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Abstract

We define the infinite-dimensional hypercube graph Hℵ0 as the graph whose
vertex set is formed by the so-called singular subsets of Z \ {0}. This graph is
not connected, but it has isomorphic connected components. We show that the
restrictions of its automorphisms to the connected components are induced by per-
mutations on Z \ {0} preserving the family of singular subsets. As an application,
we describe the automorphism group of the connected components.
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1 Introduction

By [3], typical graphs have no non-trivial automorphisms. On the other hand, the classical
Frucht result [4] states that every abstract group can be realized as the automorphism
group of some graph (we refer [2] for more information concerning graph automorphisms).
In particular, the Coxeter group of type Bn = Cn (the wreath product S2 oSn) is isomorphic
to the automorphism group of the n-dimensional hypercube graph Hn.

In this note we consider the infinite-dimensional hypercube graph Hℵ0 . This is the
Cartesian product of infinitely many factorsK2, but it also can be defined as a graph whose
vertex set is formed by the maximal singular subsets of Z \ {0} (Section 2). This graph is
not connected, but it has isomorphic connected components. We show that the restrictions
of its automorphisms to the connected components are induced by permutations on Z\{0}
preserving the family of singular subsets (Theorem 2). As a simple consequence, we
establish that the automorphism group of each connected component is isomorphic to the
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so-called weak wreath product of S2 and Sℵ0 (Corollary 5). Since Hℵ0 is the Cartesian
product of infinitely many factors K2, the latter statement can be drawn from some results
concerning the automorphism group of Cartesian product of graphs [5, 6].

2 Infinite-dimensional hypercube graph

A subset X ⊂ Z \ {0} is said to be singular if

i ∈ X =⇒ −i 6∈ X.

For every natural i each maximal singular subset contains precisely one of the numbers
i or −i; in other words, if X is a maximal singular subset then the same holds for its
complement in Z \ {0}. Two maximal singular subsets X, Y are called adjacent if

|X \ Y | = |Y \X| = 1.

In this case, we have

X = (X ∩ Y ) ∪ {i} and Y = (X ∩ Y ) ∪ {−i}

for some number i ∈ Z \ {0}.
Following Example 2.6 in [7], we say that a permutation s on the set Z \ {0} is

symplectic if
s(−i) = −s(i) ∀ i ∈ Z \ {0}.

A permutation is symplectic if and only if it preserves the family of singular subsets. The
group of symplectic permutations is isomorphic to the wreath product S2 o Sℵ0 (we write
Sα for the group of permutations on a set of cardinality α, see Section 5 for the definition
of wreath product). The action of this group on the family of maximal singular subsets
is transitive.

Denote by Hℵ0 the graph whose vertex set is formed by all maximal singular subsets
and whose edges are adjacent pairs of such subsets. This graph is not connected. The
connected component containing X ∈ Hℵ0 will be denoted by H(X); it consists of all
Y ∈ Hℵ0 such that

|X \ Y | = |Y \X| <∞.
Any two connected components H(X) and H(Y ) are isomorphic. Indeed, every symplectic
permutation s on the set Z \ {0} induces an automorphism of Hℵ0 ; this automorphism
transfers H(X) to H(Y ) if s(X) = Y .

It is clear that Hℵ0 can be identified with the graph whose vertices are sequences

{an}n∈N with an ∈ {0, 1}

and {an}n∈N is adjacent with {bn}n∈N (connected by an edge) if∑
n∈N

|an − bn| = 1.

Then one of the connected components is formed by all sequences having a finite number
of non-zero elements.
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3 Automorphisms

Every automorphism of Hℵ0 induced by a symplectic permutation will be called regular.
An easy verification shows that distinct symplectic permutations induce distinct regular
automorphisms. Therefore, the group of regular automorphisms is isomorphic to S2 oSℵ0 .

Non-regular automorphisms exist. The following example is a modification of examples
given in [1, 8], see also Example 3.14 in [7].

Example 1. Let A ∈ Hℵ0 and B be a vertex of the connected component H(A) distinct
from A. We take any symplectic permutation s transferring A to B. This permutation
preserves H(A) and the mapping

f(X) :=

{
s(X) X ∈ H(A)

X X ∈ Hℵ0 \H(A)

is well-defined. Clearly, f is a non-trivial automorphism of Hℵ0 . Suppose that this
automorphism is regular and t is the associated symplectic permutation. For every i ∈
Z \ {0} there exists a singular subset N such that

X = N ∪ {i} and Y = N ∪ {−i}

are elements of Hℵ0 \H(A). Then

t(N) = t(X ∩ Y ) = t(X) ∩ t(Y ) = f(X) ∩ f(Y ) = X ∩ Y = N

and
N ∪ {i} = X = f(X) = t(X) = t(N) ∪ {t(i)} = N ∪ {t(i)}

which implies that t(i) = i. Thus t is identity which is impossible. So, the automorphism
f is non-regular.

Theorem 2. The restriction of every automorphism of Hℵ0 to any connected component
coincides with the restriction of some regular automorphism to this connected component.

A similar result was obtained in [8] for infinite Johnson graphs. The proof of that
result is based on the same idea.

4 Proof of Theorem 2

Let A ∈ Hℵ0 and f be the restriction of an automorphism of Hℵ0 to the connected
component H(A). For every X ∈ Hℵ0 we denote by X∼ the set which contains X and all
vertices of Hℵ0 adjacent with X. It is clear that X∼ is contained in H(A) if X ∈ H(A).

