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Abstract

It is conjectured by Vizing (1965) that every planar graphs graph G with maxi-
mum degree 6 ⩽ ∆ ⩽ 7 is class one. The case ∆ = 7 was confirmed independently
by Sanders and Zhao (2001), and by Zhang (2000). In this paper, we prove that
every planar graph G with ∆ = 6 and without 7-cycles is class one.
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1 Introduction

In this paper, all graphs under consideration are simple and finite. A plane graph is a
particular drawing of a planar graph on the Euclidean plane. Let V (G), E(G), F (G) and
∆(G) (or ∆ for short) be the vertex set, edge set, face set, and maximum degree of a
given plane graph G, respectively. Let Cn denote a cycle of length n. We say that G is
Cn-free if G contains no Cn as a subgraph.

An edge k-coloring of a graph G is a function ϕ : E(G) 7→ {1, 2, . . . , k} such that any
two adjacent edges receive different colors. The edge chromatic number, denoted χ′(G),
of a graph G is the smallest integer k such that G has an edge k-coloring. The celebrated
Vizing’s Theorem says that the edge chromatic number of a simple graph G is equal to ∆
or ∆ + 1. G is class one if χ′(G) = ∆ and class two if χ′(G) = ∆ + 1. A class two graph
is critical if χ′(G − e) < χ′(G) for any edge e of G. A critical graph G is ∆-critical if it
has maximum degree ∆.
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In 1965, Vizing[6] proposed the following well-known Planar Graph Coloring conjec-
ture:

Conjecture 1 Every planar graph G with ∆ = 6, 7 is class one.

The case ∆ = 7 was confirmed independently by Sanders and Zhao [4], and by Zhang
[9]. This result was further extended by Sanders and Zhao [5] to a graph with ∆ = 7
which can be embedded in a surface of characteristic zero. The case ∆ = 6 remains open.

In[10], Zhou proved that every planar graph G with ∆ = 6 is class one if it is C3-free,
or C4-free, or C5-free. Li, Luo and Niu[2] generalized Zhou’s results to the surface of Euler
characteristic at least -3 or -1. Bu and Wang[1] proved that planar graphs G with ∆ = 6
and without 6-cycles, or without two adjacent 3-cycles are class one. Wang and Chen [7]
proved that planar graphs with ∆ = 6 and without a 5-cycle with a chord is class one.
More recently, Wang, Chen and Wang [8] further proved that planar graphs with ∆ = 6
and without a 6-cycle with a chord is class one.

In this paper, we prove the following result, which extends a result in [1] and [10]:

Theorem 1. If G is a planar graph with ∆ = 6 and without 7-cycles, then χ′(G) = ∆.

To show Theorem 1, we need to introduce some notation. For f ∈ F (G), we use
b(f) to denote the boundary walk of f and write f = [u1u2 · · ·uk] if u1, u2, . . . , uk are the
vertices of b(f) in a cyclic order. For x ∈ V (G) ∪ F (G), let d(x) denote the degree of x
in G. A vertex of degree k (at least k, at most k, respectively) is called a k-vertex (or
k+-vertex, k−-vertex, respectively). Similarly, we can define a k-face, k+-face and k−-face.
Let v ∈ V (G). If a k-vertex u is adjacent to v, then u is called a k-neighbor of v, and we
use dk(v) to denote the number of k-neighbors of v. Similarly, we can define dk+(v) and
dk−(v). For i ⩾ 3, let mi(v) denote the number of i-faces incident to v. Moreover, mi+(v)
and mi−(v) can be defined analogously. Let N(v) denote the set of neighbors of v, and
let N [v] = N(v) ∪ {v}. For S ⊆ V (G), let N(S) = ∪u∈SN(u).

The following is the outstanding Vizing’s Adjacent Lemma (we denote it by VAL for
short).

Lemma 2. ([6]) If G is a ∆-critical graph and xy is an edge of G, then d(x)+d(y) ⩾ ∆+2
and x is adjacent to at least (∆ − d(y) + 1) ∆-vertices. Furthermore, every vertex is
adjacent to at least two ∆-vertices.

Let G be a 6-critical graph and v ∈ V (G). Then the assertions (P1) to (P5) below
follow automatically from Lemma 2.

(P1) If d(v) = 2, then d6(v) = 2.
(P2) If d(v) = 3, then d4−(v) = 0 and d5(v) ⩽ 1.
(P3) If d(v) = 4, then d3−(v) = 0 and d4(v) ⩽ 1; and if d4(v) = 1, then d6(v) = 3.
(P4) If d(v) = 5, then d2(v) = 0 and d3(v) ⩽ 1; moreover, d6(v) = 4 if d3(v) = 1,

and d6(v) ⩾ 3 if d4(v) ⩾ 1.
(P5) If d(v) = 6, then d2(v) ⩽ 1; moreover, d6(v) = 5 if d2(v) = 1, d6(v) ⩾ 4 if

d3(v) ⩾ 1, and d6(v) ⩾ 3 if d4(v) ⩾ 1.
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Figure 1: The configurations in Claim 5, where v is a bad 6-vertex.

The vertex v is called bad if either d(v) = 6, m3(v) = 4 and m4(v) = 2, or d(v) =
m3(v) = 5 and d6(v) = 2, or d(v) = m3(v) = 4. It is easy to see that a bad 5-vertex v
satisfies d5(v) = 3 by (P4).

Lemma 3. ( [9]) Let G be a ∆-critical graph. If xy ∈ E(G) and d(x) + d(y) = ∆ + 2,
then the following hold:

(1) Every vertex in N(x, y)\{x, y} is a ∆-vertex.
(2) Every vertex in N(N(x, y))\{x, y} is of degree at least ∆− 1.
(3) If d(x), d(y) < ∆, then every vertex in N(N(x, y))\{x, y} is a ∆-vertex.

Lemma 4. ([3]) Let G be a critical graph and x be a 3-vertex in G. If x is adjacent to three
∆-vertices, then at least one ∆-vertex in N(x) is adjacent to only one (∆ − 1)−-vertex
which is x.

