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Abstract
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given. As a consequence, a classification of binary extremal self-dual codes of length
38 is also given.

Keywords: self-dual code; weight enumerator; mass formula

∗This work was supported by JST PRESTO program.

the electronic journal of combinatorics 19(3) (2012), #P18 1



1 Introduction

As described in [26], self-dual codes are an important class of linear codes for both the-
oretical and practical reasons. It is a fundamental problem to classify self-dual codes of
modest lengths and much work has been done towards classifying self-dual codes over
Fq for q = 2 and 3, where Fq denotes the finite field of order q and q is a prime power
(see [26]).

Codes over F2 are called binary and all codes in this paper are binary. The dual code
C⊥ of a code C of length n is defined as C⊥ = {x ∈ Fn

2 | x · y = 0 for all y ∈ C}, where
x · y is the standard inner product. A code C is called self-dual if C = C⊥. A self-dual
code C is doubly even if all codewords of C have weight divisible by four, and singly even
if there is at least one codeword of weight ≡ 2 (mod 4). It is known that a self-dual code
of length n exists if and only if n is even, and a doubly even self-dual code of length n
exists if and only if n is divisible by eight. The minimum weight d of a self-dual code of
length n is bounded by d ⩽ 4⌊ n

24
⌋ + 6 if n ≡ 22 (mod 24), d ⩽ 4⌊ n

24
⌋ + 4 otherwise [20]

and [25]. A self-dual code meeting the bound is called extremal.
Two codes C and C ′ are equivalent, denoted C ∼= C ′, if one can be obtained from

the other by permuting the coordinates. An automorphism of C is a permutation of the
coordinates of C which preserves C. The set consisting of all automorphisms of C is called
the automorphism group of C and it is denoted by Aut(C).

A classification of doubly even self-dual codes was done for lengths 8, 16 in [23], for
length 24 in [24] and for length 32 in [9]. For length 40, only some partial classifications
have been done by various authors. Extremal doubly even self-dual codes of length 40
with automorphism of a prime order p having c cycles have been classified for (p, c) =
(19, 2), (7, 5), (5, 4) in [28], (p, c) = (3, 6) in [6], (p, c) = (3, 8) in [16], and (p, c) = (5, 8) in
[29]. The main aim of this paper is to give a classification of doubly even self-dual codes
of length 40.

Theorem 1. There are 94343 inequivalent doubly even self-dual codes of length 40, 16470
of which are extremal.

As a summary, we list in Table 1 the total number NT (n) of inequivalent doubly even
self-dual codes of length n and the number Nd(n) of inequivalent doubly even self-dual
codes of length n (n = 8, 16, . . . , 40) and minimum weight d (d = 4, 8).

Table 1: Number of doubly even self-dual codes

Length n NT (n) N4(n) N8(n)

8 1 1 -
16 2 2 -
24 9 8 1
32 85 80 5
40 94343 77873 16470
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A classification of singly even self-dual codes of lengths up to 36 is known [3], [4], [9],
[11], [23], [24]. As a consequence of Theorem 1, we give a classification of extremal singly
even self-dual codes of length 38.

Generator matrices of all inequivalent doubly even self-dual codes of length 40 and ex-
tremal self-dual codes of length 38 can be obtained electronically from [12]. All computer
calculations in this paper were done by Magma [5].

2 Classification method

In this section, we describe how to complete a classification of doubly even self-dual codes
of length 40.

2.1 Preliminaries

The weight enumerator of a doubly even self-dual code of length 40 can be written as:

1 + A4y
4 + (285 + 24A4)y

8 + (21280 + 92A4)y
12

+ (239970− 600A4)y
16 + (525504 + 966A4)y

20 + · · ·+ y40, (1)

where Aw denotes the number of codewords of weight w (see e.g. [20]).
The number of distinct doubly even self-dual codes of length n is given [19] by the

formula:
n/2−2∏
i=0

(2i + 1). (2)

King [18] determined the number of distinct extremal doubly even self-dual codes of length
40. Let N(40, d) denote the number of distinct doubly even self-dual codes of length 40
and minimum weight d (d = 4, 8). Then we have

N(40, 4) = 4009357722800739726876619952910304312989584368968750,

N(40, 8) = 10263335567003567415076803513287627980544163840000000.

