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Abstract

We show that it is #P-complete to count the number of bases of matroids repre-
sentable over a fixed infinite field or fields of fixed characteristic.
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In this paper we consider the difficulty of counting bases of representable matroids.
We note that given a rank or independence oracle or a matrix representation, finding a
basis of a matroid is easy. However, in many cases counting the bases of a matroid is
#P-complete. For example, it is #P-complete to count the number of bases of transversal
matroids or bircircular matroids ([2] and [3]). Representable matroids are an important
class of matroids and it is only natural to consider the difficulty of counting the bases for
the class of representable matroids. The obvious goal would be a theorem that answers
Question 1.

Question 1. Is it #P-complete to count the number of bases of a representable matroid
over any fixed field.

Vertigan proved this to be #P-complete in 1991 [2, 8]. However, no publication was
ever produced. This feels like a substantial hole in the literature and should be remedied.
One of the surprising things about this result is the fact that it is easy to count bases of
graphic matroids while Vertigan’s result implies that it is hard to count the number of
bases of binary matroids.

While we do not resolve Question 1, in this paper we prove several similar results.
In particular, it will be shown that it is #P-complete to count bases of representable
matroids over
(i) fixed infinite fields and
(ii) finite fields of a fixed characteristic.
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At the very least, these results provide a large amount of evidence that it is #P-complete
to count the number of bases of matroids representable over any fixed field.

We will begin with some preliminaries on the complexity class #P. This class is the
counting version of the class NP of decision problems. For example the decision problem
could be: is there a vertex cover of size k? While the corresponding enumeration problem
would be: how many vertex covers of size k are there? The complexity class #P was
introduced by Valiant in 1979 by showing that the problem of calculating the permanent
of a matrix is #P-complete [6]. We begin our definition of #P with a counting Turing
Machine. This is just a standard non-deterministic Turing Machine with additional output
that prints the number of accepting paths. The time complexity is that of the longest
accepting path. The class #P is the class of problems that can be solved in polynomial
time on a counting Turing Machine. Thus the class NP is contained in #P as any problem
that can be verified in polynomial time by a non-deterministic Turing Machine can be
solved in polynomial time by a counting Turing Machine. The notion of NP-completeness
carries over to the class #P. Much as NP-complete problems are the hardest problems in
NP, #P-complete problems are the hardest problems in #P. The enumeration version of a
number of NP-complete problems are known to be #P-complete. However, it is certainly
not known that the enumeration versions of all NP-complete problems are #P-complete.
As an example of this, consider the problem of deciding if a graph has a Hamiltonian
subgraph. The decision problem is NP-complete while the problem of enumerating the
number of Hamiltonian subgraphs is believed to not be in #P. The reason for this is to
know you have a Hamiltonian subgraph you would need to find a Hamiltonian circuit of
the subgraph. However, the number of possible Hamiltonian circuits of subgraphs is not
the number of Hamiltonian subgraphs. For more details of this and the class #P see [9].

The method of showing that a problem is #P-complete is similar to that of showing
that a problem is NP-complete. We take a known #P-complete problem and show that
by performing a polynomial number of reductions to our problem, we can extract the
solution to the known #P-complete problem from the solutions of our problem. The
major difference here is that we are allowed to perform multiple reductions as long as
there is only a polynomial number of reductions performed and each reduction can be
done in polynomial time.

It is worth pointing out that some decision problems that are in P have corresponding
enumeration problems that are #P-complete. Examples of these include counting forests
of a graph or perfect matchings in bipartite graphs ([4] and [7]). Counting forests of a
graph will be of particular use to us in this paper as the proofs of our main results will
be reductions from the problem of counting forests in a graph.

