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Abstract

For given graphs H1, H2, H3, the 3-color Ramsey number R(H1, H2, H3) is the
smallest integer n such that if we arbitrarily color the edges of the complete graph
of order n with 3 colors, then it always contains a monochromatic copy of Hi colored
with i, for some 1 6 i 6 3.

We study the bounds on 3-color Ramsey numbers R(H1, H2, H3), where Hi is
an isolate-free graph different from K2 with at most four vertices, establishing that
R(P4, C4,K4) = 14, R(C4,K3,K4−e) = 17, R(C4,K3+e,K4−e) = 17, R(C4,K4−
e,K4−e) = 19, 28 6 R(C4,K4−e,K4) 6 36, R(K3,K4−e,K4) 6 41, R(K4−e,K4−
e,K4) 6 59 and R(K4−e,K4,K4) 6 113. Also, we prove that R(K3+e,K4−e,K4−
e) = R(K3,K4 − e,K4 − e), R(C4,K3 + e,K4) 6 max{R(C4,K3,K4), 29} 6 32,
R(K3 + e,K4− e,K4) 6 max{R(K3,K4− e,K4), 33} 6 41 and R(K3 + e,K4,K4) 6
max{R(K3,K4,K4), 2R(K3,K3,K4) + 2} 6 79.

This paper is an extension of the article by Arste, Klamroth, Mengersen [Utilitas
Mathematica, 1996].

1 Introduction

In this paper all graphs considered are undirected, finite and contain neither loops nor
multiple edges. Let G be such a graph. The vertex set of G is denoted by V (G), the
edge set of G by E(G), and the number of edges in G by e(G). The degree of the
vertex v and the number of the edge incident to v colored with color i are denoted
with d(v) and di(v), respectively. By δi(G) and ∆i(G) we denote the minimum and
the maximum degree of vertices in G that are colored with color i, respectively. The
open neighborhood of vertex v in color i in graph G is Ni(v) = {u ∈ V (G)|{u, v} ∈
E(G) and {u, v} is colored with color i}. Define G[S] to be a subgraph of G induced by
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a set of vertices S ⊆ V (G) and Gi to be a graph induced by the edges of G colored with
color i. Let Pn (resp. Cn) be the path (resp. cycle) on n vertices. The cardinality of a
set A is denoted by |A|.

For given graphs G1, G2, . . . , Gk, k > 2, the multicolor Ramsey number R(G1, G2, . . .,
Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete
graph of order n with k colors, then it always contains a monochromatic copy of Gi colored
with the color i, for some 1 6 i 6 k. A coloring of the edges of n-vertex complete graph
with m colors is called a (G1, G2, . . . , Gm;n)-coloring, if it does not contain a subgraph
isomorphic to Gi colored with the color i, for each i. The set of all non-isomorphic
(G1, . . . , Gm;n)-colorings is denoted by (G1, . . . , Gm;n). We refer to consecutive colors
corresponding to the parameters of colorings as red, blue and green.

In this paper we consider isolate-free graphs different from K2 with at most four
vertices, improving some results from the article by Arste, Klamroth, Mengersen [1] from
1996 and [9].

Note that R(H1, H2, H3) = R(Hσ(1), Hσ(2), Hσ(3)) for every permutation σ of {1, 2, 3}.
The case K2 is omitted here, because R(K2, H2, H3) = R(H2, H3) and these numbers were
already determined in [6, 7, 12].

We use the following two formulas, which are very well known:

R(H ′1, H
′
2, H

′
3) > R(H1, H2, H3), if Hi is a subgraph of H ′i. (1)

R(H1, H2, H3) 6 R(H1 − v1, H2, H3) + R(H1, H2 − v2, H3) + R(H1, H2, H3 − v3) − 1, if
vi ∈ V (Hi), with strict inequality when the right-hand-side and at least one of its terms
are even. (2)

2 Results

The values R(H1, H2, H3) are known if:

• some Hi is P3, 2K2, P4 or K1,3, except R(P4, C4, K4) [1, 4, 5, 10, 15, 17],

• some Hi is C4, K3, K3 + e or K4 − e and the other are C4, K3 or K3 + e, except
R(K3, C4, K4 − e) and R(K3 + e, C4, K4 − e) [1, 3, 9, 11, 12, 26, 27].

Also, bounds of other values are known [1, 9, 10, 16, 18, 22, 23, 27, 28].
In this paper we improve the lower bound R(C4, K4 − e,K4) > 27 obtained from (1).

Also, we improve the upper bounds R(C4, K3, K4 − e) 6 25, R(C4, K3 + e,K4 − e) 6 25,
R(C4, K3 + e,K4) 6 43, R(C4, K4− e,K4) 6 54, R(K3, K4− e,K4) 6 44, R(K3 + e,K4−
e,K4) 6 44, R(K4− e,K4− e,K4) 6 60 and R(K4− e,K4, K4) 6 121, obtained from (2),
as well as R(P4, C4, K4) 6 15 [1] and R(C4, K4 − e,K4 − e) 6 22 [9].

