Identifying Vertex Covers in Graphs

Michael A. Henning*
Department of Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa
mahenning@uj.ac.za

Anders Yeo
Department of Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa
anders.yeo.work@gmail.com

Submitted: Mar 9, 2012; Accepted: Nov 16, 2012; Published: Dec 6, 2012
Mathematics Subject Classifications: 05C69

Abstract

An identifying vertex cover in a graph G is a subset T of vertices in G that has a nonempty intersection with every edge of G such that T distinguishes the edges, that is, $e \cap T \neq \emptyset$ for every edge e in G and $e \cap T \neq f \cap T$ for every two distinct edges e and f in G. The identifying vertex cover number $\tau_{D}(G)$ of G is the minimum size of an identifying vertex cover in G. We observe that $\tau_{D}(G)+\rho(G)=|V(G)|$, where $\rho(G)$ denotes the packing number of G. We conjecture that if G is a graph of order n and size m with maximum degree Δ, then $\tau_{D}(G) \leqslant\left(\frac{\Delta(\Delta-1)}{\Delta^{2}+1}\right) n+\left(\frac{2}{\Delta^{2}+1}\right) m$. If the conjecture is true, then the bound is best possible for all $\Delta \geqslant 1$. We prove this conjecture when $\Delta \geqslant 1$ and G is a Δ-regular graph. The three known Moore graphs of diameter 2 , namely the 5 -cycle, the Petersen graph and the Hoffman-Singleton graph, are examples of regular graphs that achieves equality in the upper bound. We also prove this conjecture when $\Delta \in\{2,3\}$.

Keywords: Vertex cover, Identifying vertex cover, Transversal.

1 Introduction

For notation and graph theory terminology, we in general follow [2]. Specifically, let $G=(V, E)$ be a graph with vertex set $V=V(G)$, edge set $E=E(G)$, order $n(G)=|V|$ and size $m(G)=|E|$. The open neighborhood of a vertex $v \in V$ is $N_{G}(v)=\{u \in V \mid u v \in$ $E(G)\}$ and its closed neighborhood is the set $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of v is $d_{G}(v)=\left|N_{G}(v)\right|$. If the graph G is clear from the context, we simply write $n, m, N(v)$, $N[v]$ and $d(v)$ rather than $n(G), m(G), N_{G}(v), N_{G}[v]$ and $d_{G}(v)$, respectively. The set of

[^0]vertices at distance 2 from a vertex v in G we denote by $N_{2}(G ; v)$, or simply by $N_{2}(v)$ is the graph G is clear from the context. A subcubic graph is a graph with maximum degree 3. A path and a cycle on n vertices are denoted by P_{n} and C_{n}, respectively.

For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\cup_{v \in S} N(v)$ and its closed neighborhood is the set $N[S]=N(S) \cup S$. A set S of vertices in G is a packing if the vertices of S are pairwise at distance at least 3 apart in G; that is, for distinct vertices u and v in S, we have $d_{G}(u, v) \geqslant 3$ or, equivalently, $N[u] \cap N[v]=\emptyset$. The packing number $\rho(G)$ of G is the maximum cardinality of a packing in G. A packing of cardinality $\rho(G)$ in G is called a $\rho(G)$-packing.

A vertex and an edge are said to cover each other in a graph G if they are incident in G. A (vertex) cover in G is a set of vertices that covers all the edges of G. We remark that a cover is also called a transversal or hitting set in the literature. Thus a cover T has a nonempty intersection with every edge of G. The (vertex) covering number $\tau(G)$ of G is the minimum cardinality of a cover in G. A cover of size $\tau(G)$ is called a $\tau(G)$-cover. We say that an edge e in G is covered by a set T if $e \cap T \neq \emptyset$. In particular, if T is a cover in G, then T covers every edge of G.

We define a subset T of vertices in G to be an identifying vertex cover, abbreviated $i d$-cover, if T is a cover in G that distinguishes the edges, that is, $e \cap T \neq f \cap T$ for every two distinct edges e and f in G. We remark that every graph has an id-cover since $V(G)$ is such a set. The identifying vertex covering number, abbreviated id-covering number, $\tau_{D}(G)$ of G is the minimum size of an id-cover in G. An id-cover of size $\tau_{D}(G)$ is called a $\tau_{D}(G)$-cover.

Julien Moncel ${ }^{1}$ in his PhD thesis (in French) was the first to observe that an id-cover is precisely the complement of a packing.
Observation 1. ([9]) A set of vertices in a graph is an id-cover if and only if it is the complement of a packing.

As an immediate consequence of Observation 1, we have the following relationship between the id-covering number and the packing number of a graph.
Corollary 2. ([9]) For every graph G, we have $\tau_{D}(G)+\rho(G)=|V(G)|$.
Covers in graphs and more generally, transversals in hypergraphs, are very well studied in the literature. Identifying vertex covers in graphs and hypergraphs have applications, for example, in identifying open codes (also called open-locating-dominating sets or a strong identifying codes in the literature (see, for example, [3, 7, 11, 12]). Identification of edges of a graph have been studied, for example, in $[5,6]$ and elsewhere. We remark that there is a strong link between id-covers in graphs and test covers, which are studied for example in [10]. An id-cover is both a set cover and a test cover of a 2-regular hypergraph. The dual case of test covers of graphs was studied in [1]. Recently the authors [3] obtained results on identifying open codes in cubic graphs using distinguishing transversal in hypergraphs. A bibliography of papers concerned with identifying codes, currently listing over 170 papers, is maintained by Lobstein [8].

[^1]
2 Main Results

Our aim in this paper is to establish an upper bound on the identifying vertex covering number of a graph in terms of its order, size and maximum degree. In particular, we establish upper bounds on the id-covering number of a regular graph in terms of its order and size and of a subcubic graph in terms of its order and size. The results we present in this paper on id-covers in graphs give support for the following conjecture.