We will assume that the reader is familiar with basic matroid theory. For an introduc-
tion to matroid theory see [5]. We will be using the operation of truncation for several of
the reductions that follow. A problem with using truncation on representable matroids
is that truncation of a representable matroid does not always produce a matroid repre-
sentable over the same field. Even if truncating produces a matroid representable over the
same field, it may be hard to construct a representation of the resulting matroid. Thus
we need to find a way of producing an appropriate representation of a matroid created by
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truncation. There are ways of getting around this though. The operation of truncation is
equivalent to adding an element freely and then contracting it. It is often easier to create
a representation of the matroid obtained by adding elements freely than it is to create the
representation of a truncated matroid. This is partly due to the fact that to add elements
freely, we only need to create a few columns of the matrix while to create the truncated
representation we need to create a matrix representation almost from scratch. This is
why, if we want to truncate a representable matroid, we will often add elements freely
and then contract them. We can do this because contraction preserves representability.
Therefore if we can find a representation of the matroid obtained by adding elements
freely, we can obtain a representation of the truncated matroid.

Our approach to proving that counting bases is #P-complete for matroids repre-
sentable over fixed infinite fields and fields of fixed characteristic will be similar. We
will begin by adding elements freely to a given representable matroid. We will then con-
struct a representation over an appropriate field for the matroid obtained and contract
the added elements. This will allow us to create representations for truncations of the
given matroid. We will then use this construction of the truncated matroid in a reduction
from the known #P-complete problem of counting forests of a graph.

#Forests
INSTANCE: A graph G.
QUESTION: How may forests does G have?

In all our reductions from #Forests, we will need to construct a totally unimodular
representation of the cycle matroid of the graph G in polynomial time. We can do this
in the following fashion ([5], Chapter 5). Take the graph G and arbitrarily direct each
edge to form the directed graph D(G). Then the totally unimodular representation of
G is the incidence matrix of D(G). For the rest of this paper, we will assume that all
representations of graphic matroids are constructed by this method. Thus they are all
totally unimodular.

In the reductions that follow, we will need to be able to add elements freely to the
matrices produced by the above method to produce matroids representable over certain
fields. To do so, we will make use of a special type of matrix. An n × n Vandermonde
matrix V is a matrix of the following form.

V =


1 α1 α2

1 · · · αn−11

1 α2 α2
2 · · · αn−12

...
...

...
. . .

...
1 αn α2

n · · · αn−1n


For the Vandermonde matrix V , det(V ) =

∏
i<j(αj−αi). Therefore if α1, . . . , αn are all

distinct, then det(V ) 6= 0. Otherwise, det(V ) = 0. In the following arguments we will be
using a special matrix that is very similar to a Vandermonde matrix. We will say an m×n
matrix X with entries in Z[x] is an r-polynomial Vandermonde matrix if Xi,j = pi(x

kj),
where pi is a monic polynomial such that deg(p1) < deg(p2) < . . . < deg(pm) 6 r and
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0 6 k1 < k2 < . . . < kn 6 r. Note that if we let pi(x) = xi and kj = j − 1, then the
r-polynomial Vandermonde matrix is also a Vandermonde matrix with αi = xi.

Lemma 2. Let X be a n × n r-polynomial Vandermonde matrix. Then det(X) is a
non-zero monic polynomial with degree less than r3.

Proof. The determinant of an n× n matrix X can be evaluated as
∑
σ∈Sn

sgn(σ)
n∏
i=1

Xi,σ(i)

where sgn(σ) = 1 if σ is even and −1 otherwise. We will show that for the matrix X, there
is a single product of maximum degree in this sum and thus there can be no cancellation of
products and therefore the determinant cannot be 0. Moreover, this product of maximum
degree will happen when σ is the identity permutation e.

Let P be some product
∏n

i=1Xi,σ(i) such that σ 6= e. Then P must contain some
element Xi,j where i 6= j. Take the greatest i such that σ(i) 6= i. Then P must also
contain Xl,i for some l 6= i as σ is a permutation. As i has been chosen to be maximum,
i > j and i > l. Then as X is a r-polynomial Vandermonde matrix, deg(Xi,i) = deg(pi)ki,
deg(Xl,j) = deg(pl)kj, deg(Xi,j) = deg(pi)kj and deg(Xl,i) = deg(pl)ki. Let P ′ be a new
product given by

P ′ =
PXi,iXl,j

Xi,jXl,i

.