2 Proof of Theorem 1.1

Let G be a planar graph with ∆ = 6 and without 7-cycles that is embedded in the plane.
Assume to the contrary that G is class two. Without loss of generality, we may assume
that G is 6-critical. Then G is 2-connected, implying that the boundary of each face forms
a cycle and every edge lies on the boundaries of two faces.

We first investigate structural properties of G and then use Euler’s formula and the
discharging technique to derive a contradiction. Given a k-vertex v ∈ V (G), let v0, v1, · · · ,
vk−1 be the neighbors of v in clockwise order. For 0 ⩽ i ⩽ k − 1, let fi be the incident
face of v with vvi and vvi+1 as boundary edges, where indices are taken modulo k.

Claim 5. Let v be a 6-vertex with m3(v) = 4. Then one of the following cases holds:
(1) v is bad such that G(N [v]) ∼= G0 or G1, as shown in Figure 1;
(2) m4(v) = 1 and m8+(v) = 1;
(3) m5(v) = 1 and m6+(v) = 1;
(4) m6+(v) = 2.

Proof. Since m3(v) = 4, the proof is split into the following three cases by symmetry.
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Case 1 d(fi) = 3 for i = 1, 2, 3, 4.

Since G contains no 7-cycles, it is easy to see that v0v1, v0v5 /∈ E(G). Let f5 =
[vv5y1 · · · ypv0] and f0 = [vv0z1 · · · zqv1]. Then p, q ⩾ 1 and p, q ̸= 4. By symmetry, we
may assume that q ⩾ p. If p ⩾ 3, then (4) holds. If p = 2 and q ⩾ 3, then (3) holds.
If p = 1 and q ⩾ 5, then (2) holds. Otherwise, it suffices to consider the following two
subcases to derive (1):

Subcase 1.1 p = 1 and 1 ⩽ q ⩽ 3.

Since G is C7-free, it follows that y1 ∈ {v2, v3, v4}.
(1.1a) y1 = v4, implying that d(v5) = 2.

• Assume that q = 1. Then z1 ∈ {v2, v3, v4} as before. If z1 = v2, then d(v1) = 2. If
z1 = v4, then d(v0) = 2. Thus, N(v) has at least two 2-vertices in both cases, contradicting
(P5). If z1 = v3, we get a 7-cycle C7 = vv5v4v0v3v2v1v, a contradiction.

• Assume that q = 2. Then at least one of z1, z2 belongs to {v2, v3} since otherwise we
get a 7-cycle C7 = vv0z1z2v1v2v3v. If z2 = v2, then d(v1) = 2, contradicting (P5). If z2 =
v3, then z1 ̸= v4, and we get C7 = v0z1v3v2v1vv4v0. If z1 = v2, we get C7 = vv1z2v2v3v4v5v.
If z1 = v3, we have two possibilities. When z2 = v2, we have d(v1) = 2, contradicting
(P5). When z2 ̸= v2, we get C7 = v1z2v3v4v5vv2v1.

•Assume that q = 3. Then v2 ∈ {z1, z2, z3}, for otherwise we take C7 = vv0z1z2z3v1v2v.
If v2 = z3, then d(v1) = 2, contradicting (P5). If v2 = z2, we take C7 = vv1z3v2v3v4v5v. If
v2 = z1, then z2, z3 /∈ N(v) by the planarity of G, hence we have C7 = vv1z3z2v2v3v4v.

(1.1b) y1 = v3.

• Assume that q = 1. Then z1 ∈ {v2, v3} by the planarity of G and the hypothesis that
G is C7-free. If z1 = v2, we get C7 = vv1v2v0v3v4v5v. If z1 = v3, we have G(N [v]) ∼= G0,
hence the conclusion (1) holds.

• Assume that q = 2. We note that at least one of z1, z2 belongs to {v2, v3} by the
planarity of G and the fact that G is C7-free. If z1 = v2, we get C7 = vv1z2v2v3v4v5v.
If z1 = v3, we assert that z2 ̸= v2, otherwise it follows that d(v1) = 2 and d(v3) = 3,
contradicting (P5). Thus, we get C7 = vv2v1z2v3v4v5v. If z2 = v2, we derive by (P5)
that z1 ̸= v3, hence C7 = vv0z1v2v3v4v5v. If z2 = v3, it is easy to deduce that d(v3) ⩾ 7,
contradicting the assumption that ∆ = 6.

• Assume that q = 3. Then v2 ∈ {z1, z2, z3} since G is C7-free. If z3 = v2, then
z2 ̸= v3 by (P5). When z1 ̸= v3, we get C7 = vv0z1z2v2v3v4v. When z1 = v3, we
get C7 = vv1v2z2v3v4v5v. If z2 = v2, we get C7 = vv1z3v2v3v4v5v. If z1 = v2, we get
C7 = vv1z3z2v2v3v4v.

(1.1c) y1 = v2.

• If q = 1, then z1 = v2 by the planarity of G and the hypothesis that G is C7-free.
Hence d(v1) = d(v0) = 2, contradicting (P5).

• Assume that q = 2. By the planarity of G, v3 /∈ {z1, z2}. If v2 /∈ {z1, z2}, G contains
a 7-cycle C7 = vv0z1z2v1v2v3v. If z1 = v2, we get C7 = vv1z2v2v3v4v5v. If z2 = v2, we get
C7 = vv0z1v2v3v4v5v.
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• Assume that q = 3. Then v2 ∈ {z1, z2, z3} since G is C7-free. If z3 = v2, we
get C7 = vv0z1z2v2v3v4v. If z2 = v2, we get C7 = vv1z3v2v3v4v5v. If z1 = v2, we get
C7 = vv1z3z2v2v3v4v.

Subcase 1.2 p = q = 2.

Since G is C7-free, we see that at least one of y1, y2 belongs to {v3, v4}, and at least
one of z1, z2 belongs to {v2, v3}. Furthermore, y2 ̸= v1 and z1 ̸= v5.

• If y2 = v4, then we get C7 = vv5y1v4v3v2v1v. If z1 = v2, we have a similar proof. So
assume that z1 ̸= v2.