Conjecture 3. If G is a graph of order n and size m with maximum degree Δ, then

$$
\tau_{D}(G) \leqslant\left(\frac{\Delta(\Delta-1)}{\Delta^{2}+1}\right) n+\left(\frac{2}{\Delta^{2}+1}\right) m
$$

When $\Delta=1$, the bound in Conjecture 3 simplifies to $\tau_{D}(G) \leqslant m$, which is trivially true since in this case G consists of a disjoint union of copies of K_{1} and K_{2}.

In this paper, we prove the following results. Proofs of Theorem 4, Theorem 5 and Theorem 6 are given in Section 3, Section 4 and Section 5, respectively.

Theorem 4. Conjecture 3 is true when $\Delta \geqslant 1$ and G is a Δ-regular graph.
Theorem 5. Conjecture 3 is true when $\Delta=2$.
Theorem 6. Conjecture 3 is true when $\Delta=3$.
Recall (or see $[4,13]$) that the Moore graphs of diameter 2 are Δ-regular graphs (of girth 5) and order $n=\Delta^{2}+1$ and exist for $\Delta=2,3,7$ and possibly 57 , but for no other degrees. The Moore graphs for the first three values of Δ are unique, namely

- The 5 -cycle (2-regular graph on $n=5$ vertices)
- The Petersen graph (3-regular graph on $n=10$ vertices)
- The Hoffman-Singleton graph (7-regular graph on $n=50$ vertices).

Since these graphs G have diameter 2, their packing number $\rho(G)=1$, implying by Corollary 2 that $\tau_{D}(G)=n-1$. However in this case the conjectured bound in Conjecture 3 simplifies to precisely $n-1$. Hence the bound in Conjecture 3 is achieved by the three known Moore graphs of diameter 2 .

We remark that if Conjecture 3 is true, then the bound is best possible due to the star $G=K_{1, \Delta}$, where $\Delta \geqslant 1$, which has order $n=\Delta+1$, size $m=\Delta$, maximum degree Δ and $\tau_{D}(G)=\Delta$, implying that

$$
\tau_{D}(G)=\Delta=\frac{\Delta(\Delta-1)(\Delta+1)}{\Delta^{2}+1}+\frac{2 \Delta}{\Delta^{2}+1}=\left(\frac{\Delta(\Delta-1)}{\Delta^{2}+1}\right) n+\left(\frac{2}{\Delta^{2}+1}\right) m
$$

Although we have yet to find a family of connected graphs with arbitrary large order relative to the maximum degree that achieve equality in the bound of Conjecture 3 , there are such graphs with id-covering number arbitrarily close to the conjectured bound. For
example, for $s<\Delta$ if we take s disjoint copies of a star $K_{1, \Delta}$ and add $s-1$ edges by joining a leaf from one of the stars to a leaf from each of the other stars, and denote the resulting connected graph by G and its order by n, then $\tau_{D}(G)=n-s$, while the upper bound in Conjecture 3 simplifies to $n-s+2(s-1) /\left(\Delta^{2}+1\right)$ which can be made arbitrarily close to $\tau_{D}(G)$ by letting $s \ll \Delta$.

3 Proof of Theorem 4

In this section, we give a proof of Theorem 4. We first present the following theorem.
Theorem 7. If G is a graph of order n with maximum degree Δ, then

$$
\tau_{D}(G) \leqslant\left(\frac{\Delta^{2}}{\Delta^{2}+1}\right) n
$$

Proof. Let S be a $\rho(G)$-packing. Then, $N(v) \cup N_{2}(v) \subseteq V \backslash S$ for every vertex $v \in S$. Further if $u \notin S$, then, by the maximality of S, we must have that $d(u, v) \leqslant 2$ for some vertex $v \in S$, implying that

$$
V \backslash S=\bigcup_{v \in S}\left(N(v) \cup N_{2}(v)\right)
$$

Hence since $|N(v)| \leqslant \Delta$ and $\left|N_{2}(v)\right| \leqslant|N(v)|(\Delta-1)$ for each $v \in S$, we have that

$$
n-|S|=|V \backslash S| \leqslant \sum_{v \in S}\left(|N(v)|+\left|N_{2}(v)\right|\right) \leqslant \Delta^{2} \cdot|S|
$$

and so, $\rho(G)=|S| \geqslant n /\left(\Delta^{2}+1\right)$. The desired result now follows from Corollary 2 .
As a consequence of Theorem 7, we can readily deduce Theorem 4. Recall its statement.

Theorem 4. If G is a Δ-regular graph of order n and size m, then

$$
\tau_{D}(G) \leqslant\left(\frac{\Delta(\Delta-1)}{\Delta^{2}+1}\right) n+\left(\frac{2}{\Delta^{2}+1}\right) m
$$

Proof. Since G is a Δ-regular graph, $2 m=\Delta n$. Hence by Theorem 7, we have

$$
\begin{aligned}
\tau_{D}(G) & \leqslant\left(\frac{\Delta^{2}}{\Delta^{2}+1}\right) n \\
& =\left(\frac{\Delta^{2}-\Delta}{\Delta^{2}+1}\right) n+\left(\frac{\Delta}{\Delta^{2}+1}\right) n \\
& =\left(\frac{\Delta^{2}-\Delta}{\Delta^{2}+1}\right) n+\left(\frac{2}{\Delta^{2}+1}\right) m .
\end{aligned}
$$

As observed earlier, the 5 -cycle (2-regular graph on $n=5$ vertices), the Petersen graph (3-regular graph on $n=10$ vertices) and the Hoffman-Singleton graph (7-regular graph on $n=50$ vertices) are examples of regular graphs that achieve equality in the bound of Theorem 4.

4 Proof of Theorem 5

The packing number of a path and a cycle is well-known. Hence using the relationship between the id-covering number and the packing number of a graph in Corollary 2, we have the following result.

Proposition 8. The following holds.
(a) For $n \geqslant 1, \tau_{D}\left(P_{n}\right)=\lfloor 2 n / 3\rfloor$.
(b) For $n \geqslant 3, \tau_{D}\left(C_{n}\right)=\lceil 2 n / 3\rceil$.

