

for each 2 6 k 6 n− 1.

Lemma 2.2. [2] Let {bk}06k6n be a sequence of positive real numbers such that the poly-
nomial

∑n
k=0 bkx

k has only real roots, that is, {bk}06k6n is a PF sequence. Then every
mode k0 of the sequence {bk}06k6n satisfies⌊∑n

k=0 kbk∑n
k=0 bk

⌋
6 k0 6

⌈∑n
k=0 kbk∑n
k=0 bk

⌉
,

where bxc and dxe denote the floor and ceiling of x, respectively.

By (1.1), we have

n∑
k=0

ca(n, k)xk = 〈x|a〉n, (2.1)

ca(n, k) = ca(n− 1, k − 1) + an−1ca(n− 1, k), n > k, k > 1, (2.2)

and, by (2.2), we can derive ca(n, k) = |sa(n, k)|. Therefore, from (2.1) and Lemma 2.1,
we know that {ca(n, k)}06k6n is log-concave and hence it is unimodal. We further have
the following result.

Theorem 2.3. Assume that the sequence a = (a0, a1, · · · , an, · · · ) satisfies an > 0 for
each n > 0. Then every mode k0 of the sequence {ca(n, k)}06k6n satisfies⌊ n−1∑

j=0

1

aj

⌋
6 k0 6

⌈ n−1∑
j=0

1

aj

⌉
for each n > 2.

Proof. Let P (x) =
∑n

k=0 ca(n, k)xk. It follows that P (x) = 〈x|a〉n. Making use of Lemma
2.2, we have ⌊∑n

k=0 kca(n, k)∑n
k=0 ca(n, k)

⌋
6 k0 6

⌈∑n
k=0 kca(n, k)∑n
k=0 ca(n, k)

⌉
.

On the other hand, we have

P ′(1)

P (1)
=

∑n
k=0 kca(n, k)∑n
k=0 ca(n, k)

=
n−1∑
j=0

1

aj
.

The conclusion follows immediately.
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The following lemma will be useful later on.

Lemma 2.4. [16] The constant triangle {a(n, k)} is LC-positive and any LC-positive
triangle must be PLC.

Theorem 2.5. Assume that a = (a0, a1, · · · , an, · · · ) is a sequence of nonnegative real
numbers such that a0 = 0, ai 6= aj for i 6= j, and aj > 0 for j > 1. For any fixed k > 2,
{Sa(n, k)}n>k is log-concave in n.

Proof. We first consider the case where k = 2. we have from (1.2) that

Sa(n, 2) =
an−12 − an−11

a2 − a1

for n > 2 and, for n > 3, we have

S2
a(n, 2)− Sa(n− 1, 2)Sa(n + 1, 2) = an−11 an−12 > 0.

This means that {Sa(n, 2)} is log-concave.
Suppose that {Sa(n, k)} is log-concave in n when k > 3. It is sufficient to show that

{Sa(n + k + 1, k + 1)} is log-concave in n. In fact, by (1.2), we have

Sa(n + k + 1, k + 1) =
n∑

j=0

Sa(j + k, k)an−jk+1

for n > 0. Noting that {Sa(j + k, k)a−jk } is log-concave in n, we have from Lemma 2.4
that {Sa(n + k + 1, k + 1)} is log-concave in n. This completes the proof.

3 q-Log-concavity and q-Log-convexity of Some Poly-

nomials

Now we discuss the q-log-convexity or q-log-concavity of some polynomials related to
sa(n, k) and Sa(n, k).

Theorem 3.1. Consider the polynomials

Fn,1(q) =
n∑

k=0

ca(n, k)qk

and

Gn,1(q) = F 2
n,1(q)− Fn−1,1(q)Fn+1,1(q), n > 1.

Then we have the following statements:
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(i) {Fn,1(q)}n>0 is q-log-concave if a = (a0, a1, · · · , an, · · · ) is monotonic decreasing.
Conversely, {Fn,1(q)}n>0 is q-log-convex if a = (a0, a1, · · · , an, · · · ) is monotonic
increasing.