• Assume that y1 = v4. Then d(v5) = 2. If y2 = v3, then d(v4) = 3, contradicting
(P5). If y2 = v2, then z2 = v2 and d(v1) = 2, contradicting (P5). If y2 /∈ {v2, v3}, we get
C7 = vv0y2v4v3v2v1v.

If z2 = v2, we have a similar proof. Hence assume that z2 ̸= v2.
• Assume that y1 = v3. If z2 = v3, then d(v3) ⩾ 7, a contradiction. If z1 = v3, then

we get C7 = vv2v1z2v3v4v5v.
• Assume that y2 = v3. Then we get C7 = vv1v2v3y1v5v4v.

Case 2 d(fi) = 3 for i = 1, 2, 3, 5.

Since G is C7-free, we see v0v1, v0v4, v1v5, v4v5 /∈ E(G). Let f4 = [vv4y1 · · · ypv5] and
f0 = [vv0z1 · · · zqv1] such that q ⩾ p ⩾ 1 and p, q ̸= 4. If one of (2)-(4) holds, we are done.
Otherwise, similar to Case 1, it suffices to consider the following two subcases:

Subcase 2.1 p = 1 and 1 ⩽ q ⩽ 3.

Since G is C7-free, it follows that y1 ∈ {v2, v3}.
(2.1a) y1 = v3, implying that d(v4) = 2. Then z1 ̸= v5, for otherwise d(v0) = 2,
contradicting (P5).

• Assume that q = 1. Then z1 ∈ {v2, v3} by the same reason. If z1 = v2, then
d(v1) = 2, contradicting (P5). If z1 = v3, then G(N [v]) ∼= G1, hence (1) holds.

• Assume that q = 2. Since G is C7-free, at least one of z1, z2 coincides with v2 or v3.
If z2 = v2, then d(v1) = 2, contradicting (P5). If z1 = v2, we get C7 = vv0v5v3v2z2v1v. If
z2 = v3, we get C7 = vv5v0z1v3v2v1v. If z1 = v3, we get C7 = vv0v5v3z2v1v2v.

• Assume that q = 3. Then v2 ∈ {z1, z2, z3} by the previous analysis. If z3 = v2, then
d(v1) = 2, contradicting (P5). If z2 = v2, we get C7 = vv0v5v3v2z3v1v. If z1 = v2, we get
C7 = vv5v3v2z2z3v1v.

(2.1b) y1 = v2.

• Assume that q = 1. By the planarity of G and the foregoing argument, z1 /∈
N(v)\{v2}. If z1 = v2, we have G(N [v]) ∼= G1 and therefore (1) holds.

• Assume that q = 2. It follows that v2 ∈ {z1, z2} since G is C7-free. If z1 = v2, then
d(v2) ⩾ 7, a contradiction. If z2 = v2, then z1 ̸= v5, and we get C7 = vv5v0z1v2v3v4v.

• Assume that q = 3. Then v2 ∈ {z1, z2, z3}. If z1 = v2, we get C7 = vv1z3z2v2v3v4v.
If z3 = v2, we get C7 = vv0z1z2v2v3v4v. If z2 = v2, we have two possibilities. When
z1 ̸= v5, we get C7 = vv5v0z1v2v3v4v. When z1 = v5, we have d(v0) = 2 and d(v5) = 3,
contradicting (P5).
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Subcase 2.2 p = q = 2.

We see that at least one of y1, y2 (z1, z2, respectively) coincides with v2 or v3.
• Assume that y1 = v3. Then d(v4) = 2. By the previous discussion, y2 ̸= v1. If

y2 = v0, then d(v5) = 2, contradicting (P5). If y2 = v2, then d(v3) = 3, contradicting
(P5). This shows that y2 /∈ {v0, v1, v2}, hence we get C7 = vv0v5y2v3v2v1v.

If z2 = v2, we have a similar proof.
• Assume that y2 = v3. If z1 = v2, we get C7 = vv1z2v2v3y1v4v. If z1 = v3, we get

C7 = vv4y1v3z2v1v2v. If z2 = v3, we claim that z1 ̸= v5, for otherwise d(v0) = 2 and
d(v5) = 3, contradicting (P5). Thus, we get C7 = vv5v0z1v3y1v4v.

If z1 = v2, we have a similar proof.
• Assume that one of y1, y2 coincides with v2. By the planarity of G, none of z1, z2

coincides with v3. Thus, we get C7 = vv0z1z2v1v2v3v.

Case 3 d(fi) = 3 for i = 1, 2, 4, 5.

Since G is C7-free, we see that v0v1, v0v3, v1v4, v3v4 /∈ E(G). Let f3 = [vv3y1 · · · ypv4]
and f0 = [vv0z1 · · · zqv1] such that q ⩾ p ⩾ 1 and p, q ̸= 4. If one of (2)-(4) holds, we are
done. Otherwise, it suffices to consider the following two subcases:

Subcase 3.1 p = 1 and 1 ⩽ q ⩽ 3.

Since G is C7-free, it follows that y1 ∈ {v2, v5}. Without loss of generality, we assume
that y1 = v2. Then d(v3) = 2.

• If q = 1, then z1 ∈ {v2, v5} similarly, so d(v1) = 2 or d(v0) = 2, contradicting (P5).
• Assume that q = 2. We note that v3 /∈ {z1, z2} by the plane embedding of G.

Thus, v2 ∈ {z1, z2}. If z1 = v2, we get C7 = vv0v5v4v2z2v1v. If z2 = v2, then d(v1) = 2,
contradicting (P5).

• Assume that q = 3. Then v2 ∈ {z1, z2, z3}. If z3 = v2, then d(v1) = 2, contradicting
(P5). If z1 = v2, we get C7 = vv5v4v2z2z3v1v. If z2 = v2, we get C7 = vv0v5v4v2z3v1v.

Subcase 3.2 p = q = 2.