As a consequence of Proposition 8, we have that if G is a path on n vertices and m edges, then $\tau_{D}(G) \leqslant 2(2 n-1) / 5=2(n+m) / 5$ with equality if and only if $G=P_{3}$. Further if G is a cycle on n vertices and m edges, then $\tau_{D}(G) \leqslant 4 n / 5=2(n+m) / 5$ with equality if and only if $G=C_{5}$. Hence we have the following result, which proves Theorem 5.

Theorem 9. If G is a graph of order n and size m with maximum degree 2 , then $\tau_{D}(G) \leqslant$ $2(n+m) / 5$ with equality if and only if every component of G is a path P_{3} or a cycle C_{5}.

5 Proof of Theorem 6

In order to prove Theorem 6, we prove a stronger result. For this purpose, we shall need the following notation. Let $G=(V, E)$ be a graph.

We call $\mathcal{P}=\left(E_{2}, F_{2}\right)$ a 2-edge-partition of E if \mathcal{P} is a weak partition of E (that is, some of the subsets of the partition may be empty) such that $E_{2} \cup F_{2}=E$. Let T be a cover in G such that the edges in F_{2} are distinguished, i.e., if $e, f \in F_{2}$ and $e \neq f$, then $e \cap T \neq f \cap T$. We call T a \mathcal{P}-cover of G. We call an edge in E_{2} an E_{2}-edge and an edge in F_{2} an F_{2}-edge. We define the \mathcal{P}-covering number of G, denoted $\tau_{\mathcal{P}}(G)$, to be the minimum cardinality of a \mathcal{P}-cover in G.

Let X be a subset of vertices in G (possibly, $X=\emptyset$). For a given 2-edge-partition \mathcal{P} of E, let T be chosen to be a \mathcal{P}-cover of G such that $X \subseteq T$. We call such a \mathcal{P}-cover T a (\mathcal{P}, X)-cover of G and we define the (\mathcal{P}, X)-covering number of G, denoted $\tau(G ; \mathcal{P}, X)$ to be the minimum size of a (\mathcal{P}, X)-cover in G. If $X=\emptyset$, a (\mathcal{P}, X)-cover of G is a \mathcal{P}-cover of G and we write $\tau(G ; \mathcal{P})$ rather than $\tau(G ; \mathcal{P}, X)$.

In order to prove Theorem 6, we need to prove the following stronger result.

Theorem 10. Let $G=(V, E)$ be a graph with $\Delta(G) \leqslant 3$ and let $\mathcal{P}=\left(E_{2}, F_{2}\right)$ be a 2-edge-partition of E and let $X \subseteq V$. Then,

$$
10 \tau(G ; \mathcal{P}, X) \leqslant 6 n(G)+2\left|F_{2}\right|+\left|E_{2}\right|+4|X| .
$$

Proof. Define $\xi(G ; \mathcal{P}, X)=6 n(G)+2\left|F_{2}\right|+\left|E_{2}\right|+4|X|$ for all graphs G with associated 2-edge-partition \mathcal{P} and subset $X \subseteq V$. We wish to prove that $10 \tau(G ; \mathcal{P}, X) \leqslant \xi(G ; \mathcal{P}, X)$ when $\Delta(G) \leqslant 3$. Assume that the theorem is false. Among all counterexamples, let $G=(V, E)$ with associated 2-edge-partition \mathcal{P} and subset $X \subseteq V$ be chosen so that
(1) G has minimum order $n(G)$.
(2) Subject to (1), $\left|F_{2}\right|$ is a minimum.

Since G is a counterexample to the theorem, $10 \tau(G ; \mathcal{P}, X)>\xi(G ; \mathcal{P}, X)$. Clearly, $|E| \geqslant 1$, for otherwise $10 \tau(G ; \mathcal{P}, X)=10|X| \leqslant 6 n(G)+4|X|=\xi(G ; \mathcal{P}, X)$, a contradiction. Further, $n(G) \geqslant 3$, for otherwise $10 \tau(G ; \mathcal{P}, X)=10<\xi(G ; \mathcal{P}, X)$ if $|X|<2$ and $10 \tau(G ; \mathcal{P}, X)=20<\xi(G ; \mathcal{P}, X)$ if $|X|=2$, a contradiction. If G is not connected, then by the minimality of the order of G the theorem holds for all components of G and therefore for G. This is a contradiction to G being a counterexample. Hence, G is connected.

We will now prove a number of claims. In these claims we shall adopt the following notation. Let $G^{\prime}=\left(E^{\prime}, V^{\prime}\right)$ be a graph with $\Delta\left(G^{\prime}\right) \leqslant 3$ and let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$ be a 2-edge-partition of E^{\prime} and let $X^{\prime} \subseteq V^{\prime}$. We now define

$$
\begin{aligned}
& \xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)=\xi(G ; \mathcal{P}, X)-\xi\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \\
& \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)=\tau(G ; \mathcal{P}, X)-\tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)
\end{aligned}
$$

The usefulness of these definitions will become clear in Lemma 11 and the following claims. We shall invoke Lemma 11 throughout the proof of Theorem 10. The essential idea when applying Lemma 11 is to prove properties on the structure of $G=(V, E)$ with associated 2-edge-partition \mathcal{P} and subset $X \subseteq V$ by extending a cover of a modified instance $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with associated 2-edge-partition \mathcal{P}^{\prime} and subset $X^{\prime} \subseteq V^{\prime}$ that is smaller than G in terms of the order defined by conditions (a) and (b) in Lemma 11 and deriving a contradiction.

Lemma 11. If $G^{\prime}=\left(E^{\prime}, V^{\prime}\right)$ is a graph, $X^{\prime} \subseteq V^{\prime}$, and $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$ a 2-edge-partition of E^{\prime} such that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, then the following hold.
(a) $n\left(G^{\prime}\right) \geqslant n(G)$.
(b) If equality holds in (a), then $\left|F_{2}^{\prime}\right| \geqslant\left|F_{2}\right|$.