2.2 Minimum weight 4

Let C be a singly even self-dual code and let C0 denote the subcode of codewords having
weight≡ 0 (mod 4). Then C0 is a subcode of codimension 1. The shadow S of C is defined
to be C⊥

0 \ C [10]. There are cosets C1, C2, C3 of C0 such that C⊥
0 = C0 ∪ C1 ∪ C2 ∪ C3,

where C = C0 ∪ C2 and S = C1 ∪ C3.

Proposition 2 (Brualdi and Pless [8]). Let C be a self-dual code of length n ≡ 6 (mod 8).
Let C0, C1, C2 and C3 be as above. Then

C∗ = {(v, 0, 0) | v ∈ C0} ∪ {(v, 1, 1) | v ∈ C2}
∪ {(v, 1, 0) | v ∈ C1} ∪ {(v, 0, 1) | v ∈ C3}

is a doubly even self-dual code of length n+ 2.
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There are 519492 inequivalent self-dual codes of length 36 [11]. By considering the
direct sum of the unique self-dual code of length 2 and each of these codes, we have 519492
self-dual codes of length 38 and minimum weight 2. By Proposition 2, 519492 doubly even
self-dual codes of length 40 and minimum weight 4 are constructed.

We examine the equivalence or inequivalence of codes as follows. Let C be a doubly
even self-dual code of length 40 and minimum weight d (d = 4, 8). LetM(C) be the A8×40
matrix with rows composed of the codewords of weight 8 in C, where the (1, 0)-matrix
M(C) is regarded as a matrix over Z. We define

N(C) =

{
{nij | 1 ⩽ i, j ⩽ 40} \ {57} if C is extremal,
{nij | 1 ⩽ i, j ⩽ 40} otherwise,

where nij is the (i, j)-entry of M(C)TM(C), and M(C)T denotes the transposed matrix
of M(C). The codewords of weight w in C are calculated by the Magma function Words.
Note that the codewords of weight 8 in C form a 1-(40, 8, 57) design when C is extremal.
This means that nii = 57 for any i (i = 1, 2, . . . , 40) and max{nij | 1 ⩽ i, j ⩽ 40} = 57
when C is extremal. Then we consider the following:

α(C) = (#Aut(C), A4,maxN(C),minN(C),#N(C)).

The automorphism group Aut(C) of the code C is calculated by the Magma function
AutomorphismGroup. Of course, C and C ′ are inequivalent if α(C) ̸= α(C ′). For a given
set of codes, we divided into classes where each class contains codes C with identical
α(C). Then we divided the codes in each class into equivalence classes. This was done
by the Magma function IsIsomorphic.

In this way, we checked equivalences among the above 519492 doubly even self-dual
codes of length 40 and minimum weight 4. Then we obtained the set C40,4 of 77873
inequivalent doubly even self-dual codes with minimum weight 4 satisfying∑

C∈C40,4

40!

#Aut(C)
= N(40, 4). (3)

This shows that there is no other doubly even self-dual code of length 40 and minimum
weight 4. The numbers N(A4) of doubly even self-dual codes of length 40 containing A4

codewords of weight 4 are listed in Table 2.

2.3 Minimum weight 8

For a set of coordinates I ⊂ {1, 2, . . . , n}, let π : Fn
2 → Ft

2, π′ : Fn
2 → Fn−t

2 be the
projection to the set of coordinates I, I ′, respectively, where I ′ = {1, . . . , n} \ I and
#I = t. For a code C of length n, the punctured code and the shortened code of C on
the set of coordinates I are the codes π′(C) and {π′(c) | c ∈ C, π(c) = 0}, respectively,
where 0 denotes the zero vector.