If y1, y2 /∈ {v2, v5}, we get C7 = vv2v3y1y2v4v5v. If z1, z2 /∈ {v2, v5}, we get a similar
7-cycle. Otherwise, by symmetry, we assume that the following two possibilities:

• Assume that y1 = v2. Then d(v3) = 2. Obviously, y2 ̸= v1 since v1v4 /∈ E(G). If
y2 = v5, then d(v4) = 2, contradicting (P5). If y2 ̸= v0, we get C7 = vv0v5v4y2v2v1v. So
suppose that y2 = v0. In this case, we must have v2 ∈ {z1, z2}. If z2 = v2, then d(v1) = 2,
contradicting (P5). If z1 = v2, we get C7 = vv1z2v2v0v5v4v.

• Assume that y2 = v2. We get C7 = vv3y1v2v4v5v0v.
For a bad 6-vertex v, Claim 5 asserts that G(N [v]) ∼= G0 or G1, see Figure 1. We

say that a 6-vertex in the induced subgraph G[N(v)] other than v is a master of v, and
v is the slave of its master. Clearly, if u is a master of some 6-vertex, then m3(u) = 2,
m4(u) = 2, and u has only one slave.

Claim 6. Let v be a 6-vertex with m3(v) = 3. If m4(v) = 3, then d3−(v) = 0.
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Proof. Assume to the contrary that d3−(v) > 0. If fi is a 4-face, we let fi = [vviyivi+1],
where indices are taken modulo 6.

Case 1 d(fi) = 3 for i = 1, 3, 5.

Then d(fj) = 4 for j = 0, 2, 4. We note that if yj ∈ {vj−1, vj+2}, then d(vj) = 2 or
d(vj+1) = 2 for each j = 0, 2, 4. By (P5), at least two of yj’s, say y2 and y4, do not coincide
with vj−1 and vj+2. If y2 = v5, we get C7 = vv1v2v5y4v4v3v. If y4 = v2, we have a similar
proof. If y2 ̸= y4, we get C7 = vv2y2v3v4y4v5v. Assume that y2 = y4, which implies that
y2 /∈ {v0, v1}. If y0 ∈ {v2, v5}, say y0 = v2, then we get C7 = vv5v0v2y2v3v4v. Otherwise,
y0 /∈ {v2, v5}, we have two possibilities. If y0 ̸= y2, then we get C7 = vv0y0v1v2y2v3v.
If y0 = y2, i.e., y0, y2, y4 identify to one vertex, then it is easy to see that d(vi) ⩾ 3 for
all i = 0, 1, · · · , 5. Since d3−(v) > 0, we may assume, without loss of generality, that
d(v1) = 3. By (P2), d(v2) ⩾ 5. However, v2 is a cut vertex of G, contradicting the fact
that G is 2-connected.

Case 2 d(fi) = 3 for i = 1, 2, 4.

Then d(fj) = 4 for j = 0, 3, 5. If y3 /∈ N(v), we get C7 = vv1v2v3y3v4v5v. So assume
that y3 ∈ N(v). We have the following subcases:

• If y3 = v0, we get C7 = vv1v2v3v0v4v5v.
• Assume that y3 = v5, then d(v4) = 2. If y0 /∈ N(v), we get C7 = vv0y0v1v2v3v5v.

Otherwise, y0 ∈ {v2, v3, v5} by the plane embedding of G. If y0 = v2, then d(v1) = 2,
contradicting (P5). If y0 = v5, then it follows that y5 /∈ N(v) by the plane embedding of
G, hence we construct C7 = vv0y5v5v3v2v1v. So assume that y0 = v3. If y5 ̸= v3, we get
C7 = vv0y5v5v3v2v1v. If y5 = v3, then d(v0) = 2, contradicting (P5).

• Assume that y3 = v2. Then d(v3) = 2. If y5 /∈ N(v), we get C7 = vv0y5v5v4v2v1v.
Otherwise, we have y5 ∈ {v1, v2, v4} by the planarity of G. If y5 = v4, then d(v5) = 2,
contradicting (P5). If y5 = v1, or y5 = v2, then y0 /∈ N(v) by (P5) and the planarity of
G, thus we have C7 = vv0y0v1v2v4v5v.

• Assume that y3 = v1. If y5 /∈ N(v), we get C7 = vv0y5v5v4v1v2v. Otherwise,
y5 ∈ {v1, v4} by the planarity of G. If y5 = v4, then d(v5) = 2. When y0 = v4, we have
d(v0) = 2, contradicting (P5). When y0 ̸= v4, we get C7 = vv4v0y0v1v2v3v. If y5 = v1,
then it is easy to see that y0 /∈ N(v), and hence d(v1) ⩾ 7, a contradiction.

Case 3 d(fi) = 3 for i = 1, 2, 3.

Then d(fj) = 4 for j = 0, 4, 5. If y4 /∈ N(v), we get C7 = vv5y4v4v3v2v1v. Otherwise,
it suffices to handle the case y4 ∈ {v0, v1, v2, v3}.

• If y4 = v0, we get C7 = vv1v2v3v4v0v5v. If y0 = v5, we have a similar proof.
• Assume that y4 = v3, then d(v4) = 2. If y5 /∈ N(v), we get C7 = vv0y5v5v3v2v1v.

Otherwise, suppose that y5 ∈ {v1, v2, v3} by the plane embedding of G. If y5 = v3, then
d(v5) = 2, contradicting (P5). If y5 = v1, then y0 /∈ N(v), we get C7 = vv0y0v1v2v3v4v.
Finally, suppose that y5 = v2. If y0 = v2, then d(v0) = 2, contradicting (P5). Otherwise,
we can construct a 7-cycle as above.

If y0 = v2, we have a similar proof.
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• Assume that y4 = v1. If y5 /∈ N(v), we get C7 = vv0y5v5v1v2v3v. Otherwise, y5 = v1
by the planarity of G. Noting that y0 /∈ N(v), we can construct a 7-cycle as above.

If y0 = v4, we have a similar proof.
• If y4 = v2, then y0 = v3 by symmetry, which is impossible by the planarity of G.

Claim 7. If v is a 6-vertex adjacent to a bad 5-vertex, then m8+(v) ⩾ 2.

Proof. Assume that v0, v1, . . . , v5 are the neighbors of v in clockwise order, and v1 is a bad
5-vertex. Then m3(v1) = 5, d6(v1) = 2 and d5(v1) = 3 by definition. This implies that
v1v2, v1v0 ∈ E(G). Let x and y be the other two neighbors of v1 such that v, v0, x, y, v2
are arranged around v in clockwise order. The proof is split into three cases as follows:

Case 1 v3 = x.