Proof. Suppose to the contrary that such a graph G^{\prime}, subset X^{\prime}, and associated 2-edge-partition \mathcal{P}^{\prime} exists such that (a) or (b) do not hold. By the minimality of G we have $10 \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant \xi\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$. By assumption, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$. Hence, $\xi(G ; \mathcal{P}, X)-\xi\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)=\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)=10 \tau(G ; \mathcal{P}, X)-$ $10 \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 10 \tau(G ; \mathcal{P}, X)-\xi\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, and so, $\xi(G ; \mathcal{P}, X) \geqslant 10 \tau(G ; \mathcal{P}, X)$, a contradiction.

Claim A: $X=\emptyset$.
Proof. Suppose that $X \neq \emptyset$. Suppose that there exist distinct edges $e_{1}, e_{2} \in F_{2}$ that intersect X such that $e_{1} \cap X=e_{2} \cap X$. Then, $\left|e_{1} \cap X\right|=1$. Let $e_{1}=\left\{v, v_{1}\right\}$ and $e_{2}=\left\{v, v_{2}\right\}$. Let G^{\prime} be obtained from $G-\left\{e_{1}, e_{2}\right\}$ by adding the edge $e^{\prime}=\left\{v_{1}, v_{2}\right\}$ if this edge does not already exist. Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2} \cup\left\{e^{\prime}\right\}$ and $F_{2}^{\prime}=F_{2} \backslash\left\{e_{1}, e_{2}\right\}$. Let $X^{\prime}=X$. Then, $n\left(G^{\prime}\right)=n(G),\left|E_{2}^{\prime}\right| \leqslant\left|E_{2}\right|+1,\left|F_{2}^{\prime}\right|=\left|F_{2}\right|-2$ and $\left|X^{\prime}\right|=|X|$, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 4-1=3$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} is a (\mathcal{P}, X)-cover in G, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$ and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 0$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 3>10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11. Hence if $e_{1}, e_{2} \in F_{2}$ are distinct edges that intersect X, then $e_{1} \cap X \neq e_{2} \cap X$.

If $X=V$, then $10 \tau(G ; \mathcal{P}, X)=10 n(G)<\xi(G ; \mathcal{P}, X)$, a contradiction. Hence, $X \neq V$. Let $G^{\prime}=G-X$ (and so, the vertices in X and the edges incident with X are deleted). Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2} \cap E\left(G^{\prime}\right)$ and $F_{2}^{\prime}=F_{2} \cap E\left(G^{\prime}\right)$. Let $X^{\prime}=\emptyset$. Since distinct edges in F_{2} have distinct intersections with X, every $\tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$-cover can be extended to a $\tau(G ; \mathcal{P}, X)$-cover by adding to it the set X, implying that $\tau(G ; \mathcal{P}, X) \leqslant$ $\tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)+|X|$, and so $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant|X|$. We note that $n\left(G^{\prime}\right)=n(G)-|X|$, and so $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)>6|X|+4|X|=10|X| \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11.

Claim B: Every degree-3 vertex is incident with three E_{2}-edges or three F_{2}-edges.
Proof. Suppose that some vertex v of degree 3 is not incident with three E_{2}-edges or three F_{2}-edges. Then either v is incident with one E_{2}-edge and two F_{2}-edges or with one F_{2}-edge and two E_{2}-edges. Suppose that v is incident with exactly two F_{2}-edges, say $e_{1}=\left\{v, v_{1}\right\}$ and $e_{2}=\left\{v, v_{2}\right\}$, and with one E_{2}-edge, say e_{3}. Let G^{\prime} be obtained from $G-\left\{e_{1}, e_{2}, e_{3}\right\}$ by deleting the isolated vertex v and adding the edge $e^{\prime}=\left\{v_{1}, v_{2}\right\}$ if this edge does not already exist. Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=\left(E_{2} \backslash\left\{e_{3}\right\}\right) \cup\left\{e^{\prime}\right\}$ and $F_{2}^{\prime}=F_{2} \backslash\left\{e_{1}, e_{2}\right\}$. Let $X^{\prime}=X$. Recall that by Claim A, $X=\emptyset$. Then, $n\left(G^{\prime}\right)=n(G)-1$, $\left|E_{2}^{\prime}\right| \leqslant\left|E_{2}\right|$ and $\left|F_{2}^{\prime}\right|=\left|F_{2}\right|-2$, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 6+4=10$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} can be extended to a (\mathcal{P}, X)-cover in G by adding to it the vertex v, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)+1$ and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 1$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 10 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11.

Hence, v is incident with exactly two E_{2}-edges, say f_{1} and f_{2}, and with one F_{2}-edge, say f_{3}. Let G^{\prime} be obtained from $G-\left\{f_{1}, f_{2}, f_{3}\right\}$ by deleting the resulting isolated vertex v. Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2} \backslash\left\{f_{1}, f_{2}\right\}$ and $F_{2}^{\prime}=F_{2} \backslash\left\{f_{3}\right\}$. Let $X^{\prime}=X$. Then, $n\left(G^{\prime}\right)=n(G)-1,\left|E_{2}^{\prime}\right|=\left|E_{2}\right|-2$ and $\left|F_{2}^{\prime}\right|=\left|F_{2}\right|-1$, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant$ $6+2+2=10$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} can be extended to a (\mathcal{P}, X)-cover in G by adding to it the vertex v, implying that $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 1$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 10 \geqslant$ $10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11.

Claim C: $\delta(G) \geqslant 2$.

Proof. Suppose that $\delta(G)<2$. As observed earlier, $n(G) \geqslant 3$. The connectivity of G implies that $\delta(G)=1$. Let u be a vertex of degree 1 in G and let $e_{1}=\{u, v\}$ be the edge incident with u.

Suppose that $e_{1} \in E_{2}$. Let $G^{\prime}=G-u$ and let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2} \backslash\left\{e_{1}\right\}$ and $F_{2}^{\prime}=F_{2}$. Let $X^{\prime}=X \cup\{v\}=\{v\}$ (recall that by Claim C, $X=\emptyset$). Then, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 6+1-4=3$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} is a (\mathcal{P}, X)-cover in G, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$ and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 0$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)=$ $3>\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11. Therefore, $e_{1} \in F_{2}$.