We prove that R(P4, C4, K4) = 14, R(C4, K3, K4−e) = 17, R(C4, K3+e,K4−e) = 17,
R(C4, K4 − e,K4 − e) = 19, 28 6 R(C4, K4 − e,K4) 6 36, R(K3, K4 − e,K4) 6 41,
R(K4 − e,K4 − e,K4) 6 59 and R(K4 − e,K4, K4) 6 113.
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For some classes of G and H, it was known that R(K3 + e,G,H) = R(K3, G,H), for
instance R(K3 + e,K3 + e,K4) = R(K3, K3 + e,K4) = R(K3, K3, K4) [1] and R(K3 +
e,K3 + e,K4 − e) = R(K3, K3 + e,K4 − e) = R(K3, K3, K4 − e) [27]. We prove that
R(K3+e,K4−e,K4−e) = R(K3, K4−e,K4−e). Also, we prove that R(C4, K3+e,K4) 6
max{R(C4, K3, K4), 29} 6 32, R(K3 + e,K4− e,K4) 6 max{R(K3, K4− e,K4), 33} 6 41
and R(K3 + e,K4, K4) 6 max{R(K3, K4, K4), 2R(K3, K3, K4) + 2} 6 79.

Now, we give the values and bounds of R(H1, H2, H3) in the following tables. Although
the first two complete tables and parts of the remaining tables are shown in [1], for the
sake of completeness, we repeat them below. In these tables, the lower bounds obtained
from (1) are marked with a “*”. Also, we will mark with “†” the upper bounds obtained
using (2). We use bold style to denote the new values or bounds presented in this paper.

P3 5[5]

2K2 4[1] 5[1]

P4 5[1] 5[1] 5[1]

K1,3 5[5] 6[1] 7[1] 7[5]

C4 6[1] 6[1] 7[1] 7[17] 8[1]

K3 5[15] 6[1] 7[1] 9[15] 8[1] 11[4]

K3 + e 5[1] 6[1] 7[1] 9[1] 8[1] 11[1] 11[1]

K4 − e 7[1] 6[1] 7[1] 9[1] 9[1] 11[1] 11[1] 11[10]

K4 7[15] 8[1] 10[1] 13[15] 13[1] 17[4] 17[1] 17[1] 35[4]

P3 P3 2K2 P4 K1,3 C4 K3 K3 + e K4 − e K4

Table 1: Values of R(P3, H1, H2).

2K2 6[17]

P4 6[17] 6[17]

K1,3 6[17] 6[17] 7[17]

C4 6[17] 6[17] 7[17] 7[17]

K3 7[17] 8[17] 8[17] 8[15] 8[17]

K3 + e 7[17] 8[17] 8[17] 8[17] 8[17] 8[17]

K4 − e 7[17] 8[17] 8[17] 9[17] 8[17] 8[17] 11[17]

K4 8[17] 11[17] 11[17] 11[17] 11[17] 11[17] 13[17] 20[17]

2K2 2K2 P4 K1,3 C4 K3 K3 + e K4 − e K4

Table 2: Values of R(2K2, H1, H2).
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P4 6[14]

K1,3 7[1] 7[1]

C4 7[1] 8[1] 9[1]

K3 9[1] 11[1] 9[1] 16[4]

K3 + e 9[1] 11[1] 9[1] 16[1] 16[1]

K4 − e 10[1] 11[1] 11[1] 16[1] 16[1] 16[1]

K4 13[1] 13[1] 14 25[4] 25[1] 25[1] 52[4]

P4 P4 K1,3 C4 K3 K3 + e K4 − e K4

Table 3: Values of R(P4, H1, H2).

K1,3 8[5]

C4 8[1] 9[1]

K3 11[15] 11[1] 16[4]

K3 + e 11[1] 11[1] 16[1] 16[1]

K4 − e 11[1] 11[1] 16[1] 16[1] 16[1]

K4 16[15] 16[17] 25[4] 25[1] 25[1] 52[4]

K1,3 K1,3 C4 K3 K3 + e K4 − e K4

Table 4: Values of R(K1,3, H1, H2).

C4 11[3]

K3 12[26] 17[11]

K3 + e 12[1] 17[1] 17[1]

K4 − e 16[9] 17 17 19
K4 20[9]-22[28] 27[9]-32[28] 27∗-32 28-36 52∗-72[28]

C4 C4 K3 K3 + e K4 − e K4

Table 5: Values and bounds of R(C4, H1, H2).

K3 17[12]

K3 + e 17[1] 17[1]

K4 − e 17[27] 17[27] 21[27]-27[27]

K4 30[16]-31[23] R(K3, K3, K4)[1] 30∗-41 55[18]-79†
K3 K3 K3 + e K4 − e K4

Table 6: Values and bounds of R(K3, H1, H2).

3 Proofs

3.1 R(P4, H1, H2)

In [1] it is claimed that 14 6 R(P4, C4, K4) 6 15, but no (P4, C4, K4; 13)-coloring is
showed. A (P4, C4, K4; 13)-coloring can be found in the Appendix. In this subsection we
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K3 + e 17[29]

K4 − e 17[27] R(K3,K4 − e,K4 − e)
K4 R(K3, K3, K4)[1] 30∗-41 55∗-79†

K3 + e K3 + e K4 − e K4

Table 7: Values and bounds of R(K3 + e,H1, H2).

K4 − e 28[10]-30[22]

K4 33[27]-59 55∗-113
K4 − e K4 − e K4

Table 8: Bounds on R(K4 − e,H1, H2).

K4 128[13]-236†
K4 K4

Table 9: Bounds on R(K4, K4, K4).

will prove that R(P4, C4, K4) = 14.
Let F be a P4-free graph and let S(F ) be the set of (P4, C4, K4; |V (F )|)-colorings of

G such that G1 = F .
We note that R(P4, C4, K4) = 14 if and only if for any P4-free graph F of order 14

S(F ) is empty.
Let H and H ′ be two P4-free graphs. It is easy to obtain S(H ′) from S(H) if one of

the following two algorithms is applied:
Case a) H is an induced subgraph of H ′ such that |V (H ′)| = |V (H)|+ 1.