Since G is C7-free, it is easy to inspect that neither v4 nor v5 is adjacent to a vertex in
{x, v0}. Moreover, since G is simple and G is embedded in the plane, both v4 and v5 can
not identify to x, hence v1v4, v1v5 /∈ E(G). Our goal is to show that d(fi) ⩾ 8 for i = 3, 5.

Let f3 = [vxu1 · · ·usv4]. Obviously, d(f3) = s+ 3 ⩾ 4, and v1, v2, y /∈ {u1, u2, · · · , us}.
If s = 1, we get C7 = vv4u1xv1yv2v. If s = 2, we get C7 = vv4u2u1xyv2v. If s = 3, we get
C7 = vv4u3u2u1xv1v. Since G is C7-free, s ̸= 4. Therefore, s ⩾ 5, that is d(f3) ⩾ 8.

Let f5 = [vv5z1 · · · zlv0]. Then d(f5) = l + 3 ⩾ 4, l ̸= 4, and v1, v2, y /∈ {z1, z2, · · · , zl}.
If l = 1, we get C7 = vv5z1v0v1yv2v. If l = 2, we get C7 = vv5z1z2v0v1v2v. If l = 3, we
get C7 = vv5z1z2z3v0v1v. Therefore, s ⩾ 5, that is d(f3) ⩾ 8.

If v5 = y, we have a similar discussion.

Case 2 v3 = y.

By Case 1, we assume that v5 ̸= y. We are going to show that d(fi) ⩾ 8 for i = 2, 5.
Firstly, we show that d(f2) ⩾ 8. If d(f2) = 3, then d(v2) = 3, contradicting the

definition of a bad 5-vertex. So assume that f2 = [vv2u1 · · ·usy], where s ⩾ 1 and s ̸= 4.
Note that v0, v1, x /∈ {u1, u2, · · · , us}. If s = 1, we get C7 = vv0xyu1v2v1v. If s = 2, we
get C7 = vv1xyu2u1v2v. If s = 3, we get C7 = vv1yu3u2u1v2v. This shows that s ⩾ 5,
namely d(f2) ⩾ 8.

Secondly, we show that d(f5) ⩾ 8. If v5 = x, then we can show that d(f5) ⩾ 8 as
above. Otherwise, assume that v5 ̸= x. Since v0v5 /∈ E(G), we see that d(f5) ⩾ 4. Again,
let f5 = [vv5z1 · · · zlv0] with l ⩾ 1. Then v1, v2 /∈ {z1, z2, · · · , zl} by the planarity of G.
It suffices to inspect that l /∈ {1, 2, 3}. In fact, if l = 3, we get C7 = vv5z1z2z3v0v1v. If
l = 2, we get C7 = vv5z1z2v0v1v2v. So assume that l = 1. Since xv5 /∈ E(G), we derive
that z1 ̸= x. We get C7 = vv5z1v0xv1v2v.

If v5 = x, we have a similar proof.

Case 3 v3, v5 /∈ {x, y}.

To show that d(fi) ⩾ 8 for i = 2, 5, it suffices to inspect d(f2) by symmetry. If
d(f2) = 3, then C7 exists obviously. So assume that d(f2) ⩾ 4, and let f2 = [vv2u1 · · ·ukv3]
with k ⩾ 1 and k ̸= 4. We first note that v1 /∈ {u1, u2, · · · , uk}. If k = 3, we get
C7 = vv1v2u1u2u3v3v. If k = 1, then u1 is identical to at most one of x, y, v0, so C7 can
be always constructed. Assume that k = 2. If u1 = y, then d(v2) = 3, contradicting the
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definition of v1. Thus, suppose that u1 ̸= y. If u2 ̸= y, we get C7 = vv1yv2u1u2v3v. If
u2 = y, then u1 /∈ N(v1), we get C7 = vv1v2u1yxv0v. Thus, k ⩾ 5, that is, d(f2) ⩾ 8.

Claim 8. If v is a 5-vertex adjacent to a bad 4-vertex, then m3(v) ⩽ 4; moreover, if
m3(v) = 4, then m8+(v) ⩾ 1.

Proof. Assume that v0, v1, . . . , v4 are the neighbors of v in clockwise order, and v1 is
a bad 4-vertex. Then m3(v1) = 4, implying that both f0 and f1 are 3-faces, hence
v1v2, v1v0 ∈ E(G). Let x be the neighbors of v1 different from v0, v1, v2. By symmetry,
the proof can be split into two cases below.

Case 1 x /∈ {v3, v4}.
We are going to show that m3(v) ⩽ 3 in this case. Assume to the contrary that

m3(v) ⩾ 4. Without loss of generality, we assume that d(f2) = 3 (otherwise, d(f4) = 3.)
Then at least one of f3 and f4 is a 3-face. If d(f3) = 3, we get C7 = vv0xv1v2v3v4v. If
d(f4) = 3, we get C7 = vv4v0xv1v2v3v. We always obtain a contradiction.

Case 2 v3 = x.

Clearly, v4 ̸= x as G is simple. If d(f2) = 3, then d(v2) = 3, contradicting (P3). Thus,
d(f2) ⩾ 4, and therefore it follows that m3(v) ⩽ 4. To complete the proof, assume that
m3(v) = 4. This implies that both f3 and f4 are 3-faces, hence v0v4, v4x ∈ E(G). Let
f2 = [vv2u1 · · ·ukx] with k ⩾ 1 and k ̸= 4. It is easy to see that v0, v1, v4 /∈ {u1, u2, · · · , uk}
by the planarity of G. If k = 1, we get C7 = vv4v0v1xu1v2v. If k = 2, we get C7 =
vv0v1xu2u1v2v. If k = 3, we get C7 = vv1xu3u2u1v2v. Thus, k ⩾ 5, i.e., d(f2) ⩾ 8.

Claim 9. No two bad 5-vertices are adjacent.