Now let $G^{*}=G-\{u, v\}$ and let $\mathcal{P}^{*}=\left(E_{2}^{*}, F_{2}^{*}\right)$, where $E_{2}^{*}=E_{2} \cap E\left(G^{*}\right)$ and $F_{2}^{*}=F_{2} \cap E\left(G^{*}\right)$. Let $X^{*}=\left\{w \mid\{v, w\} \in F_{2} \backslash\left\{e_{1}\right\}\right\}$. In other words, X^{*} contains all vertices different from u that are joined to v by an edge in F_{2}. Then, $\xi^{\Delta}\left(G^{*} ; \mathcal{P}^{*}, X^{*}\right) \geqslant$ $12+2+2\left|X^{*}\right|-4\left|X^{*}\right|=14-2\left|X^{*}\right| \geqslant 10$, since $\left|X^{*}\right| \leqslant d(v)-1 \leqslant 2$. Every $\left(\mathcal{P}^{*}, X^{*}\right)$ cover in G^{*} can be extended to a (\mathcal{P}, X)-cover in G by adding to it the vertex v, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{*} ; \mathcal{P}^{*}, X^{*}\right)+1$ and therefore $\tau^{\Delta}\left(G^{*} ; \mathcal{P}^{*}, X^{*}\right) \leqslant 1$. Hence, $\xi^{\Delta}\left(G^{*} ; \mathcal{P}^{*}, X^{*}\right) \geqslant 10 \geqslant 10 \tau^{\Delta}\left(G^{*} ; \mathcal{P}^{*}, X^{*}\right)$, contradicting Lemma 11. This completes the proof of Claim C.

Claim D: Every vertex is incident with at least one F_{2}-edge.
Proof. Suppose that some vertex v is incident with no F_{2}-edge.
Claim D.1: $d_{G}(v)=3$.
Proof. Suppose that $d_{G}(v)=2$. Let $e_{1}=\left\{v, v_{1}\right\}$ and $e_{2}=\left\{v, v_{2}\right\}$ be the two edges incident with v. Let $G^{\prime}=G-v$. Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2} \backslash\left\{e_{1}, e_{2}\right\}$ and $F_{2}^{\prime}=F_{2}$. Let $X^{\prime}=X \cup\left\{v_{1}, v_{2}\right\}$. Then, $n\left(G^{\prime}\right)=n(G)-1,\left|E_{2}^{\prime}\right|=\left|E_{2}\right|-2,\left|F_{2}^{\prime}\right|=\left|F_{2}\right|$ and $\left|X^{\prime}\right|=$ $|X|+2$, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 6+2-8=0$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} is a (\mathcal{P}, X) cover in G, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$ and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 0$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 0 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11.

By Claim D.1, $d_{G}(v)=3$. Let $e_{1}=\left\{v, v_{1}\right\}, e_{2}=\left\{v, v_{2}\right\}$ and $e_{3}=\left\{v, v_{3}\right\}$ be the three edges incident with v. Let $G^{\prime}=G-\left\{v, v_{1}, v_{2}, v_{3}\right\}$. Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where E_{2}^{\prime} is obtained from E_{2} by deleting all E_{2}-edges incident with v_{1}, v_{2} or v_{3} and where F_{2}^{\prime} is obtained from F_{2} by deleting all F_{2}-edges incident with with v_{1}, v_{2} or v_{3}. Let $X^{\prime}=X$. Then, $n\left(G^{\prime}\right)=n(G)-4$. If a neighbor of v is incident with no F_{2}-edge, then as shown in the proof of Claim D. 1 such a vertex is incident with three E_{2}-edges. If a neighbor of v is incident with an F_{2}-edge, then by Claim B , such a vertex is incident with exactly one F_{2}-edge (and one E_{2}-edge, namely the edge joining it to v). In particular, if no neighbor of v is incident with an F_{2}-edge, then we note that at least six E_{2}-edges are deleted when constructing G^{\prime}, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 24+6=30$. If only one F_{2}-edge is deleted when constructing G^{\prime}, we note that at least five E_{2}-edges were deleted, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 24+2+5=31$. If at least two F_{2}-edges are deleted when constructing G^{\prime}, we note that at least three E_{2}-edges were deleted, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant$ $24+4+3=31$. In all three cases, we have $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 30$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover
in G^{\prime} can be extended to a (\mathcal{P}, X)-cover in G by adding to it the three vertices v_{1}, v_{2} and v_{3}, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)+3$ and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 3$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 30 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11. This completes the proof of Claim D.

Claim E: For all F_{2}-edges $\{u, v\}$, we have $d(u)=2$ or $d(v)=2$ (or both)
Proof. Suppose that there is an F_{2}-edge $e=\{u, v\}$ with $d(u)=d(v)=3$. Let $e_{1}=\left\{u, u_{1}\right\}$, $e_{2}=\left\{u, u_{2}\right\}, f_{1}=\left\{v, v_{1}\right\}$ and $f_{2}=\left\{v, v_{2}\right\}$ be the edges in G adjacent with e. By Claim B, all these edges are F_{2}-edges. Let G^{\prime} be obtained from $G-\{u, v\}$ by adding the two edges $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{1}, v_{2}\right\}$, and let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2} \cup\left\{\left\{u_{1}, u_{2}\right\},\left\{v_{1}, v_{2}\right\}\right\}$ and $F_{2}^{\prime}=F_{2} \backslash\left\{e, e_{1}, e_{2}, f_{1}, f_{2}\right\}$. Let $X^{\prime}=X=\emptyset$. Then, $n\left(G^{\prime}\right)=n(G)-2,\left|E_{2}^{\prime}\right| \leqslant\left|E_{2}\right|+2$, $\left|F_{2}^{\prime}\right|=\left|F_{2}\right|-5$ and $\left|X^{\prime}\right|=|X|=0$, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 12+10-2=20$. Every ($\mathcal{P}^{\prime}, X^{\prime}$)-cover in G^{\prime} can be extended to a (\mathcal{P}, X)-cover in G by adding to it the two vertices u and v, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)+2$ and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 2$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 20 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11.

