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Abstract

The 2-adic valuation (highest power of 2) dividing the well-known Catalan
numbers, Cn, has been completely determined by Alter and Kubota and further
studied combinatorially by Deutsch and Sagan. In particular, it is well known
that Cn is odd if and only if n = 2k − 1 for some k > 0. The polynomial
F ch
n (321; q) =

∑
σ∈Avn(321) q

ch(σ), where Avn(321) is the set of permutations in Sn
that avoid 321 and ch is the charge statistic, is a q-analogue of the Catalan numbers
since specializing q = 1 gives Cn. We prove that the coefficient of qi in F ch

2k−1
(321; q)

is even if i > 1, giving a refinement of the “if” direction of the Cn parity result.
Furthermore, we use a bijection between the charge statistic and the major index
to prove a conjecture of Dokos, Dwyer, Johnson, Sagan and Selsor regarding powers
of 2 and the major index.

In addition, Sagan and Savage have recently defined a notion of st-Wilf equiva-
lence for any permutation statistic st and any two sets of permutations Π and Π′.
We say Π and Π′ are st-Wilf equivalent if

∑
σ∈Avn(Π) q

st(σ) =
∑

σ∈Avn(Π′) q
st(σ). In

this paper we show how one can characterize the charge-Wilf equivalence classes for
subsets of S3.

1 Introduction

Suppose π = a1a2 · · · an and σ = b1b2 · · · bn are two sequences of distinct positive integers
of the same length n. We say that π is order isomorphic to σ if ai < aj if and only if
bi < bj. Let Sn be the symmetric group of all permutations of the set [n] = {1, 2, . . . , n}.
For any π ∈ Sn and σ ∈ Sk for k 6 n, we say that π contains a copy of σ if π has a
subsequence that is order isomorphic to σ. If π contains no subsequence order isomorphic
to σ then we say that π avoids σ.
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Now let Π be a subset of permutations in Sn and define Avn(Π) as the set of permu-
tations in Sn which avoid every permutation in Π. Two sets of permutations Π and Π′

are said to be Wilf equivalent if |Avn(Π)| = |Avn(Π′)|. If Π and Π′ are Wilf equivalent,
we write Π ≡ Π′.

Sagan and Savage [13] defined a q-analogue of Wilf equivalence by considering any
permutation statistic st from ]n>0Sn → N, where N is the set of nonnegative integers,
and letting

F st
n (Π; q) =

∑
σ∈Avn(Π)

qst(σ).

They defined Π and Π′ to be st-Wilf equivalent if F st
n (Π; q) = F st

n (Π′; q) for all n > 0. In

this case, we write Π
st≡ Π′. We will use [Π]st to denote the st-Wilf equivalence class of

Π. If we set q = 1 in the generating function above we have F st
n (Π; 1) = |Avn(Π)|, thus

st-Wilf equivalence implies Wilf equivalence.
In [4], Dokos, Dwyer, Johnson, Sagan and Selsor give a thorough investigation of st-

Wilf equivalence for both the major index, maj, and the inversion statistic, inv. Through
a relatively straightforward map on permutations that takes the major index to another
well known Mahonian statistic, the charge statistic, one can give a similarly thorough
investigation for the charge statistic and we indicate how to do this in Section 3.

The well known Catalan numbers are defined explicitly by the formula

Cn =
1

n+ 1

(
2n

n

)
.

In 1973, Alter and Kubota [1] used arithmetic techniques to characterize the divisibility of
the Catalan numbers by primes and prime powers. Since then, a number of combinatorial
proofs have been given ([2], [5], [15] and most recently [3]) for the more specific result
that Cn is odd precisely when n = 2k − 1 for some k ∈ N. Deutsch and Sagan [3] go on
to use group actions to prove a theorem about the 2-adic valuation (largest power of 2)
dividing Cn.

For Π equaling a single element of S3, the polynomial F st
n (Π; q) can be thought of

as a q-analogue of the Catalan numbers since specializing q = 1 gives Cn. In Section
4 we prove that the coefficient of qi in F ch

2k−1
(321; q) is even if i > 1 using some basic

facts about standard Young tableaux and the Robinson-Schensted correspondence. This
further refines the “if” direction of the Cn parity result. We can then translate this result
into a similar statement for the major index to answer a conjecture of Dokos et al. about
the coefficients of Fmaj

2k−1
(321; q). We close the paper in Section 5 with some directions for

further research.