Algorithm 1.
Input: coloring G ∈ S(H).
Output: set of all one-vertex extensions of G which are in S(H ′).

For instance, if we consider the coloring G belonging to S(K2 ∪K1) with 3 vertices,
such that the edge {1, 2} is red and both {1, 3} and {2, 3} are blue, then we obtain two
colorings of four vertices belonging to S(2K2), adding a new vertex, assigning red color
to {3, 4}, green color to {1, 4} and blue or green color to {2, 4}. The coloring such that
{1, 4} and {2, 4} are blue, is not considered because it contains a blue C4. The coloring
such that {1, 4} is blue and {2, 4} is green, is not considered because it is isomorphic to
coloring in which {1, 4} is green and {2, 4} is blue.

Case b) H ′ is a subgraph of H such that |V (H ′)| = |V (H)|.
Algorithm 2.
Input: coloring G ∈ S(H).
Output: set of all colorings of S(H ′) obtained assigning blue or green color to some edges
of G.

For instance, if we consider the coloring G belonging to S(2K2 ∪K1) with 5 vertices,
such that the edges {1, 2} and {3, 4} are red, {1, 5} is blue and the remaining seven
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edges are green, then we obtain three colorings of five vertices belonging to S(K2 ∪ 3K1),
assigning blue color to {3, 4} or assigning blue or green color to {1, 2}. The coloring
obtained assigning green color to {3, 4} is not considered because it contains a green K4.

The lists of graphs generated in order to prove that S(F ) = ∅ for any P4-free graph
F of order 14 are not very large, thus, it is not necessary to utilize the program nauty
to eliminate graph isomorphisms [20, 21]. To check isomorphisms of graphs, we use the
IsomormicQ command of the Combinatorica package of the Mathematica 8.0 program
[19].

We use the following result:

Lemma 3. Let F1, F2 and F3 be three graphs. If S(F1) = ∅, F3 is a subgraph of F1 with
V (F3) = V (F1) and F3 is an induced subgraph of F2, then S(F2) = ∅.

Proof. Applying Algorithm 2 we obtain S(F3) from S(F1), thus S(F3) = ∅, and applying
Algorithm 1 we obtain S(F2) from S(F3), hence S(F2) = ∅.

In order to prove that for any P4-free graph F of order 14, S(F ) = ∅, without loss
of generality we can assume that the components of F are K2, K3 or K1,n, with n > 3,
because if K1 or P3 are components of F , there exists a graph F0 or order 14 such that F
is a subgraph of F0 and K1 and P3 are not components of F0. Thus, if S(F0) = ∅ then,
applying Algorithm 2, we have that S(F ) = ∅.

Since R(C4, K4) = 10 [7], F0 has no independent set of order 10 and, since R(P3, C4,
K4) = 13, F0 has at least two components different of K2. Thus, it is easy to check
that F0 ∈ {4K3 ∪K2, 3K3 ∪K1,4, 2K3 ∪K1,7, 2K3 ∪K1,5 ∪K2, 2K3 ∪ 2K1,3, 2K3 ∪K1,3 ∪
2K2, 2K3 ∪ 4K2, K3 ∪K1,6 ∪ 2K2, K3 ∪K1,4 ∪K1,3 ∪K2, K3 ∪K1,4 ∪ 3K2, 2K1,3 ∪ 3K2}.

From Lemma 3, we obtain:

Corollary 4. If S(K3∪ 2K2∪ 5K1) = ∅ then S(2K3∪K1,7), S(2K3∪K1,5∪K2), S(K3∪
K1,6 ∪ 2K2), S(K3 ∪K1,4 ∪K1,3 ∪K2) and S(2K1,3 ∪ 3K2) = ∅.

Proof. Let F1 = K3 ∪ 2K2 ∪ 5K1. Considering F3 = K3 ∪ 2K2 ∪ 5K1 we have that
S(2K3 ∪K1,5 ∪K2), S(K3 ∪K1,6 ∪ 2K2) = ∅. Considering F3 = K3 ∪K2 ∪ 7K1 we obtain
that S(2K3 ∪K1,7), S(K3 ∪K1,4 ∪K1,3 ∪K2) = ∅. Finally, considering F3 = 3K2 ∪ 6K1

we obtain that S(2K1,3 ∪ 3K2) = ∅.

Corollary 5. If S(2K3 ∪ 3K2 ∪ K1) = ∅ then S(2K3 ∪ K1,3 ∪ 2K2), S(2K3 ∪ 4K2),
S(K3 ∪K1,4 ∪ 3K2) = ∅.

Proof. Let F1 = 2K3 ∪ 3K2 ∪ K1. Considering F3 = 2K3 ∪ 3K2 ∪ K1 we have that
S(2K3∪4K2) = ∅. Considering F3 = 2K3∪2K2∪3K1 we obtain that S(2K3∪K1,3∪2K2) =
∅. Finally, considering F3 = K3 ∪ 3K2 ∪ 4K1 we obtain that S(K3 ∪K1,4 ∪ 3K2) = ∅.

Consequently, we have that if S(F ) = ∅ for any F ∈ F = {4K3∪K2, 3K3∪K1,4, 2K3∪
2K1,3, K3 ∪ 2K2 ∪ 5K1, 2K3 ∪ 3K2 ∪K1} then R(P4, C4, K4) = 14.