Claim F: Every edge is an F_{2}-edge.
Proof. Suppose that there is an E_{2}-edge $e=\left\{v_{1}, v_{2}\right\}$. By Claims D, E, and F, every vertex that is incident with an E_{2}-edge has degree exactly 2 and is incident with an F_{2}-edge. In particular, $d\left(v_{1}\right)=d\left(v_{2}\right)=2$. Let e_{1} and e_{2} be the F_{2}-edges incident with v_{1} and v_{2}, respectively.

Claim F.1: The vertices v_{1} and v_{2} do not have a common neighbor.
Proof. Suppose that v_{1} and v_{2} have a common neighbor, v_{3} say. Hence, $e_{1}=\left\{v_{1}, v_{3}\right\}$ and $e_{2}=\left\{v_{2}, v_{3}\right\}$. Since $\Delta(G)=3$ and G is connected, we have that $d\left(v_{3}\right)=3$. Let $e_{3}=v_{3} v_{4}$ be the third edge incident with v_{3} that is distinct from e_{1} and e_{2}. By Claim B, e_{3} is an F_{2}-edge. We now consider the graph $G^{\prime}=G-\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2} \backslash\{e\}$ and $F_{2}^{\prime}=F_{2} \backslash\left\{e_{1}, e_{2}, e_{3}\right\}$. Let $X^{\prime}=X \cup\left\{v_{4}\right\}=\left\{v_{4}\right\}$. Then, $n\left(G^{\prime}\right)=n(G)-3$, $\left|E_{2}^{\prime}\right|=\left|E_{2}\right|-1,\left|F_{2}^{\prime}\right|=\left|F_{2}\right|-3$ and $\left|X^{\prime}\right|=|X|+1$, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant$ $18+6+1-4=21$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} can be extended to a (\mathcal{P}, X)-cover in G by adding to it the vertices v_{1} and v_{3}, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)+$ 2 and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 2$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 21>10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11.

Let $e_{1}=\left\{v_{1}, w_{1}\right\}$ and $e_{2}=\left\{v_{2}, w_{2}\right\}$. By Claim F.1, $w_{1} \neq w_{2}$.
Claim F.2: $d\left(w_{1}\right)=d\left(w_{2}\right)=3$.
Proof. Suppose that $d\left(w_{1}\right)=2$. Let $e_{3}=\left\{w_{1}, w_{3}\right\}$ be the edge incident with w_{1} that is distinct from e_{1}. Suppose that $e_{3} \in E_{2}$. Let G^{\prime} be obtained from G by deleting the four edges e, e_{1}, e_{2}, e_{3} and the resulting isolated vertices v_{1}, v_{2} and w_{1}. Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2} \backslash\left\{e, e_{3}\right\}$ and $F_{2}^{\prime}=F_{2} \backslash\left\{e_{1}, e_{2}\right\}$. Let $X^{\prime}=X \cup\left\{w_{2}\right\}=\left\{w_{2}\right\}$. Then, $n\left(G^{\prime}\right)=$
$n(G)-3,\left|E_{2}^{\prime}\right|=\left|E_{2}\right|-2,\left|F_{2}^{\prime}\right|=\left|F_{2}\right|-2$ and $\left|X^{\prime}\right|=|X|+1$, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant$ $18+4+2-4=20$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} can be extended to a (\mathcal{P}, X)-cover in G by adding to it the vertices v_{2} and w_{1}, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)+$ 2 and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 2$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 20 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11. Therefore, $e_{3} \in F_{2}$.

We now let $G^{\prime}=G-\left\{v_{1}, v_{2}, w_{1}\right\}$. Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2} \backslash\{e\}$ and $F_{2}^{\prime}=F_{2} \backslash\left\{e_{1}, e_{2}, e_{3}\right\}$. Let $X^{\prime}=X \cup\left\{w_{3}\right\}=\left\{w_{3}\right\}$. Then, $n\left(G^{\prime}\right)=n(G)-3,\left|E_{2}^{\prime}\right|=\left|E_{2}\right|-1$, $\left|F_{2}^{\prime}\right|=\left|F_{2}\right|-3$ and $\left|X^{\prime}\right|=|X|+1$, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 18+6+1-4=21$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} can be extended to a (\mathcal{P}, X)-cover in G by adding to it the vertices v_{2} and w_{1}, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)+2$ and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 2$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)>20 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11. Therefore, $d\left(w_{1}\right)=3$. Analogously, $d\left(w_{2}\right)=3$.

By Claim F.2, $d\left(w_{1}\right)=d\left(w_{2}\right)=3$. By Claim B, all three edges incident with w_{1} (respectively, w_{2}) are F_{2}-edges. Let $N\left(w_{1}\right)=\left\{v_{1}, x_{1}, y_{1}\right\}$ and let $f_{1}=\left\{w_{1}, x_{1}\right\}$ and $g_{1}=\left\{w_{1}, y_{1}\right\}$ be the two edges incident with w_{1} that are distinct from e_{1} (note that $w_{2} \in\left\{x_{1}, y_{1}\right\}$ is possible). Renaming x_{1} and y_{1}, if necessary, we may assume that $x_{1} \neq w_{2}$.