Proof. Assume that v is a bad 5-vertex with neighbors v0, v1, · · · , v4 in clockwise order
which is adjacent to a bad 5-vertex, say v1. Let x and y be the other neighbors of v1
such that v, v0, x, y, v2 are arranged around v1 in clockwise order. If at least one of x and
y does not belong to N(v), then a 7-cycle is easily established. Otherwise, it is easy to
derive that x = v3 and y = v4, which is impossible by the planarity of G.

Using Euler’s formula |V (G)| − |E(G)|+ |F (G)| = 2, we have∑
v∈V (G)

(3d(v)− 8) +
∑

f∈F (G)

(d(f)− 8) = −16. (1)

We define an initial weight function w by w(v) = 3d(v) − 8 for a vertex v ∈ V (G),
and w(f) = d(f) − 8 for a face f ∈ F (G). It follows from equality (1) that the total
sum of weights is −16. Then, we will define appropriate discharging rules and redistribute
weights accordingly. Once the discharging is finished, a new weight function w′ is pro-
duced. However the total sum of weights is kept fixed when the discharging is in process.
Nevertheless, we can show that w′(x) ⩾ 0 for all x ∈ V (G) ∪ F (G). This leads to the
following obvious contradiction:

0 ⩽
∑

x∈V (G)
∪

F (G)

w′(x) =
∑

x∈V (G)
∪

F (G)

w(x) = −16,
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and hence demonstrates that no such counterexample can exist.
Our discharging rules are defined as follows.

(R1) Every vertex v sends 5
3
to each incident 3-face, 1 to each incident 4-face, 3

5
to

each incident 5-face, and 1
3
to each incident 6-face.

(R2) Every 6-vertex v sends 7
3
to each adjacent 2-vertex, 2

d3(v)+d4(v)+d5(v)
to each

adjacent 3-, 4- or 5-vertex, with one exception: if v is adjacent to a 3-vertex x and a
5-vertex y with xy ∈ E(G), then v sends 2 to x and 1

3
to y.

(R3) Every master sends 1 to its slave.

Let α(v) denote the resultant weight of a vertex v after (R1)-(R3) are carried out.
Then we do the following additional assignments:

(R4) Every 5-vertex v with α(v) > 0 sends α(v)
d3(v)+d4(v)

to each adjacent 3- or 4-vertex.

(R5) Every 6-vertex v with α(v) > 0 sends α(v)
d5(v)

to each adjacent bad 5-vertex.

For x, y ∈ V (G) ∪ F (G), let τ(x → y) denote the amount of weights transferred from
x to y according to our discharging rules. A vertex x is called small if 2 ⩽ d(x) ⩽ 5.

Observation 1 Under (R2), every 6-vertex sends at most 7
3
to its adjacent small vertices.

Proof. Let v be a 6-vertex in G, and let s(v) denote the sum of weights that v has sent
to its small adjacent vertices according to (R2). It suffices to inspect that s(v) ⩽ 7

3
.

If v is adjacent to a 2-vertex u, then d6(v) = 5 by (P5), i.e., d3(v) + d4(v) + d5(v) = 0.
By (R2), v sends 7

3
to u and nothing to other neighbors. Therefore, s(v) = 7

3
. Otherwise,

assume that d2(v) = 0. If v is adjacent to a 3-vertex x and a 5-vertex y with xy ∈ E(G),
then v cannot be adjacent to other small vertices by (P5). That is, d3(v) = d5(v) = 1 and
d4(v) = 0. By (R1), s(v) = τ(v → x) + τ(v → y) = 2 + 1

3
= 7

3
. If v is not adjacent to

such vertices x and y, then s(v) ⩽ 2 by (R2).

Observation 2 Let v be a 6-vertex and u a small vertex adjacent to v. Then, after (R2)
was carried out, we have the following:

(1) If d(u) = 3, then τ(v → u) ⩾ 1.
(2) If d(u) = 4, then τ(v → u) ⩾ 2

3
.

(3) If d(u) = 5 and v is adjacent to a 3-vertex x such that ux ∈ E(G), then τ(v →
u) = 1

3
; otherwise τ(v → u) ⩾ 1

2
.

Proof. Suppose that v is a 6-vertex adjacent to a vertex u with 3 ⩽ d(u) ⩽ 5.
(1) Assume that d(u) = 3. By (P5), we see that d2(v) = 0, d6(v) ⩾ 4, hence

d3(v) + d4(v) + d5(v) ⩽ 2. If v is adjacent to a 5-vertex y such that uy ∈ E(G), we have
τ(v → u) = 2 by (R2). Otherwise, τ(v → u) = 2/(d3(v) + d4(v) + d5(v)) ⩾ 1.

(2) Assume that d(u) = 4. It is easy to see that d2(v) = 0 by (P5). If d3(v) ⩾ 1,
then it follows from the proof of (1) that τ(v → u) ⩾ 1. Thus, assume that d3(v) = 0.
Since d4(v) ⩾ 1, (P5) asserts that d6(v) ⩾ 3, which implies that d4(v) + d5(v) ⩽ 3.
Consequently, τ(v → u) = 2/(d4(v) + d5(v)) ⩾ 2

3
.
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(3) Assume that d(u) = 5. Again, (P5) guarantees that d2(v) = 0. If v is adjacent
to a 3-vertex x such that ux ∈ E(G), then τ(v → u) = 1

3
by (R2). Otherwise, when

d3(v)+ d4(v) ⩾ 1, the result follows from the proofs of Cases (1) and (2). So assume that
d3(v) = d4(v) = 0. By VAL, d6(v) ⩾ 2, so d5(v) ⩽ 4. This shows τ(v → u) = 2/d5(v) ⩾
1
2
.
We carry out (R1)-(R5) in G. Let w′ denote the resultant weight function after

discharging was finished. It remains to verify that w′(x) ⩾ 0 for all x ∈ V (G) ∪ F (G).
Let f ∈ F (G). Since G is 2-connected, b(f) forms a cycle. This means that f is

incident to d(f) distinct vertices. Since G is C7-free, d(f) ̸= 7. If d(f) = 3, then each of
its boundary vertices gives it exactly 5

3
by (R1). Thus, w′(f) = 3− 8 + 3× 5

3
= 0. If 4 ⩽

d(f) ⩽ 6, we have a similar examination. If d(f) ⩾ 8, then w′(f) = w(f) = d(f)− 8 ⩾ 0.
Let v ∈ V (G). Then 2 ⩽ d(v) ⩽ 6. Let v0, v1, · · · , vd(v)−1 denote the neighbors of v

in clockwise order. For 0 ⩽ i ⩽ d(v) − 1, we use fi to represent the incident face of v
with vvi and vvi+1 as boundary edges, where indices are taken modulo d(f). The proof
is divided into the following five cases.

