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Abstract

A balanced pair in an ordered set P = (V,6) is a pair (x, y) of elements of V
such that the proportion of linear extensions of P that put x before y is in the real
interval [1/3, 2/3]. We prove that every finite N -free ordered set which is not totally
ordered has a balanced pair.
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1 Introduction

Throughout, P = (V,6) denotes a finite ordered set, that is, a finite set V and a binary
relation 6 on V which is reflexive, antisymmetric and transitive. A linear extension of
P = (V,6) is a linear ordering � of V which extends 6, i.e. such that x � y whenever
x 6 y.

Suppose an unknown linear extension L of P is to be determined using only com-
parisons between pairs of elements. At each step we ask a question of the form ”is it
true that x ≺ y?”. We will get the answer before we can ask another question. How
many comparisons do we need to perform (in the worst case) in order to determine L
completely? This is known as the problem of comparison sorting.

Suppose that at each step we can find a pair (x, y) of incomparable elements such that
the proportion of linear extensions of P that put x before y, denoted P(x ≺ y), equals 1

2
.

Then we need at least log2(e(P )) comparisons where e(P ) denotes the number of linear
extensions of P . This is not always possible as shown by the example (i) depicted in
Figure 1. Indeed, in that example the only possible values for P(x ≺ y) are 1/3 or 2/3.

Call a pair (x, y) of elements of V a balanced pair in P = (V,6) if 1/3 6 P(x ≺
y) 6 2/3. The 1/3-2/3 Conjecture states that every finite ordered set which is not totally
ordered has a balanced pair. If true, the example (i) depicted in Figure 1 would show
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that the result is best possible. The 1/3-2/3 Conjecture first appeared in a paper of
Kislitsyn [6]. It was also formulated independently by Fredman in about 1975 and again
by Linial [7].

The 1/3-2/3 Conjecture is known to be true for ordered sets with a nontrivial auto-
morphism [5], for ordered sets of width two [7], for semiorders [2], for bipartite ordered
sets [10], for 5-thin posets [4], and for 6-thin posets [8]. See [3] for a survey.

In this paper we prove the 1/3-2/3 Conjecture for N -free ordered sets.

(iii)(i)

a c

db

(ii)

Figure 1:

Let P = (V,6) be an ordered set. For x, y ∈ V we say that y is an upper cover of x or
that x is a lower cover of y if x < y and there is no element z ∈ V such that x < z < y.
Also, we say that x and y are comparable if x 6 y or y 6 x; otherwise we say that x and
y are incomparable. A chain is a totally ordered set.

A 4-tuple (a, b, c, d) of distinct elements of V is an N in P if b is an upper cover of
a and c, d is an upper cover of c and if these are the only comparabilities between the
elements a, b, c, d (See Figure 1 (ii)). The ordered set P is N -free if it does not contain
an N (the ordered set depicted in Figure 1 (iii) is N -free and the one depicted in Figure
1 (ii) is not).

Notice that every finite ordered set can be embedded into a finite N -free ordered set
(see for example [9]). It was proved in [1] that the number of (unlabeled) N -free ordered
sets is

2n log
2
(n)+o(n log

2
(n)).

Our main result is this.

Theorem 1. Every finite N -free ordered set which is not totally ordered has a balanced
pair.

The proof of Theorem 1 is similar to the proof of Theorem 2 of [7] stating that the
1/3-2/3 Conjecture is true for finite ordered sets of width two (these being the ordered
sets covered by two chains).

2 Proof of Theorem 1

We start this section by stating some useful properties of N -free ordered sets.
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Lemma 2. Let P = (V,6) be an N -free ordered set. If x, y ∈ V have a common upper
cover, then x and y have the same upper covers. Dually, if x, y ∈ V have a common lower
cover, then x and y have the same lower covers.

Let P = (V,6) be an ordered set. An element m ∈ V is called minimal if for all x ∈ V
comparable to m we have x > m. We denote by Min(P ) the set of all minimal elements
of P . We recall that the decomposition of P into levels is the sequence P0, · · · , Pl, · · ·
defined by induction by the formula

Pl := Min(P − ∪{Pl′ : l
′ < l}).

In particular, P0 = Min(P ).

Lemma 3. Let P = (V,6) be an N -free ordered set and let P0, · · · , Ph be the sequence of
its levels. Then for every x ∈ V , there exists i 6 h such that all upper covers of x are in
Pi.

Proof. If x has at most one upper cover, then the conclusion of the lemma holds. So we
may assume that x has at least two distinct upper covers x1 and x2 belonging to two
distinct levels. Let j < k be such that x1 ∈ Pj and x2 ∈ Pk. Then x2 has a lower cover
x3 ∈ Pk−1. We claim that (x3, x2, x, x1} is an N in P contradicting our assumption that
P is N -free. Indeed, since x1 and x2 are upper covers of x we infer that they must be
incomparable. Moreover, x1 and x3 are incomparable because otherwise x1 < x3 < x2

(notice that x3 < x1 is not possible since j 6 k − 1) which contradicts our assumption
that x2 is an upper cover of x. Similarly we have that x and x3 are incomparable proving
our claim. The proof of the lemma is now complete.