Now, we are going to prove the main result of this subsection.

Theorem 6. R(P4, C4, K4) = 14.

the electronic journal of combinatorics 19(4) (2012), #P47 6



Proof. It is enough to prove that for any F ∈ F then S(F ) = ∅.
There is a coloring in S(5K1) for every (C4, K4; 5)-coloring, thus |S(5K1)| = 13. From

this set, applying Algorithm 1, we obtain the sets S(K2 ∪ 4K1), S(2K2 ∪ 3K1), S(3K2 ∪
2K1), S(4K2 ∪K1), S(5K2), S(K3 ∪ 4K2), S(2K3 ∪ 3K2), the cardinalities of which are
122, 1012, 4808, 8569, 2676, 7466 and 968. From S(2K3 ∪ 3K2), applying Algorithm 2,
we generate the sets S(2K3 ∪ 2K2 ∪ 2K1), S(2K3 ∪ K2 ∪ 4K1) and S(2K3 ∪ 6K1), the
cardinalities of which are 944, 84 and 1. From S(2K3 ∪ 6K1), applying Algorithm 1, we
obtain the sets S(2K3 ∪K1,3 ∪ 3K1), and S(2K3 ∪ 2K1,3), the cardinalities of which are 5
and 0, respectively. Thus S(2K3 ∪ 2K1,3) = ∅.

From S(2K3∪K2∪4K1), applying Algorithm 2, we obtain that S(K3∪2K2∪5K1) = ∅.
From S(2K3 ∪ 3K2), applying Algorithm 1, we generate the set S(3K3 ∪ 2K2). Its

cardinality is 1. From S(3K3∪2K2), applying Algorithm 2, we obtain S(3K3∪K2∪2K1)
and S(3K3∪4K1). Their cardinalities are 2 and 1. From S(3K3∪4K1), applying Algorithm
1, we have that S(3K3 ∪K1,4) = ∅.

From S(3K3∪2K2), applying Algorithm 1, we obtain that S(4K3∪K2) = ∅ and, finally,
from S(3K3 ∪ 2K2), applying Algorithm 2, we have that S(2K3 ∪ 3K2 ∪K1) = ∅.

3.2 R(C4, H1, H2)

To generate subfamilies of (C4, H1, H2;n), where H1, H2 ∈ {K3, K4 − e} we used the
following algorithm.

Algorithm 7. Extension
Input: coloring G ∈ (C4, H1, H2;n)
Output: set of all one-vertex extensions of G which belong to (C4, H1, H2;n+ 1)

For R(C4, K4 − e,K3) we used the next algorithm. Let H− = K2 if H = K3, and
H− = P3 if H = K4 − e.
Algorithm 8. Merge
Input: coloring G1 ∈ (C4, H, P3;n) and G2 ∈ (C4, H

−, K4 − e;m)
Output: set of all colorings G ∈ (C4, H,K4 − e;n+m+ 1) such that G1 = G[N2(v)] and
G2 = G[N3(v)]

Algorithm 7 is a standard procedure in graph theoretical computations. In case of
generated subfamilies of (C4, H1, H2;n), where H1, H2 ∈ {K3, K4 − e} we cannot use it
alone because we would have to keep collections of nonisomorphic colorings which are
to large. Algorithm 7 is used to determine the collections of colorings (C4, P3, K3;n) for
n 6 7, (C4, K4 − e,K2;n) for n 6 6 and (C4, P3, K4 − e;n) for n 6 8. The colorings from
these collections were used as the parameters of Algorithm 8. Both of these algorithms
are often used to determine Ramsey numbers (see [2, 25]) therefore we do not discuss
them in detail.

Let t(n) denote the maximum number of edges of a graph with n vertices not containing
a C4 as a subgraph.

Theorem 9. R(C4, K4 − e,K3) = 17.
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Proof. Since R(C4, K4 − e,K3) > R(C4, K3, K3) = 17 [11], we obtain the lower bound.
To obtain the upper bound we use the following computations. Since R(C4, P3, K3) = 8
and R(C4, K4 − e,K2) = 7 [1], then for every vertex u we have d2(u) 6 7 and d3(u) 6 6.
Since t(17) = 36 [8], then every coloring of (C4, K4 − e,K3; 17) must contain a vertex v
such that d1(v) 6 4. There are only 3 possibilities:

• There exists a vertex v such that d1(v) = 3, d2(v) = 7 and d3(v) = 6.

We use Algorithm 8 for every graph G1 ∈ (C4, P3, K3; 7) and G2 ∈ (C4, K4−e,K2; 6)
and find 8 colorings of (C4, K4 − e,K3; 14). Next we use Algorithm 7 to one-vertex
extensions of these 8 colorings and obtain subfamilies of (C4, K4 − e,K3;n) for
n ∈ {15, 16, 17}. Cardinalities of these sets are 6, 43, 0, respectively.

• There exists a vertex v such that d1(v) = 4, d2(v) = 7 and d3(v) = 5.

Similarly, for every G1 ∈ (C4, P3, K3; 7) and G2 ∈ (C4, K4−e,K2; 5) we found 26355
colorings of (C4, K4 − e,K3; 13). Next, we computed subsets of (C4, K4 − e,K3;n)
for n ∈ {14, 15, 16, 17}, the cardinalities of which are 470854, 515882, 3444, 0,
respectively.

• There exists a vertex v such that d1(v) = 4, d2(v) = 6 and d3(v) = 6.