If C is a doubly even code containing the all-one vector 1, then we denote by qC :
C⊥/C → F2 the map defined by qC(x+C) = wt(x)

2
mod 2, where wt(x) denotes the weight

of x. It is easy to verify that the map qC is well-defined.
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Table 2: Number of doubly even self-dual codes of length 40

(A4, N(A4))

(0, 16470) (13, 382) (26, 47) (40, 12) (64, 3)
(1, 20034) (14, 374) (27, 16) (41, 1) (66, 1)
(2, 17276) (15, 231) (28, 38) (42, 9) (70, 3)
(3, 12168) (16, 236) (29, 13) (43, 3) (72, 1)
(4, 8471) (17, 143) (30, 29) (44, 7) (74, 1)
(5, 5552) (18, 160) (31, 7) (46, 7) (78, 1)
(6, 3916) (19, 100) (32, 22) (48, 4) (90, 1)
(7, 2610) (20, 104) (33, 3) (50, 4) (92, 1)
(8, 1932) (21, 54) (34, 25) (52, 6) (94, 2)
(9, 1243) (22, 90) (35, 3) (54, 2) (106, 1)
(10, 1093) (23, 37) (36, 11) (56, 1) (134, 1)
(11, 669) (24, 59) (37, 4) (58, 4) (190, 1)
(12, 605) (25, 26) (38, 11) (62, 2)

Let Ci be a doubly even code of length ni containing 1, for i = 1, 2. A bijective linear
map

f : C⊥
1 /C1 → C⊥

2 /C2 (4)

is called an isometry if qC1 = qC2 ◦ f . The set of isometries (4) is denoted by Φ(C1, C2).
Note that an isometry exists only if n1 − n2 = 2(dimC1 − dimC2) and n1 ≡ n2 (mod 8).
For an isometry f ∈ Φ(C1, C2), we define a code

D(C1, C2, f) = {(x1, x2) | x1 ∈ C⊥
1 , x2 ∈ f(x1 + C1)} ⊂ Fn1+n2

2 , (5)

It is easy to see that D(C1, C2, f) is a doubly even self-dual code. Conversely, every
doubly even self-dual code of length n1 + n2 containing a codeword of weight n1 can be
constructed by this method. Indeed, let x be a codeword of weight n1 in a doubly even
self-dual code C of length n1 + n2. Let C2 (resp. C1) be the shortened code of C on the
support (resp. the complement of the support) of x. Then C1 and C2 are doubly even
codes. Moreover, C⊥

2 (resp. C⊥
1 ) is the punctured code of C on the support (resp. the

complement of the support) of x. Let π and π′ denote the projections onto the support of
x and the complement of the support of x, respectively. We define f : C⊥

1 /C1 → C⊥
2 /C2

by f(x1 + C1) = π′(x) + C2, where x is a codeword of C satisfying π(x) = x1. Then
D(C1, C2, f) is equivalent to C.

For fixed codes C1, C2, the resulting code D(C1, C2, f) depends on the choice of an
isometry f . However, some of these codes are equivalent to each other. We will give a
sufficient condition for two resulting codes to be equivalent. We need this criterion to
reduce the amount of calculation to be reasonable.

First, we define some groups. For a doubly even code C containing 1, we denote by
G0(C) the subgroup of GL(C⊥/C) induced by the action of Aut(C) on the linear space
C⊥/C and denote by G1(C) the subgroup Φ(C,C) of GL(C⊥/C). By the definition, the
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group G0(C) is a subgroup of G1(C). If we replace f by σ2 ◦ f ◦ σ1, where σi ∈ G0(Ci),
then the resulting codes are equivalent, that is,

D(C1, C2, f) ∼= D(C1, C2, σ2 ◦ f ◦ σ1).

This means that, in order to enumerate the set of codes {D(C1, C2, h) | h ∈ Φ(C1, C2)}
up to equivalence, we first fix f ∈ Φ(C1, C2), and it suffices to enumerate the codes
D(C1, C2, f ◦ g), where g runs through a set of representatives for the double cosets

(f−1 ◦ G0(C2) ◦ f)\G1(C1)/G0(C1).