Note that

deg(pi)ki + deg(pl)kj − deg(pi)kj − deg(pl)ki = (deg(pi)− deg(pl))(ki − kj) > 0,

as deg(pi) > deg(pl) and ki > kj. Thus deg(P ′) > deg(P ). Therefore by changing σ so
that it fixes more elements we increase the degree. Hence we obtain the maximum degree
only when σ is the identity permutation. As all Xi,j are monic polynomials, any product
of them must also be a monic polynomial. Thus the determinant of X is a non-zero

monic polynomial. Now consider the product
n∏
i=1

Xi,i. This product will be a subproduct

of
r∏
i=1

X ′i,i which is a degree
r∑
i=1

i2 monic polynomial. Thus

deg(det(X)) 6
r∑
i=1

i2 < r3.

Lemma 3. Let A = [D|X] be a square matrix such that D is totally unimodular with non-
zero determinant and X is an r-polynomial Vandermonde matrix. Then by row reductions
and row swapping on A, we can get the following matrix

A′ =

[
D′ Xt

0 Xb

]
that has the following properties:
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1. | det(A)| = | det(A′)|,

2. D′ is a square matrix in upper triangular form with non-zero entries on the diagonal
and

3. The matrix Xb is an r-polynomial Vandermonde matrix.

Proof. This will be proven by induction on the number of columns in D. Suppose D no
columns. Then A is already in the required form.

Now suppose this holds for matrices A where D has no more than k columns and
take a matrix such that D has at most k + 1 columns. For i < l, consider the matrix
X ′′ obtained from X by adding row i to row l α times. Then X ′′l,j = pl(x

kj) + αpi(x
kj).

As i < l, this is a monic polynomial with the same degree as Xl,j. Thus X ′′ is also an
r-polynomial Vandermonde matrix.

Now the columns of D are all linearly independent, so there must be a non-zero entry in
the first column. Choose the first non-zero entry in the first column. Use row reductions so
that below this non-zero element, the column is only zeros. Because in the row reduction,
rows have only had rows added/subtracted to them from above, we see that the matrix
X ′ obtained by the row operations is still an r-polynomial Vandermonde matrix. Now
delete the first column and the row with the non-zero entry. Call the resulting matrix
A′′. It now follows from the induction hypothesis that we can create a matrix in the
required form from A′′. We can then add the deleted row back in as the first row and put
a column of zeros under the non-zero element from the deleted row. This has the same
effect as moving the deleted row to the top of the matrix. The resulting matrix will be
in the desired form. Again as the only operations performed are adding or subtracting
rows from one another and row swaps, the absolute value of of the determinant has not
changed. Thus | det(A)| = | det(A′)|.

We know that the determinant of any r-polynomial Vandermonde matrix is a non-zero
monic polynomial. We want a similar result for the determinant of a square submatrix
of matrices of the form [A|X] where A is a submatrix of a totally unimodular matrix and
X is an r-polynomial Vandermonde matrix. As A is a submatrix of a totally unimodular
matrix, we can no longer guarantee that det([A|X]) is a monic polynomial. However,
as we will see in Lemma 4, if det([A|X]) is not a monic polynomial, then its leading
coefficient is −1. In light of this, we will define an absolutely monic polynomial to be a
polynomial with leading coefficient 1 or −1.

Lemma 4. For k < r, let A be a rank k r × k totally unimodular matrix and X be a
r × (r − k) r-polynomial Vandermonde matrix. Then det[A|X] is a non-zero absolutely
monic polynomial of degree 6 r3 and coefficients of absolute value no greater than r!mr

where m is the value of the largest coefficient in X ′.

Proof. By Lemma 3, we know we can get [A|X ′] in the form

A′ =

[
D′ Xt

0 Xb

]
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where

1. | det([A|X])| = | det(A′)|,

2. D′ is a square matrix in upper triangular form with non-zero entries on the diagonal
and

3. The matrix Xb is an r-polynomial Vandermonde matrix.

Note that det(A′) = det(D′) ·det(Xb) and | det(D′)| = 1 as A is totally unimodular. Thus
det(A′) = 0 if and only if det(Xb) = 0. As Xb is an r-polynomial Vandermonde matrix, it
follows by Lemma 2 that det(Xb) is a non-zero monic polynomial with degree no greater
than r3. Thus det(A′) is a non-zero absolutely monic polynomial of degree no greater
than r3.