2 Definitions

Throughout this paper we will utilize some basic operations on permutations, namely the
inverse and the reverse. For a permutation π = π1 π2 · · · πn, the inverse is the standard
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group-theoretic inverse operation on permutations and the reverse is

πr = πn · · · π2 π1.

For a permutation π = π1 π2 · · · πn ∈ Sn, define the descent set of π to be Des(π) =
{i | πi > πi+1}. The major index of a permutation, first defined by MacMahon [10], is
then defined as

maj(π) =
∑

i∈Des(π)

i.

For example, for π = 3 2 8 5 7 4 6 1 9 , Des(π) = {1, 3, 5, 7} and maj(π) =
1 + 3 + 5 + 7 = 16.

Let π be a permutation in Sn. For any i in the permutation, define the charge value
of i, chv(i), recursively with chv(1) = 0 and for i > 1

chv(i) =

{
0 if i is to the right of i− 1 in π,

n+ 1− i if i is to the left of i− 1 in π.

Now for π ∈ Sn, define the charge of π, ch(π), to be

ch(π) =
n∑
i=1

chv(i).

In the following example for π = 3 2 8 5 7 4 6 1 9 , the charge values of
each element are given below the permutation:

π = 3 2 8 5 7 4 6 1 9
7 8 2 5 3 0 0 0 0

and ch(π) = 7 + 8 + 2 + 5 + 3 = 25. The definition of the charge statistic was first given
by Lascoux and Schützenberger [9].

We say λ = (λ1, λ2, . . . , λr) is a partition of n if λ1 > λ2 > . . . > λr > 0 and
∑

i λi = n.
A partition λ may be described pictorially by its Ferrers diagram, an array of n cells into
k left-justified rows with row i containing λi cells for 1 6 i 6 k. If (i, j) is the cell in the
ith row and the jth column in the diagram of λ, then the hook of that cell is

Hi,j = {(i, j′) | j′ > j} ∪ {(i′, j) | i′ > i}

and the corresponding hooklength of (i, j) is hi,j = |Hi,j|.
A standard Young tableau of shape λ is a filling of the cells in the Ferrers diagram for

λ with the integers 1, 2, . . . , n such that the rows are increasing from left to right and
the columns are increasing from top to bottom. The number of standard Young tableaux
of shape λ, fλ, can be computed using the well-known Hook Formula of Frame, Robinson
and Thrall [6].
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Theorem 1. If λ is a partition of n, then

fλ =
n!

Π(i,j)∈λhi,j
.

The Robinson-Schensted correspondence is a bijection π
R−S←→ (P,Q) where π ∈ Sn, and

P , Q are standard Young tableaux of the same shape λ, as λ varies over all partitions of n
[11] [14]. The tableaux P and Q are called the P-tableau and Q-tableau of π, respectively.
The Robinson-Schensted correspondence and its applications and extensions have proved
extremely useful in giving a combinatorial context to many fundamental representation
theory and symmetric function results.

Schensted [14] proved the following theorem:

Theorem 2. Given π ∈ Sn. The length of the longest increasing subsequence of π is the
length of the first row of its P -tableau. The length of the longest decreasing subsequence
of π is the length of the first column of its P -tableau.

The interested reader can consult Chapter 3 of Sagan’s excellent book [12] for a proof
of this result and a thorough exposition of the Robinson-Schensted correspondence and
the many interesting results that follow from this important algorithm.

3 Equivalence for permutations in S3

In this section, we will consider the polynomials F ch
n (Π; q) where Π ⊆ S3. To begin,

fix n > 0 and let π ∈ Sn. Define f(π) = ((πr)−1)r. It is a well-known result that
f is a bijection from Sn to Sn that takes the major index to the charge statistic, i.e.
maj(π) = ch(f(π)) (see [7] for further exposition).

Lemma 1. Fix n > 0. Then for any permutation π ∈ S3,

f : Avn(π)→ Avn(f(π)).

Proof. We have that σ contains π if and only if f(σ) contains f(π) as this is obvious for
reversal and inverse. Thus σ avoids π if and only if f(σ) avoids f(π), which is equivalent
to the statement of the Lemma.

We now prove the following result:

Theorem 3. We have

[123]ch = {123}
[321]ch = {321}
[132]ch = {132, 312} = [312]ch

[213]ch = {213, 231} = [231]ch.
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Proof. Dokos et al. [4] proved

[123]maj = {123}
[321]maj = {321}
[213]maj = {213, 312} = [312]maj

[132]maj = {132, 231} = [231]maj.