(1) d(v) = 2.
It is easy to see that d6(v) = 2 by (P5), m3(v) ⩽ 1 since G is simple. By (R1) and

(R2), we get that w′(v) ⩾ (3× 2− 8) + 2× 7
3
− 5

3
− 1 = 0.

(2) d(v) = 3.
Then w(v) = 1. By (P2), d4−(v) = 0, hence d5(v) + d6(v) = 3. Without loss of

generality, assume that d(v1) ⩽ d(v2) ⩽ d(v0). By VAL, d(v1) ⩾ 5 and d(v2) = d(v0) = 6.
If d(v1) = 6, then each vi, for i = 0, 1, 2, is adjacent to at most two 5−-vertices by

VAL, and at least one vi is adjacent to only one 5−-vertex by Lemma 4. Thus, by (R1),
(R2) and Observation 2(1), w′(v) ⩾ 1 + 2 + 2× 1− 3× 5

3
= 0.

Assume that d(v1) = 5. Then d6(v1) = 4. If m3(v) = 0, then w′(v) ⩾ 1+2× 1− 3 = 0
by (R1) and Observation 2(1).

• Assume that m3(v) = 1. If f1 is a 3-face, then τ(v2 → v) = 2 by (R2). If f0 is a
3-face, then τ(v0 → v) = 2 by (R2). It turns out that w′(v) ⩾ 1 + 2 + 1− 5

3
− 2× 1 = 1

3

by (R1) and Observation 2(1). If f2 is a 3-face, then m3(v1) ⩽ 3. After (R1)-(R3),
α(v1) ⩾ (3×5−8)+4× 1

2
−3× 5

3
−2×1 = 2 by Observation 2(3). By (R4), τ(v1 → v) ⩾ 2.

Hence w′(v) ⩾ 1 + 2× 1 + 2− 5
3
− 2× 1 = 1

3
.

• Assume that m3(v) ⩾ 2. If both f0 and f1 are 3-faces, then τ(vi → v) = 2 for
i = 0, 2 by (R2), hence w′(v) ⩾ 1 + 2 × 2 − 3 × 5

3
= 0. Otherwise, we may suppose that

d(f1) = d(f2) = 3 and d(f0) ⩾ 4 by symmetry. By (R2), τ(v2 → v) = 2. Sincem3(v1) ⩽ 4,
after (R1)-(R3), we obtain that α(v1) ⩾ 7− 4× 5

3
− 1 + 3 × 1

2
= 5

6
by Observation 2(3).

By (R4), τ(v1 → v) ⩾ 5
6
. Therefore, w′(v) ⩾ 1 + 2 + 5

6
+ 1− 2× 5

3
− 1 = 1

2
.

(3) d(v) = 4.
Then w(v) = 4, and d2(v) = d3(v) = 0 by (P3). By VAL, d6(v) ⩾ 2. If m3(v) ⩽ 2,

then w′(v) ⩾ 4 + 2× 2
3
− 2× 5

3
− 2× 1 = 0 by (R1) and Observation 2(2).

• Assume that m3(v) = 3, say d(fi) = 3 for i = 1, 2, 3, and d(f0) ⩾ 4. If d6(v) ⩾ 3,
then w′(v) ⩾ 4+3× 2

3
− 3× 5

3
− 1 = 0. So suppose that d6(v) = 2 by VAL, which implies

that d5(v) = 2. By symmetry, we need to consider the following four possibilities:
If d(v1) = d(v2) = 5, then d6(v1) = 3, d5(v1) = d4(v1) = 1, and d3(v1) = 0. After
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(R1)-(R3), α(v1) ⩾ 7 − 4 × 5
3
− 1 + 3 × 1

2
= 5

6
. By (R4), τ(v1 → v) ⩾ 5

6
and hence

w′(v) ⩾ 4 + 2× 2
3
+ 5

6
− 3× 5

3
− 1 = 1

6
by (R1) and Observation 2(2).

If d(v0) = d(v1) = 5, then d6(vi) ⩾ 3, d3(vi) = 0, and d4(vi) ⩽ 2 for i = 0, 1. After
(R1)-(R3), α(vi) ⩾ 7− 4× 5

3
− 1+3× 1

2
= 5

6
. By (R4), τ(vi → v) ⩾ 5

12
for i = 0, 1. Hence

w′(v) ⩾ 4 + 2× 2
3
+ 2× 5

12
− 3× 5

3
− 1 = 1

6
.

If d(v1) = d(v3) = 5, then for i ∈ {1, 3}, d6(vi) ⩾ 3, d4(vi) ⩽ 2, d3(vi) = 0. Note that
v1 is adjacent to a 6-vertex which is adjacent to the 4-vertex v, and v3 is adjacent to two
6-vertices which are adjacent to the 4-vertex v. After (R1)-(R3), α(v1) ⩾ 7− 4× 5

3
− 1 +

2× 1
2
+ 2

3
= 1, and α(v3) ⩾ 7− 5× 5

3
+ 1

2
+ 2× 2

3
= 1

2
by Observation 2 and its proof. By

(R4), τ(v1 → v) ⩾ 1
2
, and τ(v3 → v) ⩾ 1

4
, hence w′(v) ⩾ 4+2× 2

3
+ 1

2
+ 1

4
− 3× 5

3
− 1 = 1

12

by (R1) and Observation 2(2).
If d(v2) = d(v3) = 5, then for i ∈ {2, 3}, d6(vi) = 3, d4(vi) = d5(vi) = 1, d3(vi) = 0,

and vi is adjacent to a 6-vertex which is adjacent to the 4-vertex v. After (R1)-(R3),
α(vi) ⩾ 7− 5× 5

3
+2× 1

2
+ 2

3
= 1

3
by Observation 2 and its proof. By (R4), τ(vi → v) ⩾ 1

3

for i = 2, 3, hence w′(v) ⩾ 4+2× 2
3
+2× 1

3
− 3× 5

3
− 1 = 0 by (R1) and Observation 2(2).