Now consider the coefficients in the determinant of [A|X]. The determinant is a sum
of r! products of r polynomials. As m is the maximum size of a coefficient in [A|X], the
absolute value of a coefficient in each product can be no greater than mr. As there are r!
products, the maximum size of a coefficient in det[A′|X] can therefore be no greater than
r!mr.

We now have all we need to move on to specific cases of the basis counting problem.
We will begin with showing it is #P-complete to count the number of bases of matroids
representable over fields of characteristic 0. That is the following problem.

Char-0 #Bases
INSTANCE: A representation of a matroid M over a fixed field of characteristic 0.
QUESTION: How many bases does M have?

We need to add one caveat to this as not all fields of characteristic 0 can be worked
with in polynomial time by a Turing machine. For example, certain real numbers may
require an infinite binary string to represent them and thus cannot be used as input.
Moreover, if the field operations are not polynomial time, then even deciding if a set of
columns is a basis will likely be hard.

Note that all fields of characteristic 0 contain the rationals as a subfield. Suppose
it is #P-complete to count bases of matroids representable over some subfield of a field
F . Then it follows that it is #P-hard to count bases of matroids representable over F .
Thus, if it is #P-complete to count bases of matroids representable over the rationals,
then it is #P-hard to count bases of matroids representable over any fixed field with
characteristic 0. Furthermore, if F can be described to a Turing machine and operations
are in polynomial time, then it is #P-complete to count bases of matroids representable
over F .

Lemma 5. Assume M is a rational representable matroid with a totally unimodular
representation M [A] where A = [Ir|C]. Let X be an r × r r-polynomial Vandermonde
matrix where Xi,j = xij. Furthermore, let X ′ be the matrix obtained by substituting x with
the rational number (r! + 1). Then M ′ = M [A|X ′] is the rational representable matroid
obtained by adding r elements freely to M .
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Proof. Let [A′|X ′′] be an r × r submatrix of [A|X], where A′ is a linearly independent
subset of columns of A and X ′′ is a subset of columns of X. From Lemma 4 we know
that det[A′|X ′′] is a non-zero absolutely monic polynomial of degree less than r3 and
coefficients of absolute size no greater than n = r!mr = r! as all coefficients in X are 1.
Note that

∑k
i=1 n ·(n+1)k = (n+1)k+1−1 for all k ∈ {1, 2, . . . , r3}. Thus if we substitute

x = n + 1 into the polynomial corresponding to the determinant of [A′|X ′′], then the
absolute value of the largest power is larger than the rest of the polynomial. Thus there
can be no cancellation and therefore the determinant of any r × r submatrix of [A|X ′] is
non-zero if the columns from A are linearly independent. Therefore M ′ = M [A|X ′] is a
rational representation of the matroid obtained by adding r elements freely to M .

Lemma 6. The matrix M ′ in Lemma 5 can be constructed in polynomial time given the
totally unimodular matrix A = [Ir|C].

Proof. To show this, all we need is that the size of (r!mr + 1)r
2

is polynomial in terms of
max(r + |C|, log(m)) where C is the number of columns in C. The size of (r!mr + 1)r

2
is

log((r!mr + 1)r
2

) = r2 log(r!mr + 1) < r2 log((rm)r + 1) < r2 log((2rm)r) = r3 log(2rm)

which is clearly polynomial in max(r + |C|, log(m)). Therefore the matrix [A|X ′] can be
constructed in polynomial time.

Theorem 7. It is #P-complete to count the number of bases of a matroid representable
over the rationals.

Proof. This will be done from a reduction of #Forests. Let G be a graph for which you
want to count the number of forests. Without loss of generality we can assume that G is
connected. We can construct a totally unimodular representation A of the rank r = |V |−1
cycle matroid M of G in polynomial time. Then the number of forests of G is the sum
of the number of independent sets of size k for k = {0, . . . , r} of M . Now construct the
matrix M ′ from Lemma 5.

Let Mk be the matroid obtained from M by k ∈ {0, . . . , r} truncations. Note that
M0 = M . Representations for these matroids can be constructed from M ′ by simply
contracting the first k columns of X ′ in M ′ and deleting the remaining r − k columns of
X ′. Then the number of independent sets of size k in M is the number of bases of the
matroid Mr−k. From Lemma 5, we know that a rational representation of M ′ and thus
Mk can be obtained in polynomial time. Therefore it is #P-complete to count bases of
matroids representable over the rationals.