By Lemma 1, the fact that f is bijective and the fact that maj(σ) = ch(f(σ)) for
σ ∈ Sn, it follows immediately that π is maj-Wilf equivalent to π′ if and only if f(π) is
ch-Wilf equivalent to f(π′). Thus utilizing the result of Dokos et al. gives the theorem.

Dokos et al. go on to classify the maj-Wilf equivalence classes for all subsets of S3

and one can translate these results into equivalent statements for the charge statistic if
desired by utilizing the function f .

4 A Conjecture of Dokos, Dwyer, Johnson, Sagan

and Selsor

Motivated by the literature on the 2-adic valuation of the Catalan numbers and the fact
that Cn is odd if and only if n = 2k−1 for some k > 0, Dokos et al. [4] prove a refinement
of the “if” direction.

Theorem 4. (Theorem 3.5 in [4]) For all k > 0 we have

< qi > F inv
2k−1(321; q) =

{
1 if i = 0,

an even number if i > 1.

where inv is the well known inversion statistic for permutations and < qi > denotes the
coefficient of qi in the polynomial.

They go on to state the following conjecture (Conjecture 3.6):
Conjecture: For all k > 0 we have

< qi > Fmaj
2k−1

(321; q) =

{
1 if i = 0,

an even number if i > 1.

We will prove the analogous statement for the charge statistic in this section.
In Lascoux and Schützenberger’s original paper [9] defining the charge statistic, they

give an alternate definition from which it is clear that if two permutations have the same
P -tableau then the charge statistic on those two permutations is the same.

Lemma 2. Let k > 1. There are an even number of 2-row standard Young tableaux of
size 2k − 1 and shape λ = (2k − i− 1, i) for 1 6 i 6 2k−1 − 1.
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Proof. By the Hook Formula, it is clear that for k > 1 and 1 6 i 6 2k−1 − 1,

f (2k−i−1,i) =
2k − 2i

2k − i

(
2k − 1

i

)
.

Since the binomial coefficient in the above term is an integer, it suffices to show that
the fraction is even, meaning the highest power of 2 in the numerator is larger than the
highest power of 2 in the denominator. Let 2l be the largest power of 2 dividing i, for
0 6 l 6 k− 2. Then 2l is the largest power dividing the denominator. In addition, 2l+1 is
the largest power of 2 dividing 2i and thus also dividing the numerator. Thus the fraction
is even.

Theorem 5. For all k > 0 we have

< qi > F ch
2k−1(321; q) =

{
1 if i = 0,

an even number if i > 1.

Proof. Since any inversion in a permutation π introduces a charge value, the only permu-
tation in S2k−1 with a charge value of zero is π = 1 2 3 · · · n, which corresponds
to the only 1-row tableau of size 2k − 1. Thus, by Theorem 2, all other permutations in
Av2k−1(321) correspond to pairs of 2-row standard Young tableaux under the Robinson-
Schensted correspondence. It suffices to find a partition of this remaining set of permu-
tations into subsets of even size where each subset has constant charge.

Let λ be a partition of 2k − 1 into two parts. Let l be the number of standard Young
tableaux of shape λ. By Lemma 2, l is even. Let A1, A2, . . . , Al be the l standard Young
tableaux of shape λ. Then since the pairs (Ai, A1), (Ai, A2), . . . , (Ai, Al) for 1 6 i 6 l
all have the same P -tableau, the permutations corresponding to these l pairs all have
the same charge. Thus the set of permutations corresponding to 2-row standard Young
tableaux of size 2k − 1 can be partitioned into sets of permutations of even size which all
have the same charge value. This gives our result.

We now obtain the conjecture of Dokos et al. [4] as a corollary.

Corollary 1. For all k > 0 we have

< qi > Fmaj
2k−1

(321; q) =

{
1 if i = 0,

an even number if i > 1.

Proof. By Lemma 1, the function f defined in Section 3 is a bijection from Avn(321) to
Avn(321) that takes the major index to the charge statistic. Thus applying f to this set
gives the result.
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5 Further Research

There are several interesting directions for further research. One could investigate the
notion of charge Wilf equivalence for subsets Π ∈ S4 as it is well-known that certain
pattern avoiding sets of permutations give rise to the Schröder numbers for patterns of
length four. The author is currently investigating what can be said about the coefficients
of F ch

n (Π; q) for values of n other than 2k − 1 and for sets of permutations Π other than
{321}. In particular, the question of the 2-adic valuation of the coefficients (the highest
power of 2 dividing the coefficients) remains an open and interesting question. The author
would like to thank Bruce Sagan for his helpful comments in leading to these questions
and to the anonymous referee for many insightful comments on ways to improve the paper.
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