Let P = (V,6) be an ordered set. For x ∈ V define D(x) := {y ∈ V : y < x} and
U(x) := {y ∈ V : x < y}.

Lemma 4. Let P be an N -free ordered set and let P0, · · · , Ph be the sequence of its levels.
Let 0 6 i 6 h be such that i is the largest with the property that Pi contains two distinct
elements with the same set of lower covers. Then for every x ∈ Pi we have that U(x)∪{x}
is a chain.

Proof. Let x ∈ Pi be such that U(x) 6= ∅ and suppose that U(x) is not a chain. There
is then an element y ∈ U(x) ∪ {x} having at least two distinct upper covers, say y1, y2.
From Lemma 3 we deduce that y1 and y2 are in the same level Pj with i < j. Because P
is N -free it follows from Lemma 2 that y1 and y2 have the same set of lower covers. This
contradicts our choice of i.

We recall that an incomparable pair (x, y) of elements is critical if U(y) ⊆ U(x)
and D(x) ⊆ D(y). The following lemma is true for ordered sets that are not necessarily
N -free.

Lemma 5. Suppose (x, y) is a critical pair in P and consider any linear extension of P
in which y < x. Then the linear order obtained by swapping the positions of y and x is
also a linear extension of P . Moreover, P(x ≺ y) > 1

2
.
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Proof. Let L be a linear extension that puts y before x and let z be such that y ≺ z ≺ x
in L. Then z is incomparable with both x and y since (x, y) is a critical pair of P .
Therefore, the linear order L′ obtained by swapping x and y is a linear extension of P .
The map L 7→ L′ from the set of linear extensions that put y before x into the set of
linear extensions that put x before y is clearly one-to-one. Hence, P(y ≺ x) 6 P(x ≺ y)
and therefore P(x ≺ y) > 1

2
.

We now prove Theorem 1.

Proof. Let P = (V,6) be an N -free ordered set not totally ordered and P0, · · · , Ph be the
sequence of its levels. If P0 is a singleton, say P0 = {p0}, then p0 will be the minimum
element in any linear extension of the ordered set. Therefore, nothing will change if p0 is
deleted from the ordered set. So we may assume without loss of generality that P0 has at
least two distinct elements. Notice that any two such elements have the same set of lower
covers: the empty set. Now let 0 6 i 6 h be such that i is the largest with the property
that Pi contains two distinct elements with the same set of lower covers and let a, b ∈ Pi

be such elements. If U(b) = U(a) = ∅, then P(a ≺ b) = 1
2
and we are done. Otherwise

we may suppose without loss of generality that U(b) 6= ∅. From Lemma 4 we deduce that
U(b)∪{b} is a chain, say U(b)∪{b} is the chain b = b1 < · · · < bn. We prove the theorem
by contradiction. We may assume without loss of generality that

P(a ≺ b1) <
1

3
.

Indeed, if U(a) 6= ∅, then the situation is symmetric with respect to a and b and therefore
such an assumption is possible. Otherwise, U(a) = ∅ and hence (b1, a) is a critical pair
(this is because D(a) = D(b1) by assumption) yielding P(b1 ≺ a) > 2

3
(Lemma 5) or

equivalently P(a ≺ b1) <
1
3
.

Define now the following quantities

q1 = P(a ≺ b1),

qj = P(bj−1 ≺ a ≺ bj)(2 6 j 6 n),

qn+1 = P(bn ≺ a).

Lemma. The real numbers qj (1 6 j 6 n+ 1) satisfy:

(i) 0 6 qn+1 6 · · · 6 q1 6
1
3
,

(ii)
∑n+1

j=1 qj = 1.

Proof. Since q1, · · · , qn+1 is a probability distribution, all we have to show is that qn+1 6

· · · 6 q1. To show this we exhibit a one-to-one mapping from the event that bj ≺ a ≺ bj+1

whose probability is qj+1 into the event that bj−1 ≺ a ≺ bj whose probability is qj
(1 6 j 6 n). Notice that in a linear extension for which bj ≺ a ≺ bj+1 every element z
between bj and a is incomparable to both bj and a. Indeed, such an element z cannot
be comparable to bj because otherwise bj < z in P but the only element above bj is
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bj+1 which is above a in the linear extension. Now z cannot be comparable to a as well
because otherwise z < a in P and hence z < b = b1 < bj (by assumption we have that
D(a) = D(b)). The mapping from those linear extensions in which bj ≺ a ≺ bj+1 to those
in which bj−1 ≺ a ≺ bj is obtained by swapping the positions of a and bj. This mapping
clearly is well defined and one-to-one.

Theorem 1 can be proved now: let r be defined by

r−1∑

j=1

qj 6
1

2
<

r∑

j=1

qj

Since
∑r−1

j=1 qj = P(a ≺ br−1) 6
1
2
, it follows that

∑r−1
j=1 qj <

1
3
. Similarly

∑r

j=1 qj = P(a ≺

br) must be > 2
3
. Therefore qr >

1
3
, but this contradicts 1

3
> q1 > qr.
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