Corollary 8. Char-0 #Bases is #P-hard.

Proof. As any field of characteristic 0 contains the rationals as a subfield, it follows that
the basis counting problem on matroids representable over a fixed field of characteristic
0 is #P-hard.
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Note that if the fixed field in question can be described to a Turing machine and
worked with in polynomial time, then we can replace #P-hard with #P-complete.

If we are working over a finite field of large enough size then the above reduction may
still work. However we cannot fix a finite field and then use the above result as there will
always be cases where the fixed finite field is not big enough to add elements freely by
the above method.

This covers the case of counting bases in matroids representable over fixed fields of
characteristic 0. We now move on to the case of counting bases in matroids representable
over fields of fixed characteristic.

Fixed Char-p #Bases
INSTANCE: A representation of a matroid M over some field of characteristic p.
QUESTION: How many bases does M have?

Our method for showing that this problem is #P-complete will be similar to the
one used to show that Char-0 #Bases is #P-complete. We will modify the matrix X
where Xi,j = xij in a way that creates a representation for a matroid obtained by adding
elements freely to a representable matroid. Using this construction, we can then produce
a reduction from the forest counting problem to the problem Fixed Char-p #Bases. To
do this, our construction must produce a matroid representable over an appropriate field.
The required construction will be given by Lemma 9.

We will treat elements of the fields GF(pk) as polynomials in the variable x with
coefficients in GF(p) and maximum degree k − 1 modulo some irreducible polynomial of
degree k. If f ∈ GF(pk), then deg(f) is the degree of f when considered as a polynomial.
For example, the elements of GF(4) are {0, 1, x, x + 1} modulo x2 + x + 1. We will
be interested in the fields GF(pr

3
). Let gp,r(x) be the degree r3 polynomial such that

multiplication in GF(pr
3
) is reduced modulo gp,r(x). Moreover, let φp,r : Z[x]→ GF(pr

3
)

be the homomorphism

φp,r(α0 + α1x
1 + . . .+ αnx

n) =

((α0 mod p) + (α1 mod p)x1 + . . .+ (αn mod p)xn) mod gp,r(x).

Lemma 9. Let A = [Ir|C] be a totally unimodular matrix over Z[x] and let X be the r×r
r-polynomial Vandermonde matrix where Xi,j = xij. If M = M [A], then φp,r([A|X]) is
the GF(pr

3
) representation of the matroid obtained by adding r elements freely to M .

Proof. From Lemma 2, we see that det[X] is a non-zero monic polynomial with degree less
than r3. Thus φp,r(det[X]) is a non-zero element of GF(pr

3
) and therefore the columns

in X are all linearly independent. Let N ′ = [A′|X ′] be some r × r square submatrix of
[A|X] where A′ is a linearly independent subset of columns of A and X ′ is a submatrix
of X. It follows from Lemma 4 that det(N ′) is a non-zero absolutely monic polynomial
of degree less than r3. Thus φp,r(det[N ′]) is a non-zero element of the field GF(pr

3
). As

this holds for all possible N ′ and φp,r(det[X]) 6= 0, we see that φp,r([A|X]) is the GF(pr
3
)

representation of the matroid obtained by adding r elements freely to M .
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We now have a method of creating representations for matroids obtained by adding
elements freely to representable matroids such that the created representation is over a
field with the same characteristic. We will now use this in a similar reduction to that of
Theorem 7 to show that Fixed Char-p #Bases is #P-complete.

Theorem 10. Fixed Char-p #Bases is #P-complete.