Let $G^{*}=G-\left\{v_{1}, v_{2}, w_{1}, x_{1}, y_{1}\right\}$. Let $\mathcal{P}^{*}=\left(E_{2}^{*}, F_{2}^{*}\right)$, where $E_{2}^{*}=E_{2} \cap E\left(G^{*}\right)$ and $F_{2}^{*}=F_{2} \cap E\left(G^{*}\right)$. Let $X^{*}=X=\emptyset$. Then, $n\left(G^{*}\right)=n(G)-5$ and $\left|X^{*}\right|=|X|$. Since $x_{1} \neq w_{2}$, we note that apart from the edges $e, e_{1}, e_{2}, f_{1}, g_{1}$ we also delete at least one further edge which is incident to x_{1}. On the one hand, if such an edge is an E_{2}-edge, then $\left|E_{2}^{*}\right| \leqslant\left|E_{2}\right|-2$ and $\left|F_{2}^{*}\right| \leqslant\left|F_{2}\right|-4$, implying that $\xi^{\Delta}\left(G^{*} ; \mathcal{P}^{*}, X^{*}\right) \geqslant 30+8+2=40$. On the other hand, if such an edge is an F_{2}-edge, then $\left|E_{2}^{*}\right| \leqslant\left|E_{2}\right|-1$ and $\left|F_{2}^{*}\right| \leqslant\left|F_{2}\right|-5$, implying that $\xi^{\Delta}\left(G^{*} ; \mathcal{P}^{*}, X^{*}\right) \geqslant 30+10+1=41$. In both cases, $\xi^{\Delta}\left(G^{*} ; \mathcal{P}^{*}, X^{*}\right) \geqslant 40$. By Claim C and Claim E, we note that $d\left(x_{1}\right)=d\left(y_{1}\right)=2$. Hence every ($\left.\mathcal{P}^{*}, X^{*}\right)$-cover in G^{*} can be extended to a (\mathcal{P}, X)-cover in G by adding to it the vertices v_{2}, w_{1}, x_{1} and y_{1}, and so $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)+4$ and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 4$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 40 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11 .

Claim G: G is triangle-free.
Proof. Suppose that there is a triangle $T: v_{1} v_{2} v_{3} v_{1}$ in G. By Claim C and Claim E, at least two of the vertices in T have degree 2 in G. Renaming vertices, if necessary, we may assume that $d\left(v_{1}\right)=d\left(v_{2}\right)=2$. Since $\Delta(G)=3$ and G is connected, we have that $d\left(v_{3}\right)=3$. Let w be the neighbor of v_{3} not in T. Let $G^{\prime}=G-\left\{v_{1}, v_{2}, v_{3}\right\}$ and let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2}=\emptyset$ and where F_{2}^{\prime} is obtained from F_{2} by deleting the four edges incident with vertices in $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $X^{\prime}=X \cup\{w\}$. Then, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)=18+8-4=22$. Every ($\mathcal{P}^{\prime}, X^{\prime}$-cover in G^{\prime} can be extended to a (\mathcal{P}, X)-cover in G by adding to it the set $\left\{v_{2}, v_{3}\right\}$, implying that $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 2$ and $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)>20 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11.

Claim H: G contains no 5-cycle.

Proof. Suppose that there is a 5 -cycle $C: v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$ in G. By Claim G, G is trianglefree, and so C is an induced cycle in G. Since $\Delta(G)=3$ and G is connected, we may assume, renaming vertices of C if necessary, that $d\left(v_{1}\right)=3$. Let v_{6} be the neighbor of v_{1} not on C. By Claim C and Claim E, $d\left(v_{2}\right)=d\left(v_{5}\right)=d\left(v_{6}\right)=2$. By Claim E, at least one of v_{3} and v_{4} has degree 2 in G. Renaming vertices if necessary, we may assume that $d\left(v_{3}\right)=2$. Let $G^{\prime}=G-V(C)$ and let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=E_{2}=\emptyset$ and where F_{2}^{\prime} is obtained from F_{2} by deleting all edges incident with vertices in $V(C)$. On the one hand, if $d\left(v_{4}\right)=2$, let $X^{\prime}=X=\emptyset$. On the other hand, if $d\left(v_{4}\right)=3$, let w be the neighbor of v_{4} not in C and let $X^{\prime}=X \cup\{w\}$. Therefore if $d\left(v_{4}\right)=2$, we have that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)=$ $30+12=42$, while if $d\left(v_{4}\right)=3$, we have that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)=30+14-4=40$. In both cases, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 40$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} can be extended to a (\mathcal{P}, X) cover in G by adding to it the set $\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$, implying that $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 4$ and $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 40 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11.

Claim I: G contains no 4-cycle.
Proof. Suppose that there is a 4 -cycle $C: w_{1} w_{2} w_{3} w_{4} w_{1}$ in G. By Claim G, G is trianglefree, and so C is an induced cycle in G. Since $\Delta(G)=3$ and G is connected we may assume, renaming vertices of C if necessary, that $d\left(w_{1}\right)=3$. Let w_{5} be the neighbor of w_{1} not in C. By Claim C and Claim E, $d\left(w_{2}\right)=d\left(w_{4}\right)=d\left(w_{5}\right)=2$. Let w_{6} be the neighbor of w_{5} different from w_{1}. If $w_{3}=w_{6}$, then $G=K_{2,3}$ and $10 \tau(G ; \mathcal{P}, X)=40<30+12=$ $\xi(G ; \mathcal{P}, X)$, a contradiction. Hence, $w_{3} \neq w_{6}$. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{6}\right\}$. By Claim H, w_{3} is not adjacent to w_{6}, and so the vertex w_{5} is the only neighbor of w_{6} that belongs to the set W.

On the one hand, if $d\left(w_{6}\right)=2$, let $G^{\prime}=G-W$. On the other hand if $d\left(w_{6}\right)=3$, then let G^{\prime} be obtained from $G-W$ by adding an E_{2}-edge e^{\prime} joining the two neighbors of w_{6} not in W. Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where $E_{2}^{\prime}=\emptyset$ if $d\left(w_{6}\right)=2$ and $E_{2}^{\prime}=\left\{e^{\prime}\right\}$ if $d\left(w_{6}\right)=3$, and where F_{2}^{\prime} is obtained from F_{2} by deleting all edges incident with vertices in W. Let $X^{\prime}=X=\emptyset$. Then, $n\left(G^{\prime}\right)=n(G)-6$ and $\left|X^{\prime}\right|=|X|=0$.