We now apply this method with (n1, n2) = (16, 24) in order to classify extremal doubly
even self-dual codes of length 40. Note that from the weight enumerator (1), such a code
has a codeword of weight 16. This means that every extremal doubly even self-dual code
of length 40 is equivalent to D(C1, C2, f) for some doubly even code C1 of length 16
containing 1, some doubly even code C2 of length 24 containing 1, and f ∈ Φ(C1, C2).
All doubly even codes of lengths 16 and 24 can be found in [21].

However, if dimC1 ⩽ 2, then the degree of G1(C1) ⊂ GL(C⊥
1 /C1) as a permutation

group is too large to perform the double coset enumeration, so we only enumerated codes
D(C1, C2, f), where C1 is a doubly even code of length 16 with dimC1 ⩾ 3. Here, the
group G1(C1) was constructed by the Magma function GOPlus, and the double coset
enumeration was performed using the Magma function DoubleCosetRepresentatives.
Then we classified the resulting codes using the method described in the previous sub-
section. In this way, we obtained a set of pairwise inequivalent 16468 extremal doubly
even self-dual codes of length 40. It turns out that there are two other codes. One is the
code with automorphism group of order 6840 constructed in [28]. The other is the code
H(1234)B′

6 in the notation of [29] and this code has automorphism group of order 120.
In this way, we obtained the set C40,8 of 16470 inequivalent extremal doubly even

self-dual codes satisfying ∑
C∈C40,8

40!

#Aut(C)
= N(40, 8). (6)

From (3) and (6), it follows that there is no other doubly even self-dual code of length
40. This explains the number N(0) of extremal doubly even self-dual codes of length 40
listed in Table 2. Therefore, we have Theorem 1.

3 Some properties

In this section, we give some properties of doubly even self-dual codes of length 40.
The covering radius of a code C of length n is the smallest integer R such that spheres

of radius R around codewords of C cover the space Fn
2 . It is known that the covering

radius is the same as the largest value among weights of cosets. Here, the weight of a
coset is the smallest weight of a vector in the coset. The covering radius is a basic and
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important geometric parameter of a code. Assmus and Pless [2] began the study of the
covering radii of (extremal) doubly even self-dual codes.

Let R40,d be the covering radius of a doubly even self-dual code of length 40 and
minimum weight d (d = 4, 8). Then, by the sphere-covering bound and the Delsarte bound
(see [2]), 6 ⩽ R40,8 ⩽ 8 and 6 ⩽ R40,4 ⩽ 10. In Table 3, we list the numbers N(d,R)
of doubly even self-dual codes with minimum weight d and covering radius R. This was
calculated by the Magma function CoveringRadius. From the above calculation, we
have the following:

Proposition 3. There is no doubly even self-dual code of length 40 with covering radius
6.

Remark 4. In [14], based on a preprint by Michio Ozeki, the non-existence of an extremal
doubly even self-dual code with covering radius 6 was announced. However, unfortunately,
his preprint contained an error and, in his paper [22] he withdrew the above announce-
ment. From the above calculation, the non-existence of an extremal doubly even self-dual
code with covering radius 6 was verified.

Remark 5. The two extremal doubly even self-dual codes with covering radius 7 can be
found in [13] and [14].

Table 3: Covering radii of doubly even self-dual codes

R N(4, R) N(8, R)

6 0 0
7 23 2
8 76768 16468
9 954 -
10 128 -

Now we give some properties of extremal doubly even self-dual codes of length 40. Let
σ be an automorphism of odd prime order p. If σ has c independent p-cycles and f fixed
points, then σ is said to be of type p-(c, f). All extremal doubly even self-dual codes of
length 40 with automorphism of type p-(c, f) are known for p ⩾ 5 (see [15, Table 3]).
The cases with (p, c) = (3, 6) and (3, 8) were considered in [6] and [16], respectively. The
numbers N(p, c) of inequivalent extremal doubly even self-dual codes with automorphism
of type p-(c, f) are listed in Table 4 for (p, c) = (3, 6), (3, 10) and (3, 12). It is claimed in
[6, Theorem 12] that N(3, 6) = 16. However, we verified that N(3, 6) = 17. Since the list
of the 16 codes is not available, we are unable to compare the result with ours.