• Assume thatm3(v) = 4. Then v is bad. If d6(v) = 4, then w′(v) ⩾ 4+4× 2
3
−4× 5

3
= 0

by (R1) and Observation 2(2). If v is adjacent to a 4-vertex, say v1, then by Lemma 3,
every vertex in N(N(v, v1)) \ {v, v1} is of degree 6. It follows that τ(v3 → v) = 2 and
τ(vi → v) = 1 for i = 0, 2, hence w′(v) ⩾ 4 + 2 + 2 × 1 − 4 × 5

3
= 4

3
. So assume that

d4(v) = 0, 2 ⩽ d6(v) ⩽ 3 by VAL, hence 1 ⩽ d5(v) ⩽ 2. Let d(v1) = 5. Then d6(v1) ⩾ 3.
By Claim 8, y sends at most 7 (=max{3 × 5

3
+ 2, 4 × 5

3
}) to incident faces. We see that

α(v1) ⩾ 7 − 7 + 3 × 1
2
= 3

2
by Observation 2(3). By (R4), τ(v1 → v) ⩾ 3

4
. If d5(v) = 1,

then d6(v) = 3, and therefore w′(v) ⩾ 4 + 3× 2
3
+ 3

4
− 4× 5

3
= 1

12
.

Now, assume that d5(v) = 2. We have two subcases to be handled. If d(v2) = 5, then
d6(vi) = 3, d4(vi) = 1 and d3(vi) = 0 for i = 1, 2. After (R1)-(R3), α(vi) ⩾ 7−7+3× 1

2
= 3

2
.

By (R4), τ(vi → v) ⩾ 3
2
for i = 1, 2. Hence w′(v) ⩾ 4+2× 2

3
+2× 3

2
−4× 5

3
= 5

3
. If d(v3) = 5,

then d6(vi) ⩾ 3, d4(vi) ⩽ 2, d3(vi) = 0 for i = 1, 3. Thus, α(vi) ⩾ 7 − 7 + 3 × 1
2
= 3

2
,

τ(vi → v) ⩾ 3
4
for i = 1, 3, and w′(v) ⩾ 4 + 2× 2

3
+ 2× 3

4
− 4× 5

3
= 1

6
accordingly.

(4) d(v) = 5.
Then w(v) = 7. We note that d6(v) ⩾ 2, d2(v) = 0, and d3(v) ⩽ 1 by VAL. If

m3(v) ⩽ 4, then α(v) ⩾ 7+2× 1
3
−4× 5

3
−1 = 0 by (R1) and Observation 2(3). So assume

that m3(v) = 5. If d3(v) = 1, then d6(v) = 4 and henceforth α(v) ⩾ 7+4× 1
3
− 5× 5

3
= 0.

Furthermore, assume that d3(v) = 0. If d6(v) ⩾ 3, then α(v) ⩾ 7 + 3× 1
2
− 5× 5

3
= 1

6
by

Observation 2(3). Otherwise, we conclude that d6(v) = 2 and d5(v) = 3. This shows that
v is a bad 5-vertex. Let y be an arbitrary 6-vertex adjacent to v. By Claim 7, m8+(y) ⩾ 2.
Thus, α(y) ⩾ (3 × 6 − 8) − 4 × 5

3
− 7

3
= 1 by Observation 1. Note that y is adjacent

to at most three bad 5-vertices by Claim 9. Thus, τ(y → v) ⩾ 1
3
by (R5), and hence

w′(v) ⩾ 7 + 2× 1
2
+ 2× 1

3
− 5× 5

3
= 1

3
.

(5) d(v) = 6.
We see that w(v) = 10, d6(v) ⩾ 2, d2(v) ⩽ 1, and m3(v) ⩽ 4 since G contains no

7-cycles. Instead of showing that w′(v) ⩾ 0, we need only to prove that α(v) ⩾ 0. If
m3(v) ⩽ 1, then α(v) ⩾ 10 − 7

3
− 1 × 5

3
− 5 × 1 = 1 by (R1) and Observation 1. If

m3(v) = 2 and v is not the master of any vertex, then α(v) ⩾ 10− 7
3
− 2× 5

3
− 4× 1 = 1

3
.
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If m3(v) = 2, and moreover v is the master of some vertex, then by the analysis following
the proof of Claim 5, we know that m4(v) = 2 and v has exactly one slave. Thus,
α(v) ⩾ 10 − 7

3
− 2 × 5

3
− 2 × 1 − 2 × 3

5
− 1 = 2

15
by (R1) and (R3). If m3(v) = 3,

then by Claim 6, m4(v) ⩽ 2, or m4(v) = 3 and d2(v) = d3(v) = 0. For the former,
α(v) ⩾ 10 − 7

3
− 3 × 5

3
− 2 × 1 − 3

5
= 1

15
. For the latter, v sends at most 2 to adjacent

small vertices, thus α(v) ⩾ 10− 2− 3× 5
3
− 3× 1 = 0.

Finally, assume that m3(v) = 4. If m4(v) = 2, then v is a slave of some vertex, hence
α(v) ⩾ 10 + 1 − 7

3
− 4 × 5

3
− 2 × 1 = 0 by (R3) and Observation 1. If m4(v) = 1, then

by Claim 5(2), m8+(v) = 1 and hence α(v) ⩾ 10− 7
3
− 4× 5

3
− 1 = 0. If m4(v) = 0, then

by Claim 5(3) and (4), m5(v) = 1 and m6+(v) = 1, or m6+(v) = 2. Thus, we always have
α(v) ⩾ 10− 7

3
− 4× 5

3
− 3

5
− 1

3
= 1

15
.
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