Again, for every G1 ∈ (C4, P3, K3; 6) and G2 ∈ (C4, K4 − e,K2; 6) we found 132266
colorings of (C4, K4 − e,K3; 13). Next, we computed subsets of (C4, K4 − e,K3;n)
for n ∈ {14, 15, 16, 17}, the cardinalities of which are 4077662, 8109281, 56653, 0,
respectively.

Finally, this means that (C4, K4 − e,K3; 17) = ∅ and R(C4, K4 − e,K3) = 17.

In order to prove some Theorems 11 and 13, we use the following lemma:

Lemma 10. Let F be a graph of order n and let v1, v2, v3 ∈ V (F ), such that vi, for
i = 1, 2, 3, is adjacent to at least bn

3
c + 1 vertices of V (F )\{v1, v2, v3}. Then C4 is a

subgraph of G.

Proof. Let ai be the number of vertices of V (F )\{v1, v2, v3} adjacent to vi and non-
adjacent to the other two vertices of {v1, v2, v3}, let bi,j be the number of vertices of
V (F )\{v1, v2, v3} adjacent to vi and vj and non-adjacent to the other one vertex of
{v1, v2, v3} and let c1,2,3 be the number of vertices of V (F )\{v1, v2, v3} adjacent to v1,
v2 and v3. Then a1 + a2 + a3 + b1,2 + b1,3 + b2,3 + c1,2,3 6 n− 3.

Since vi is adjacent at least to bn
3
c+1 vertices of V (G)\{v1, v2, v3}, we have that

a1 +b1,2 +b1,3 +c1,2,3 > bn3 c+1, a2 +b1,2 +b2,3 +c1,2,3 > bn3 c+1 and a3 +b1,3 +b2,3 +c1,2,3 >
bn
3
c+ 1.
Consequently, a1 + a2 + a3 + 2b1,2 + 2b1,3 + 2b2,3 + 3c1,2,3 > 3bn

3
c + 3 > n + 1 and

b1,2 + b1,3 + b2,3 + 2c1,2,3 > 4. Then there are i and j such that bi,j + c1,2,3 > 2, vi and vj
have at least two common neighbors belonging to V (F )\{v1, v2, v3} and C4 is a subgraph
of F .
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We prove that adding an edge to K3 leaves its Ramsey number unchanged, such as in
the following theorem.

Theorem 11. R(C4, K4 − e,K3 + e) = R(C4, K4 − e,K3) = 17.

Proof. By Theorem 9 and by the monotonicity of Ramsey numbers we have that
17 = R(C4, K4 − e,K3) 6 R(C4, K4 − e,K3 + e). Assume, towards a contradiction,
that R(C4, K4 − e,K3) < R(C4, K4 − e,K3 + e). Let G be a (C4, K4 − e,K3 + e; 17)-
coloring. There is a green triangle in G. Let {v1, v2, v3} be the vertices of a green triangle
of G. Since R(C4, P3, K3 + e) = 8 [1], then |N2(vi)| 6 7 and |N1(vi)| > 7 for i ∈ {1, 2, 3}.
By Lemma 10, we obtain a red C4, a contradiction.

Theorem 12. R(C4, K4 − e,K4 − e) = 19.

Proof. Lower bound R(C4, K4 − e,K4 − e) > 19 is presented in [9]. To obtain the upper
bound we use similar computations as in the proof of Theorem 9. Since R(C4, P3, K4−e) =
R(C4, K4− e, P3) = 9 [1], then for every vertex u we have d2(u) 6 8 and d3(u) 6 8. Since
t(19) = 42 [8], then every coloring of (C4, K4− e,K3; 19) must contain vertex v such that
d1(v) 6 4. There are only 4 possibilities:

• There is a vertex v such that d1(v) = 4, d2(v) = 7 and d3(v) = 7.

We use Algorithm 8 for every graph G1 ∈ (C4, P3, K4 − e; 7) and G2 ∈ (C4, K4 −
e, P3; 7) and find 621308 colorings of (C4, K4 − e,K4 − e; 15). Next, we use Al-
gorithm 7 to one-vertex extensions of these colorings and obtain subfamilies of
(C4, K4 − e,K3;n) for n ∈ {16, 17, 18, 19}. Cardinalities of these sets are 731002,
18285, 7, 0, respectively.

• There is a vertex v such that d1(v) = 4, d2(v) = 8 and d3(v) = 6, (a case in which
d2(v) = 6 and d3(v) = 8 is symmetrical).

Similarly, for every G1 ∈ (C4, P3, K4 − e; 8) and G2 ∈ (C4, K4 − e, P3; 6) we found
10488 colorings of (C4, K4− e,K4− e; 15). Next, we computed subsets of (C4, K4−
e,K4 − e;n) for n ∈ {16, 17, 18}, the cardinalities of which are 28733, 1807, 0,
respectively.

• There is a vertex v such that d1(v) = 3, d2(v) = 8 and d3(v) = 7, (a case in which
d2(v) = 7 and d3(v) = 8 is symmetrical).

In this case Algorithm 8 returns an empty set of colorings.

• There is a vertex v such that d1(v) = 2, d2(v) = 8 and d3(v) = 8.

In this case Algorithm 8 returns an empty set of colorings.

We state that set (C4, K4 − e,K4 − e; 19) = ∅ and R(C4, K4 − e,K4 − e) = 19.