Proposition 6. There are 17, 70 and 322 inequivalent extremal doubly even self-dual
codes of length 40 with automorphism of types 3-(6, 22), 3-(10, 10) and 3-(12, 4), respec-
tively.
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Table 4: N(p, c) for (p, c) = (3, 6), (3, 10) and (3, 12)

(p, c) (3, 6) (3, 10) (3, 12)

N(p, c) 17 70 322

Table 5: Orders of automorphism groups

(#Aut, N(#Aut))

(1, 10400) (36, 1) (256, 21) (3072, 3) (61440, 1)
(2, 3538) (38, 1) (288, 4) (3840, 1) (65536, 1)
(3, 43) (40, 5) (320, 1) (4096, 1) (110592, 1)

(4, 1189) (48, 34) (384, 12) (4608, 2) (147456, 1)
(5, 2) (60, 2) (512, 16) (5376, 1) (245760, 1)
(6, 68) (64, 75) (576, 3) (6144, 7) (737280, 1)
(8, 459) (72, 4) (720, 2) (6840, 1) (786432, 1)
(10, 8) (96, 12) (768, 7) (9216, 1) (983040, 1)
(12, 80) (114, 1) (1024, 3) (12288, 2) (1474560, 1)
(16, 233) (120, 5) (1296, 1) (16384, 1) (5505024, 1)
(18, 1) (128, 46) (1536, 10) (18432, 1) (8257536, 1)
(20, 4) (144, 4) (1728, 1) (20480, 1) (44236800, 1)
(24, 41) (160, 1) (1920, 1) (20736, 1) (82575360, 1)
(30, 2) (192, 12) (2048, 4) (32768, 1)
(32, 70) (240, 2) (2688, 1) (49152, 3)

In Table 5, we list the numbers N(#Aut) of extremal doubly even self-dual codes
with automorphism groups of order #Aut.

As we mentioned at the end of Subsection 2.3, we have the following:

Proposition 7. Let Cx denote the shortened code of C on the complement of the support
of a codeword x. Then there are two inequivalent extremal doubly even self-dual codes C
of length 40 such that dimCx ⩽ 2 for all x ∈ C with wt(x) = 16.

Although the condition given in Proposition 7 can be characterized by the vanishing
of a coefficient in the weight enumerator of genus 3 (see [27]), we have not been able to
prove Proposition 7 directly, without classifying all extremal doubly even self-dual codes
of length 40.

In Table 6, we list the numbers N(dim) of extremal doubly even self-dual codes such
that subcodes generated by codewords of weight 8 have dimension dim. The dimension
is the same as the 2-rank of the 1-(40, 8, 57) design formed by the codewords of weight 8.
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Table 6: Dimensions of subcodes generated by codewords of weight 8

dim 17 18 19 20

N(dim) 5 1 14 16450

4 Extremal self-dual codes of length 38

Let D be a doubly even self-dual code of length 40. Let C be the code obtained from
D for which some particular pair of coordinates i, j are 00 and 11 and deleting these
coordinates. Then C is a self-dual code of length 38. Here, we say that C is obtained from
D by subtracting coordinates i, j. In addition, any self-dual code of length 38 is obtained
from some doubly even self-dual code of length 40 by subtracting some two coordinates
(see [9]). Due to the computational complexity, we only completed a classification of
extremal self-dual codes of length 38. Note that there are at least 13644433 inequivalent
self-dual codes of length 38 [11].