(ii) {Gn,1(q)}n>1 is q-log-convex if a = (a0, a1, · · · , an, · · · ) is monotonic increasing
and {an − an−1}n>1 is log-convex. Conversely, {Gn,1(q)}n>1 is q-log-concave if
a = (a0, a1, · · · , an, · · · ) is monotonic decreasing and {an−1− an}n>1 is log-concave.

Proof. It is evident that

F 2
n,1(q)− Fn−1,1(q)Fn+1,1(q) = 〈q|a〉n−1〈q|a〉n(an−1 − an)

and the coefficients of 〈q|a〉n are all nonnegative for n > 0. Therefore, {Fn,1(q)}n>0 is
q-log-concave when a = (a0, a1, · · · , an, · · · ) is monotonic decreasing and, equivalently,
{Fn,1(q)}n>0 is q-log-convex when a = (a0, a1, · · · , an, · · · ) is monotonic increasing.

On the other hand, it is not difficult to see that

G2
n,1(q)−Gn−1,1(q)Gn+1,1(q)

= Fn−2,1(q)Fn−1,1(q)F 2
n,1(q)[(q + an−2)(an−1 − an)2

−(q + an)(an−2 − an−1)(an − an+1)]

= Fn−2,1(q)Fn−1,1(q)F 2
n,1(q)[(an−1 − an)2q + an−2(an−1 − an)2

−(an−1 − an−2)(an+1 − an)q − an(an−1 − an−2)(an+1 − an)].

If a = (a0, a1, · · · , an, · · · ) is monotonic increasing and, for n > 1, the sequence {an−an−1}
is log-convex, we then have

(an−1 − an)2 − (an−1 − an−2)(an+1 − an) 6 0,

an−2(an−1 − an)2 − an(an−1 − an−2)(an+1 − an) 6 0,

which implies that G2
n−1,1(q)G2

n+1,1(q)−G2
n,1(q) has nonnegative coefficients as a polyno-

mial in q and hence {Gn,1(q)}n>1 is q-log-convex. Conversely, if a = (a0, a1, · · · , an, · · · )
is monotonic decreasing and {an−1 − an}n>1 is log-concave, we have

(an−1 − an)2 − (an−1 − an−2)(an+1 − an) > 0,

an−2(an−1 − an)2 − an(an−1 − an−2)(an+1 − an) > 0,

which means that G2
n,1(q)−G2

n−1,1(q)G2
n+1,1(q) has nonnegative coefficients as a polynomial

in q and hence {Gn,1(q)}n>1 is q-log-concave.

Theorem 3.2. Assume that the sequence a = (a0, a1, · · · , an, · · · ) satisfies a0 = 0, ai 6= aj
for i 6= j, and aj > 0 for j > 1. Then, for a given k > 2, {Tn,k(q)} is q-log-concave, where
Tn,k(q) =

∑n
j=0 Sa(j + k, k)qj.
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Proof. For n > 1, we have

T 2
n,k(q)− Tn−1,k(q)Tn+1,k(q)

= [Sa(n + k, k)qn − Sa(n + k + 1, k)qn+1]Tn,k(q) + Sa(n + k, k)Sa(n + k + 1, k)q2n+1

= Sa(n + k, k)qn +
n∑

j=1

[Sa(n + k, k)Sa(j + k, k)− Sa(n + k + 1, k)Sa(j − 1 + k, k)]qn+j.

Noting that {Sa(n, k)} is log-concave in n, we have

Sa(n + k, k)

Sa(n + k + 1, k)
>

Sa(j − 1 + k, k)

Sa(j + k, k)
(1 6 j 6 n),

that is, Sa(n+ k, k)Sa(j + k, k)− Sa(n+ k + 1, k)Sa(j − 1 + k, k) > 0 (1 6 j 6 n). Hence
{Tn,k(q)} is q-log-concave.