Also, we have:

Theorem 13. R(C4, K3 + e,K4) 6 max{R(C4, K3, K4), 29} 6 32.
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Proof. We know that 27 6 R(C4, K3, K4) 6 32 [9, 28]. Let us suppose that there exists G
a (C4, K3 +e,K4; max{R(C4, K3, K4), 29})-coloring. There is a blue triangle in G. Let v1,
v2, v3 be the vertices of a blue triangle. To avoid a blue K4+e we have that d2(vi) = 2 and,
since R(C4, K3 + e,K3) = 17, d3(vi) 6 16. Thus d1(vi) > max{R(C4, K3, K4), 29} − 19 >
bmax{R(C4,K3,K4),29}

3
c+ 1. By Lemma 10, we have a red C4, a contradiction.

Theorem 14. 28 6 R(C4, K4 − e,K4) 6 36.

Proof. To prove the lower bound, we present a (C4, K4 − e,K4; 27)-coloring in the Ap-
pendix. Let us suppose that there exits G, a (C4, K4−e,K4; 36)-coloring. Since R(C4, P3,
K4) = 13 and R(C4, K4 − e,K3) = 17 then ∆2(G) 6 12, ∆3(G) 6 16, δ1(G) > 7, and
|E(G1)| > 126. Since t(36) 6 115 [8], there is a contradiction.

3.3 R(K3, H1, H2) and R(K3 + e,H1, H2)

Theorem 15. R(K3 + e,K4 − e,K4 − e) = R(K3, K4 − e,K4 − e).

Proof. R(K3, K4 − e,K4 − e) > 21 [27]. Let us suppose that R(K3 + e,K4 − e,K4 − e) >
R(K3, K4−e,K4−e), thus there exists G a (K3+e,K4−e,K4−e;R(K3, K4−e,K4−e))-
coloring and there is a red triangle in G. Let v1, v2 and v3 be the vertices of a red triangle
of G. We may also assume that d2(v1) > 9. Clearly G[N2(v1)] contains no blue P3.
Assume that wi, 1 6 i 6 9 are the 9 first vertices of G[N2(v1)]. Next, we consider the
cases with respect to the number of blue edges in G[N2(v1)] as follows.

• G[N2(v1)] has 4 disjoint blue edges.

Assume that {wi, wi+1} are blue for all i ∈ {1, 3, 5, 7}. To avoid a blue K4 − e,
without the loss of generality we can assume that {v2, wi} are green for all i ∈
{2, 4, 6, 8}. Without the loss of generality we can assume that {w2, w4}, {w6, w8}
are green, then {w2, w6}, {w2, w8}, {w4, w6}, {w4, w8} must be red. To prevent
{v2, w2, w4, w9} from forming a green K4 − e, for at least one i ∈ {2, 4}, the edge
{wi, w9} is red. We have that {w6, w9}, {w8, w9} are green, then {v2, w6, w8, w9}
forms a green K4 − e.

• G[N2(v1)] has 3 disjoint blue edges.

Clearly G[N2(v1)] contains a K7 − e with only red and green edges. By Lemma 2
in [27], we have either a red K3 + e or a green K4 − e.

• G[N2(v1)] has at most 2 disjoint blue edges.

Since R(K3 + e,K4 − e) = 7 [7], we immediately obtain a red K3 + e or a green
K4 − e.

By using similar methods we obtain the following:

Theorem 16. R(K3, K4 − e,K4) 6 max{R(K3 + e,K4 − e,K4), 33} 6 41.
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Proof. Let us suppose that R(K3 + e,K4− e,K4) > max{R(K3 + e,K4− e,K4), 33}, thus
there exists G be a (K3+e,K4−e,K4; max{R(K3+e,K4−e,K4), 33})-coloring and there
is a red triangle in G. Let v1, v2 and v3 be the vertices of a red triangle of G. We may
also assume that d2(v1) > 14. Clearly G[N2(v1)] does not contain any blue P3. Assume
that w1, w2, . . . , w14 are the 14 first vertices of G[N2(v1)]. Next, we consider the cases
with respect to the number of blue edges in G[N2(v1)] as follows.

• G[N2(v1)] has 7 disjoint blue edges.

Assume that {wi, wi+1} are blue for odd 1 6 i 6 13. To avoid a blue K4 − e, we
can assume that {v2, wi} are green for even 2 6 i 6 14. Since R(K3 + e,K3) = 7
[7], we immediately obtain a red K3 + e or a green K4.

• G[N2(v1)] has 6 disjoint blue edges.

Assume that {wi, wi+1} are blue for odd 1 6 i 6 11. To avoid a blue K4 − e, we
can assume that {v2, wi} are green for even 2 6 i 6 12. If {v2, w13} is green, then
by R(K3 + e,K3) = 7 [7], we have either a red K3 + e or a green K4. This means
that {v2, w13} is blue. Since R(K3, K3) = 6, then we can assume there are two
red triangles, let their vertices be {w2, w4, w6} and {w8, w10, w12}. The remaining
edges of a subgraph on {w2, w4, w6, w8, w10, w12} are green. There is at least one
green edge in the subgraph on vertices {w1, w3, w5, w7, w9, w11}, say {w1, w3}, then
{w1, w3, w6, w8} forms a green K4.

• G[N2(v1)] has 5 disjoint blue edges.

Assume that {wi, wi+1} are blue for all i ∈ {1, 3, 5, 7, 9}. Let us consider a subgraph
H on vertices {w2, w4, w6, w8, w10, w11, w12, w13, w14}. Since R(K3, K4) = 9, then
H contain a red triangle. To avoid a red K3 + e and a green K4 the remaining
vertices of H contain a next red triangle. By the fact that a subgraph on vertices
{w1, w3, w5, w7, w9} has at least one green edge, we immediately obtain a green K4.