Any extremal self-dual code C of length 38 and its shadow S have one of the following
weight enumerators [10]:

WC = 1 + 171y8 + 1862y10 + 10374y12 + 36765y14 + 84759y16

+128212y18 + · · · ,
WS = 114y7 + 9044y11 + 118446y15 + 269080y19 + · · · ,

(7)


WC = 1 + 203y8 + 1702y10 + 10598y12 + 36925y14 + 84055y16

+128660y18 + · · · ,
WS = y3 + 106y7 + 9072y11 + 118390y15 + 269150y19 + · · · .

(8)

Although the following two lemmas are somewhat trivial, it is useful in finding extremal
self-dual codes of length 38.

Lemma 8. Any extremal self-dual code of length 38 with weight enumerator (7) (resp.
(8)) is obtained from some extremal doubly even self-dual code of length 40 (resp. some
doubly even self-dual code of length 40 containing one codeword of weight 4) by subtracting
some two coordinates.

Proof. Let C be an extremal self-dual code of length 38 with weight enumerator (7) (resp.
(8)). By Proposition 2, a doubly even self-dual code C∗ of length 40 is constructed. In
addition, by (7) (resp. (8)), C∗ is extremal (resp. C∗ contains one codeword of weight
4). The code C is obtained from C∗ by subtracting the last two coordinates. The result
follows.

For the remainder of this section, we suppose that D is either an extremal doubly
even self-dual code of length 40 or a doubly even self-dual code of length 40 containing
one codeword of weight 4. Also, let Di,j denote the self-dual code of length 38 obtained
from D by subtracting two coordinates i, j.
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Lemma 9. Let M(D) be the matrix with rows composed of the codewords of weight 8 in
D, where the (1, 0)-matrix M(D) is regarded as a matrix over Z.
(1) Suppose that D is extremal. Then the (i, j)-entry of M(D)TM(D) is zero if and

only if Di,j is extremal.

(2) Suppose that D contains one codeword x of weight 4. Then the (i, j)-entry of
M(D)TM(D) is zero and the pair of coordinates i, j in x are 10 or 01 if and only
if Di,j is extremal.

Proof. There is a codeword of weight 8 in D for which the coordinates i, j are 11 if and
only if Di,j contains a codeword of weight 6. Suppose that D contains one codeword x of
weight 4. The coordinates i, j in x are 11 (resp. 00) if and only if Di,j contains a codeword
of weight 2 (resp. 4).

By Lemma 9, from all inequivalent extremal doubly even self-dual codes and all in-
equivalent doubly even self-dual codes containing one codeword of weight 4, we con-
structed extremal self-dual codes of length 38 which need be checked further for equiv-
alences. Then we checked equivalences among these codes using the method similar to
that given in Section 2. Finally, we have the following:

Proposition 10. There are 2744 inequivalent extremal self-dual codes of length 38. Of
these 1730 have weight enumerator (7) and 1014 have weight enumerator (8).

Remark 11. A classification of extremal self-dual codes of length 38 was very recently
obtained in [1] by somewhat different techniques. This was indicated by Jon-Lark Kim
in a private communication [17].

In Table 7, we list the numbers N(#Aut) of extremal self-dual codes with automor-
phism groups of order #Aut for both weight enumerators (7) and (8).

Table 7: Number of extremal self-dual codes of length 38

(#Aut, N(#Aut))

Weight enumerator (7)

(1, 1480) (4, 30) (9, 1) (24, 4) (342, 1)
(2, 177) (6, 7) (12, 5) (36, 1)
(3, 15) (8, 7) (18, 1) (168, 1)

Weight enumerator (8)

(1, 773) (4, 38) (12, 3) (24, 10) (216, 1)
(2, 145) (6, 10) (14, 1) (144, 1) (504, 1)
(3, 21) (8, 8) (21, 1) (168, 1)

Some historical comments (July 27, 2012). A classification of extremal self-dual
codes of length 38 was completed in [1], and a classification of all self-dual codes of length
38 was completed in [7]. The paper [1] was submitted before this paper was submitted,
and the paper [7] was submitted after this paper was submitted.
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