If $d\left(w_{6}\right)=2$, then $\left|E_{2}^{\prime}\right|=\left|E_{2}\right|=0$ and $\left|F_{2}^{\prime}\right|=\left|F_{2}\right|-5-d\left(w_{3}\right) \leqslant\left|F_{2}\right|-7$, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 36+14=50$. If $d\left(w_{6}\right)=3$, then $\left|E_{2}^{\prime}\right|=\left|E_{2}\right|+1=1$ and $\left|F_{2}^{\prime}\right|=\left|F_{2}\right|-6-d\left(w_{3}\right) \leqslant\left|F_{2}\right|-8$, implying that $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 36+16-1=51$. In both cases, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 50$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} can be extended to a (\mathcal{P}, X) cover in G by adding to it the set $W \backslash\left\{w_{1}\right\}$, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)+$ 5 and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 5$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 50 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11.

We now return to the proof of Theorem 10. Let u be any vertex of degree 3 in G and let $N(u)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Further let $e_{1}=\left\{u, u_{1}\right\}, e_{2}=\left\{u, u_{2}\right\}$ and $e_{3}=\left\{u, u_{3}\right\}$ be the three edges incident with u in G. By Claim C and Claim E, we note that $d\left(u_{1}\right)=d\left(u_{2}\right)=$ $d\left(u_{3}\right)=2$. For $i \in\{1,2,3\}$, let $f_{i}=\left\{u_{i}, v_{i}\right\}$ be the edge incident with u_{i} that is different from e_{i}. By Claim G, the set $N(u)$ is an independent set. By Claim I, no two vertices in $N(u)$ have a common neighbor other than the vertex u; that is, $v_{i} \neq v_{j}$ for $1 \leqslant i<j \leqslant 3$.

By Claim H, the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an independent set. Let W be the set of all vertices within distance 2 from u, and so $W=\left\{u, u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}\right\}$. As observed earlier, for $i \in\{1,2,3\}$, the vertex u_{i} is the only neighbor of v_{i} that belongs to the set W.

Let G^{\prime} be obtained from $G-W$ as follows: For each vertex $v_{i}, 1 \leqslant i \leqslant 3$, of degree 3 in G, add an E_{2}-edge containing the two neighbors of v_{i} not in W. Hence if $d\left(v_{i}\right)=2$, then we delete two F_{2}-edges incident with v_{i} when constructing G^{\prime}, while if $d\left(v_{i}\right)=3$, we delete three F_{2}-edges incident with v_{i} when construction G^{\prime} but add an E_{2}-edge. Let $\mathcal{P}^{\prime}=\left(E_{2}^{\prime}, F_{2}^{\prime}\right)$, where E_{2}^{\prime} consists of the added E_{2}-edges, if any, and where F_{2}^{\prime} is obtained from F_{2} by deleting all edges incident with vertices in W. Hence if ℓ denotes the number of vertices in $\left\{v_{1}, v_{2}, v_{3}\right\}$ of degree 3 in G, then $\left|E_{2}^{\prime}\right|=\left|E_{2}\right|+\ell=\ell$ and $\left|F_{2}^{\prime}\right|=\left|F_{2}\right|-9-\ell$. Let $X^{\prime}=X=\emptyset$. Then, $n\left(G^{\prime}\right)=n(G)-7$ and $\left|X^{\prime}\right|=|X|=0$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant$ $42+18+2 \ell-\ell=60+\ell \geqslant 60$. Every $\left(\mathcal{P}^{\prime}, X^{\prime}\right)$-cover in G^{\prime} can be extended to a (\mathcal{P}, X) cover in G by adding to it the set $W \backslash\{u\}$, implying that $\tau(G ; \mathcal{P}, X) \leqslant \tau\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)+$ 6 and therefore $\tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \leqslant 6$. Hence, $\xi^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right) \geqslant 60 \geqslant 10 \tau^{\Delta}\left(G^{\prime} ; \mathcal{P}^{\prime}, X^{\prime}\right)$, contradicting Lemma 11. This completes the proof of Theorem 10.

References

[1] K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J. Hurkens, J. K. Lenstra, R. Ravi, and L. Stougie. Approximation algorithms for the test cover problem. Mathematical Programming Series B 98 (2003), 477-491.
[2] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[3] M. A. Henning and A. Yeo, Identifying open codes in cubic graphs, manuscript.
[4] A. J. Hoffman and R. R. Singleton, On Moore graphs with diameter 2 and 3. IBM J. of Research and Development 5 (1960) 497-504.
[5] I. Honkala, M. G. Karpovsky, S. Litsyn. On the identification of vertices and edges using cycles. Lecture Notes in Computer Science 2227 (2001), 308-314.
[6] I. Honkala, M. G. Karpovsky, S. Litsyn. Cycles identifying vertices and edges in binary hypercubes and 2-dimensional tori. Discrete Applied Math. 129 (2003), 409419.
[7] I. Honkala, T. Laihonen, and S. Ranto, On strongly identifying codes. Discrete Math. 254 (2002), 191-205.
[8] http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf.
[9] J. Moncel, Codes Identifants dans les graphes. PhD thesis, Université Joseph Fourier Grenoble I, France, 2005 - available at http://tel.archives-ouvertes. fr/tel-00010293/en/.
[10] M. M. E. Moret and H. D. Shapiro, On minimizing a set of tests. SIAM J. Scientific and Statistical Computing 6 (1985), 983-1003.
[11] S. J. Seo and P. J. Slater, Open neighborhood locating-dominating sets. Australasian J. Combin. 46 (2010), 109-120.
[12] S. J. Seo and P. J. Slater, Open neighborhood locating-dominating in trees. Discrete Applied Math. 159 (2011), 484-489.
[13] R. R. Singleton, There is no irregular Moore graph. Amer. Math. Monthly 75 (1968) 42--43.

[^0]: *Research supported in part by the South African National Research Foundation and the University of Johannesburg.

[^1]: ${ }^{1}$ We remark that Moncel used slightly different terminology to the authors and viewed a packing as an error-correcting code.