• G[N2(v1)] has at most 4 disjoint blue edges.

Since R(K3 + e,K4) = 10 [7], we immediately obtain a red K3 + e or a green K4.

In order to prove Theorems 20 and 21 we use some definitions and lemmas.

Lemma 17. Let G be a (K3, K4 − e,K4; 41)-coloring. For any v ∈ V (G), G2[N2(v)] ∈
{7K2, 6K1 ∪ 2K1}.

Proof. Let v0 ∈ V (G) such that d2(v0) = ∆2(G). Then d2(v0) 6 R(K3, P3, K4)− 1 = 16.
If d2(v0) = 16, as G[N2(v0)] is a (K3, P3, K4; 16)-coloring and R(K3, K4) = 9 [12], we have
that G2[N2(v0)] = 8K2. Let x1, . . . , x8 be the edges of G2[N2(v0)] and let w be one of the
24 vertices of N1(v0) ∪N3(v0). To prevent a blue K4 − e, for at least one vertex wi of xi,
with 1 6 i 6 8, the edge {w,wi} is red or green. Then G[{w,w1, . . . , w8}] has not blue
edges and there is a red K3 or a green K4. There is a contradiction, thus ∆2(G) 6 15.
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If d2(v0) = 15, as G[N2(v0)] is a (K3, P3, K4; 15)-coloring, then G2[N2(v0)] = 7K2∪K1.
Let x1, . . . , x7 be the edges of G2[N2(v0)], let u be the isolated vertex of G2[N2(v0)] and
let w be some of the at least 11 vertices of (N1(v0) ∪ N3(v0))\N2(u). To prevent a blue
K4 − e, for at least one vertex wi of xi, with 1 6 i 6 7, the edge {w,wi} is red or green.
Then G[{w, u, w1, . . . , w7}] has not blue edges and there is a red K3 or a green K4. Thus
∆2(G) 6 14.

Let v ∈ V (G). Since d1(v) 6 R(K2, K4 − e,K4) − 1 = 10, d2(v) 6 14, d3(v) 6
R(K3, K4 − e,K3) − 1 = 16 and d1(v) + d2(v) + d3(v) = 40, we have that d1(v) =
10, d2(v) = 14, d3(v) = 16 and, as G[N2(v)] is a (K3, P3, K4; 14)-coloring, G2[N2(v)] ∈
{7K2, 6K2 ∪ 2K1}.

Let A = {v ∈ V (G) : N2(v) = 6K2 ∪ 2K1}. We have:

Lemma 18. A 6= ∅.
Proof. If A = ∅ then every vertex belongs to 7 blue triangles and G has 41·7

3
blue triangles.

This number is not an integer and there is a contradiction.

For any v ∈ A we define Dv = {u ∈ N2(v) : dG2[N2(v)](u) = 1}. Clearly |N2(v)\Dv| = 2
and N2(v)\Dv ⊆ A.

Lemma 19. Let v1 ∈ A and v0, v2 ∈ N2(v1)\Dv1, then N2(v0) ∩N2(v2) = {v1}.
Proof. If |N2(v0) ∩ N2(v2)\{v1}| > 1, since |N2(v0)\{v1}|, |N2(v2)\{v1}| = 13,
N2(v0)\{v1}, N2(v2)\{v1} ⊂ N1(v1) ∪ N3(v1) and |N1(v1) ∪ N3(v1)| = 26, we have that
there exists w ∈ (N1(v1) ∪ N3(v1))\(N2(v0) ∪ N2(v2)). Let x1, . . . , x6 be the edges of
G2[N2(v1)]. To prevent a blue K4 − e, for at least one vertex wi of xi, with 1 6 i 6 6,
the edge {w,wi} is red or green. Then G[{w, v0, v2, w1, . . . , w6}] has not blue edges and,
as R(K3, K4) = 9, there is a red K3 or a green K4, a contradiction.

Now, we have:

Theorem 20. R(K3, K4 − e,K4) 6 41.

Proof. Let G be a (K3, K4 − e,K4; 41)-coloring. Let v1 ∈ A, v0, v2 ∈ N2(v1)\Dv1 and
v3 ∈ (N2(v2)\Dv2)\{v1}. By Lemma 19, N2(v0) ∩ N2(v2) = {v1} and N2(v1) ∩ N2(v3) =
{v2}. Let B = V (G)\{v0, v1, v2, v3}\(Dv1 ∪ Dv2). As |B| = 13, |N2(v0)\{v1, v3}|,
|N2(v3)\{v0, v2}| > 12 and N2(v0)\{v1, v3}, N2(v3)\{v0, v2} ⊆ B, we have that
|(N2(v0)\{v1, v3})∩ (N2(v3)\ {v0, v2})| > 11 and, as R(K3, K4) = 9, G[(N2(v0)\{v1, v3})∩
(N2(v3)\{v0, v2})] contains a blue edge and G[((N2(v0)\{v1, v3}) ∩ (N2(v3)\{v0, v2})) ∪
{v0, v3}] contains a blue K4 − e, a contradiction.

Theorem 21. R(K3 + e,K4, K4) 6 max{R(K3, K4, K4), 2R(K3, K3, K4) + 2} 6 79.