4 Log-convexity of Linear Transformations Related

to ca(n, k)

In this section, we discuss the log-convexity of some linear transformations related to
ca(n, k). If the sequence {xk} of positive real numbers is log-convex, Liu and Wang [11]
proved that

∑n
k=0 c(n, k)xk preserves the log-convexity, where c(n, k) is the signless Stir-

ling number of the first kind. Now we discuss the log-convexity of zn =
∑n

k=0 ca(n, k)xk.

Theorem 4.1. Suppose that a = (a0, a1, · · · , an, · · · ) satisfies an+1 − an > 1 for n > 0.
If {xn}n>0 is log-convex and monotonic decreasing, then {zn =

∑n
k=0 ca(n, k)xk} is log-

convex for n > 2.

Proof. For n > 2, it follows from (2.2) that

z2n − zn−1zn+1 = z2n − anzn−1zn − zn−1

n+1∑
k=1

ca(n, k − 1)xk

= zn

[
an−1zn−1 +

n∑
k=1

ca(n− 1, k − 1)xk − anzn−1

]
− zn−1

n+1∑
k=1

ca(n, k − 1)xk

= (an−1 − an)zn−1zn + zn

n−1∑
k=0

ca(n− 1, k)xk

+ zn

n−1∑
k=0

ca(n− 1, k)(xk+1 − xk)− zn−1

n+1∑
k=1

ca(n, k − 1)xk.

Noting that an−1−an 6 −1 and {xn}n>0 is monotonic decreasing, we have z2n−zn−1zn+1 6
0, which indicates that {zn} is log-convex for n > 2.
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Theorem 4.2. Suppose that a = (a0, a1, · · · , an, · · · ) satisfies an+1 − an > 1 for n > 0
and a0 = 0. Then {zn =

∑n
k=0 ca(n, k)k} is log-convex for n > 2.

Proof. It follows from (2.1) that

z2n − zn−1zn+1

= (〈1|a〉n)2
( n−1∑

j=0

1

1 + aj

)2

− 〈1|a〉n−1〈1|a〉n+1

n−2∑
j=0

1

1 + aj

n∑
j=0

1

1 + aj

= 〈1|a〉n−1〈1|a〉n
[
(an−1 − an)

( n−1∑
j=0

1

1 + aj

)2

+
an − an−1
1 + an−1

n−1∑
j=0

1

1 + aj
+

1

1 + an−1

]
.

Let

gn = (an−1 − an)

( n−1∑
j=0

1

1 + aj

)2

+
an − an−1
1 + an−1

n−1∑
j=0

1

1 + aj
+

1

1 + an−1
.

It is sufficient to show by induction that gn 6 0 for n > 2. In fact, since a2 − a1 > 1 and
a0 = 0, we have

g2 = (a1 − a2)

(
1 +

1

1 + a1

)2

+
a2 − a1
1 + a1

(
1 +

1

1 + a1

)
+

1

1 + a1

= a1 − a2 +
a1 − a2
1 + a1

+
1

1 + a1
< 0.

Assume that gn 6 0 for n > 3. Since

gn+1 = (an − an+1)

( n−1∑
j=0

1

1 + aj
+

1

1 + an

)2

+
an+1 − an

1 + an

( n−1∑
j=0

1

1 + aj
+

1

1 + an

)
+

1

1 + an
,

by straightforward calculus, we have

gn+1 = (an − an+1)

( n−1∑
j=0

1

1 + aj

)2

+
an − an+1

1 + an

n−1∑
j=0

1

1 + aj
+

1

1 + an

6 an − an+1 +
an − an+1

1 + an

n−1∑
j=0

1

1 + aj
+ 1

< 0.

This completes the proof.
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5 Conclusions

We have obtained some properties related to the generalized Stirling numbers of the first
and second kinds. In the next step, we will focus on the higher order log-concavity/log-
convexity [4] of various combinatorial sequences and, in addition, we will also study the
asymptotic approximations of various combinatorial sums.
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