Proof. Let G be an instance of the forest counting problem on graphs and let M be the
rank r cycle matroid of G. Suppose we can count bases of matroids representable over
fields of characteristic p. We can create a totally unimodular representation A of M over
the field Z[x] in polynomial time. Now create the Z[x] matrix [A|X] where Xi,j = xij. By
Lemma 9, the matroid M ′ represented by the GF(pr

3
) matrix φp,r([A|X]) is isomorphic

to the matroid obtained by adding r elements freely to M .
Now by contracting k columns of φp,r(X) and deleting the remaining r − k columns

of φp,r(X) for k ∈ {0, . . . , r} from M ′, we obtain a representation of a matroid whose
number of bases is the same as the number of independent sets of M of size r − k. This
is just truncating M k times. Thus by doing this for k = 0 to k = r we can count all
the independent sets of M and thus the forests of G. Note that the field GF(pl) has the
same characteristic as GF(p) for all positive integers l. Thus it is #P-complete to count
the number of bases of a representable matroid over fields of fixed characteristic.

By using the same argument as in Theorem 10, we can show that the following problem
is #P-complete.

Infinite Char P #Bases
INSTANCE: A representation of a matroid M over a fixed infinite field of non-zero char-
acteristic p.
QUESTION: How many bases does M have?

Note that for this problem, we assume that we have some way of describing the infinite
field to our Turing Machine. Furthermore, because the problem is defined for a fixed field,
we can assume that we know all the properties of the field. In particular, we know whether
or not it has a transcendental element.

Lemma 11. Let F be an infinite field with non-zero characteristic that has a transcen-
dental element α. Then it is #P-complete to count bases of matroids representable over
F .

Proof. Because α is transcendental, we can make a matrix X similar to the one from
Theorem 10 with φ(Xi,j) = αij. We can then use the reduction from Theorem 10 to show
that this is #P-complete.

A Steinitz number is a number of the form N = px11 · px22 · · · · =
∏∞

i=1 p
xi
i where pi is

the ith prime and xi ∈ {0, 1, 2, . . . ,∞} [1]. This is a generalization of integers that allows
for infinite numbers. For some Steinitz number N , GF(pN) =

⋃
d|N GF(pd) where d ∈ Z.
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Lemma 12. Let F be an infinite field with non-zero characteristic p that has no tran-
scendental element α. Then it is #P-complete to count bases of matroids representable
over F .

Proof. Let G be a graph for which we want to count the number of forests and r be the
rank of the cycle matroid of G. We will prove this by showing that there is a set of
subfields of F such that it is #P-complete to count bases of matroids representable over
them. This will imply that it is #P-complete to count the number of bases representable
over F . If F is infinite with no transcendental element, every element must be algebraic.
Thus it must be a subfield of the algebraic closure of GF(p), denoted GF(p). Brawley and
Schnibben showed that all sub fields of GF(p) are of the form GF(pN) for some Steinitz
number N [1]. If F is infinite, then either there must be some power xi = ∞ in N or
there is an infinite number of xi’s that are not equal to zero. First, suppose we have some
xi =∞. Then choose some k such that pki > r3. This gives a subfield F ′ = GF(pp

k
i ) ⊂ F .

We can now work over F ′ and use the reduction from Theorem 10. Thus it is #P-complete
to count the number of bases of matroids representable over fields of the form GF(pp

k
i )

for some positive integer k.
Now suppose that N has an infinite number of primes pi with xi 6= 0. Let P be the set

of all such primes. When given G, we can now work over the field GF(ppi) where pi ∈ P
and pi > r3. We can then apply that same reduction used in Theorem 10. This shows
that it is #P-complete to count the number of bases of matroids representable over the
fields GF(ppi) where pi ∈ P .

In either case, we have a family of subfields of F such that it is #P-complete to count
the number of bases of matroids representable over them. Thus it is #P-complete to
count the number of bases of matroids representable over F .

Theorem 13. Infinite Char P #Bases is #P-complete

Proof. An infinite field F of non-zero characteristic p either has a transcendental element
or is a subfield of GF(p). Recall that as the problem is for fixed fields, we know if we have
a transcendental element. If F has a transcendental element, then Lemma 11 shows that
Infinite Char P #Bases is #P-complete. Alternatively, if F is a subfield of GF(p), then it
follows from Lemma 12 that it is #P-complete to count bases of matroids representable
over F . Therefore Infinite Char P #Bases is #P-complete.

Combining Theorems 7 and 13 we see that it is #P-complete to count the number of
bases for matroids representable over any fixed infinite field. This just leaves the finite
case. Theorem 10 provides a partial answer for this case. However, there is still work to
be done to resolve Question 1.
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