Lemma 3. For every X ∈ H(A) there is a symplectic permutation sX such that

f(Y ) = sX(Y ) ∀ Y ∈ X∼. (1)
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Proof. We can assume that f(X) coincides with X (if f(X) 6= X then we take any
symplectic permutation t sending f(X) to X and consider tf). In this case, the restriction
of f to X∼ is a bijective transformation of X∼.

For every i ∈ Z \ {0} one of the following possibilities is realized:

• i 6∈ X,

• i ∈ X.

Consider the first case. Then −i ∈ X and there is unique element of X∼ containing i,
this is

Y = {i} ∪ (X \ {−i}). (2)

Since f |X∼ is a transformation of X∼, f(Y ) is adjacent with X and the set f(Y ) \ X
contains only one element. We denote it by sX(i). It is clear that sX(i) 6∈ X.

In the second case, −i 6∈ X and we define sX(i) as −sX(−i). Since sX(−i) does not
belong to X, we have sX(i) ∈ X.

So, sX is a symplectic permutation on Z \ {0} such that

sX(X) = X.

Now, we check (1).
Let Y ∈ X∼. Then we have (2) for some i and

sX(Y ) = {sX(i)} ∪ (sX(X) \ {−sX(i)}) = {sX(i)} ∪ (X \ {−sX(i)})

is the unique element of X∼ containing sX(i). On the other hand, sX(i) belongs to f(Y )
by the definition of sX . Therefore, f(Y ) coincides with sX(Y ).

Lemma 4. If X, Y ∈ H(A) are adjacent then sX = sY .

Proof. Since X, Y are adjacent, we have

X = {i} ∪ (X ∩ Y ) and Y = {−i} ∪ (X ∩ Y )

for some i ∈ X. We can assume that

f(X) = X and f(Y ) = Y.

Indeed, in the general case

f(X) = {j} ∪ (f(X) ∩ f(Y )) and f(Y ) = {−j} ∪ (f(X) ∩ f(Y ))

(since f(X) and f(Y ) are adjacent); we take any symplectic permutation t sending j and
f(X) ∩ f(Y ) to i and X ∩ Y (respectively) and consider tf .

Then
sX(X ∩ Y ) = sX(X) ∩ sX(Y ) = f(X) ∩ f(Y ) = X ∩ Y ;
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similarly,
sY (X ∩ Y ) = X ∩ Y.

We have

(X ∩ Y ) ∪ {i} = X = f(X) = sX(X) = sX((X ∩ Y ) ∪ {i}) = (X ∩ Y ) ∪ {sX(i)}

and the same arguments show that

(X ∩ Y ) ∪ {i} = (X ∩ Y ) ∪ {sY (i)}.

Therefore,
sX(i) = sY (i) = i and sX(−i) = sY (−i) = −i.

Now, we show that the equality
sX(j) = sY (j) (3)

holds for every j 6= ±i. Since sX and sY are symplectic, it is sufficient to establish (3)
only in the case when j 6∈ X ∪Y . Indeed, if j ∈ X ∩Y then −j does not belong to X ∪Y .

Let j be an element of Z \ {0} which does not belong to X ∪ Y . Then −j ∈ X ∩ Y
and

X ′ := {j} ∪ (X \ {−j}) ∈ X∼, Y ′ := {j} ∪ (Y \ {−j}) ∈ Y ∼

are adjacent. Hence

f(X ′) = sX(X ′) = {sX(j)} ∪ (X \ {−sX(j)})

and
f(Y ′) = sY (Y ′) = {sY (j)} ∪ (Y \ {−sY (j)})

are adjacent. The latter is possible only in the case when sX(j) = sY (j).

Using the connectedness of H(A) and Lemma 4, we establish that sX = sY for all
X, Y ∈ H(A).

5 Automorphisms of connected components

Let G1 and G2 be permutation groups on sets X1 and X2, respectively. Recall that the
wreath product G1oG2 is a permutation group on X1×X2 and its elements are compositions
of the following two types of permutations:

(1) for each element g ∈ G2, the permutation (x1, x2)→ (x1, g(x2));

(2) for each function i : X2 → G1, the permutation (x1, x2)→ (i(x2)x1, x2).

Consider the subgroup of G1 o G2 whose elements are compositions of permutations of
type (1) and permutations of type (2) such that the set

{ x2 ∈ X2 : i(x2) 6= idX1 }

is finite. This is a proper subgroup only in the case when X2 is infinite; it will be called
the weak wreath product and denoted by G1 ow G2.
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Corollary 5. The automorphism group of the connected component of Hℵ0 is isomorphic
to the weak wreath product S2 ow Sℵ0.

Proof. Let A ∈ Hℵ0 and f be an automorphism of the connected component H(A). By
the previous section, f is induced by a symplectic permutation s. Since f(A) = s(A)
belongs to H(A), the set s(A) \ A is finite. So, the automorphism group of H(A) is
isomorphic to the group of symplectic permutations s such that the set s(A) \A is finite.
The latter group is isomorphic to the weak wreath product S2 ow Sℵ0 (indeed, we can
identify the set Z \ {0} with the Cartesian product Z2 × A and the group Sℵ0 with the
group of all permutation on A).
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