Proof. The result is obvious if R(K3 + e,K4, K4) = R(K3, K4, K4) 6 79. Assume that
R(K3+e,K4, K4) > R(K3, K4, K4), and let G be a (K3+e,K4, K4; R(K3+e,K4, K4)−1)-
coloring. As R(K3+e,K4, K4)−1 > R(K3, K3, K4), there are at least a triangle in G. Let
v be a vertex of a red triangle. To avoid a red K3+e, d1(v) = 2, and d2(v), d3(v) 6 R(K3+
e,K3, K4)− 1 = R(K3, K3, K4)− 1. As R(K3 + e,K4, K4)− 1 = 1 + d1(v) + d2(v) + d3(v),
we have that R(K3 + e,K4, K4) 6 2R(K3, K3, K4) + 2 6 64.
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3.4 R(K4 − e,H1, H2)

In this subsection we show new upper bounds on R(K4−e,K4−e,K4) and R(K3, K4, K4).
In order to obtain the main results of this subsection we use the following lemma, which
has a computational proof.

Lemma 22. Every (P3, K4 − e,K4; 16)-coloring has 8 red edges.

Theorem 23. R(K4 − e,K4 − e,K4) 6 59.

Proof. Let G be a (K4−e,K4−e,K4; 59)-coloring and let v ∈ V (G). It is straightforward
that d1(v), d2(v) 6 R(P3, K4−e,K4)−1 = 16 and d3(v) 6 R(K4−e,K4−e,K3)−1 6 26.
Since d1(v) + d2(v) + d3(v) = 58, we have d1(v) = 16 and by Lemma 22, G[N1(v)] has 8
red edges, v belongs to 8 red triangles and G has 59·8

3
red triangles. This number is not

an integer and we have a contradiction.

In order to prove the last theorem we need the following lemma:

Lemma 24. Let G be a (K4−e,K4, K4; 113)-coloring and let v ∈ V (G). Then d1(v) = 32,
d2(v), d3(v) = 40 and G1[N1(v)] = 16K2.

Proof. The proof of ∆1(G) 6 32 is similar to the proof of Lemma 17.
Since d1(v) 6 32, d2(v), d3(v) 6 R(K4−e,K3, K4)−1 6 40 and d1(v)+d2(v)+d3(v) =

112, we have that d1(v) = 32, d2(v) = d3(v) = 40 and, as G[N1(v)] is a (P3, K4, K4; 32)-
coloring and R(K4, K4) = 18 [12], we have that G1[N1(v)] ∈ {16K2, 15K2 ∪ 2K1}.

Let us suppose G1[N1(v)] = 15K2∪2K1. Let x1, . . . , x15 be the edges of G1[N1(v)], let
u1 and u2 be the isolated vertices of G1[N1(v)] and let w be some of the at least 18 vertices
of (N2(v)∪N3(v))\(N1(u1)∪N1(u2)). To prevent a red K4− e, for at least one vertex wi
of xi, with 1 6 i 6 15, the edge {w,wi} is blue or green. Then G[{w, u1, u2, w1, . . . , w15}]
has not red edges and, as R(K4, K4) = 18 [12], there is a blue K4 or a green K4, thus
there is a contradiction.

Theorem 25. R(K4 − e,K4, K4) 6 113.

Proof. Let G be a (K4−e,K4, K4; 113)-coloring. By Lemma 24, every vertex of G belongs
to 16 blue triangles, thus G has 113·16

3
blue triangles. This number is not an integer and

we have a contradiction.

4 Open cases

The still open cases are the values of R(H1, K4− e,K4− e), with H1 ∈ {K3, K3 + e,K4−
e,K4}, and R(H1, H2, K4), with H1, H2 ∈ {C4, K3, K3 + e,K4 − e,K4}. In general, the
difficulty of these open cases depends on the structure of the graphs and almost always
grows with the number of edges of the graphs. On the one hand, we think that the
following cases should be solved R(C4, C4, K4), R(C4, K3, K4), R(K3, K4 − e,K4 − e) or
R(K3, K4, K4). On the other hand there is no progress in the bounds on R(K4, K4, K4)
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since 1982 [13] and the difference between its bounds are 108. Probably, this case can
never be solved.

Also, we expect that the values of the open cases are closer to the lower bounds
than the upper bounds and we conjecture that R(K3 + e,H,K4) = R(K3, H,K4) for
H ∈ {C4, K4 − e,K4}.
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5 Appendix

X022122211212
0X22221202212
22X2111022222
222X221220120
1212X12021222
22121X0122222
211120X222112
2202012X12021
10222221X2211
122012222X120
2221221021X21
11222212122X2
222022211012X

Figure 1: Matrix of (P4, C4, K4; 13)-coloring.

X21211112222101200212202112
2X2211221110122220022011122
12X112222110210202222110200
221X22221022101122221021110
1112X0220221222111101021202
11220X222221012211121222021
122222X01102120110201211222
1222220X1112022111200211222
21210211X221202021202120221
211022112X01221222121002212
2112220120X1220222111202211
20021122111X122222022110122
112120102221X12201120222021
0210212202221X1122221221010
12012202210221X211222112001
222112110222212X20210120221
0202111122220212X0212122112
00221101122212100X212022112
202211222110122222X20112122
1222020002122221112X1211222
22211110211201202201X202120
201002221021221110122X21202
0112221120012212221102X2212
21011211022021202221212X221
112120222221000211121222X21
1201022221122102112220122X1
22002122121210112222022111X

Figure 2: Matrix of (C4, K4 − e,K4; 27)-coloring.
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