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Abstract

The problem of existence of closed knight tours for rectangular chessboards was

solved by Schwenk in 1991. Last year, in 2011, DeMaio and Mathew provide an

extension of this result for 3-dimensional rectangular boards. In this article, we give

the solution for n-dimensional rectangular boards, for n > 4.

Keywords: Chessboard; Hamiltonian cycle

1 Introduction

On a chessboard, a knight moves by two squares in one direction and by one square in
the other one (like an L). A classical challenge is the so-called knight tour. The knight is
placed on the empty board and, moving according to the rules of chess, must visit each
square exactly once. A knight tour is called a closed tour if the knight ends on a square
attacking the square from which it began. If the latter is not satisfied and the knight has
visited each square exactly once, we call it an open tour.

Some early solutions were given by Euler, see [4] and also by De Moivre (we refer to
Mark R. Keen for historical remarks, see [7]). The problem was recently considered for
various types of chessboards: as a cylinder [15], a torus [16], a sphere [1], the exterior of
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Figure 1: A 6 × 6 closed tour

the cube [11], the interior of the cube [2],. . . It represents also an active field of research
in computer science, e.g., [10] (see references therein). In this paper, we shall focus on
rectangular boards.

In 1991, Schwenk considered the question of the closed knight tour problem in a 2-
dimensional rectangular chessboard. He provided a necessary and sufficient condition on
the size of the board in order to have a closed knight tour. He obtained:

Theorem 1 (Schwenk). Let 1 6 n 6 m. The n×m chessboard has a closed knight tour

if and only if the following conditions hold:

1. n or m is even,

2. n 6∈ {1, 2, 4},

3. (n,m) 6∈ {(3, 4), (3, 6), (3, 8)}.

We refer to [12] (see also [14]) for a proof. We consider the question for higher di-
mensions. In dimension 3 or above, a knight moves by two steps along one coordinate
and by one step along a different one, we refer to Section 2 for a more rigorous definition.
Stewart [13] and DeMaio [2] constructed some examples of 3-dimensional knight tours.
Then, in 2011, in [3], DeMaio and Mathew extended Theorem 1 by classifying all the
3-dimensional rectangular chessboards which admit a knight tour.

Theorem 2 (DeMaio and Mathew). Let 2 6 n 6 m 6 p. The n×m× p chessboard has

a closed knight tour if and only if the following conditions hold:

1. m, n, or p is even,

2. m > 3,

3. p > 4.
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The proof of both of these results follow the same idea, a small number of tours are
constructed which have specific structural qualities which allow them to be combined to
make larger tours. In this paper we extend the previous results to higher dimensional
boards using a similar idea, which we will illustrate with an example using Figure 1, a
more detailed discussion will follow in Section 3.

Within the tour we first identify two patterns, which we will refer to as sites, see
Figure 2.

Figure 2: Two sites

If we place two copies of Figure 1 directly on top of each other, denoting the squares
in the first copy (1)1 to (36)1 in the order they appear in the tour and similar from (1)2
to (36)2 in the second copy, we see that the squares (1)1 and (36)1 are a knight’s move
away from the squares (29)2 and (30)2 respectively. Hence we can construct a tour on a
6 × 6 × 2 chessboard as follows: starting at (1)1 we follow our original tour on the first
copy until we get to (36)1, from there we can move to (30)2 and follow the tour on the
second copy until we get to (29)2, which is adjacent to (1)1 and so we can close the tour.
The new tour can be found in Figure 3. The first picture shows the two copies of the tour
with the adjacent squares highlighted in red and green respectively. The second picture
shows the new tour once the site has been glued, with the left board representing the top
layer of the 6 × 6 × 2 chessboard, and the right the bottom.

We refer to this process as gluing the two sites together. In order to construct a tour
on a 6× 6× k chessboard for general k however we can’t just do the same thing k times,
because in order to join the first and second tour we’ve in some some way used up that
site. However since we had two sites in our original tour we can simply alternate the sites
we use to glue each tour together. If we denote by [p1, i] and [p2, i] the copies of the sites
in the ith tour we can construct a tour of a 6 × 6 × k chessboard by taking k copies of
Figure 1 and gluing [p1, 1] to [p1, 2], then [p2, 2] to [p2, 3] and so on until we have a tour
of the entire board. Notice that this tour still contains two sites we haven’t used, one in
the 1st tour and one in the kth, and so we could use this new tour in turn to construct a
tour on 6× 6× k× l chessboard in the same manner, this idea is explained in more detail
in Proposition 12.

Our strategy is then as follows, we construct low dimensional tours which each contain
two sites and then inductively show we can construct tours in higher dimensions by gluing
these tours together. The main result in our paper is as follows:

Theorem 3. Let 2 6 n1 6 n2 6 ... 6 nr, with r > 3. The n1 × . . .× nr chessboard has a

closed knight tour if and only if the following conditions hold:
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1. Some ni is even,

2. nr−1 > 3,

3. nr > 4.

Note that the hypotheses are the same as the ones given in Theorem 2 when r = 3. In
the same paper they asked about higher dimensional tours, this question was also asked

Figure 3: New tour obtained by gluing
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by DeMaio [2] and Watkins [14]. We mention that a conjecture for this theorem was given
in [9].

The paper is organized as follows. In Section 2 we set the notation and define the
graph structure induced by a knight on an n dimensional board. Then, in Section 3 we
introduce the notion of a site and explain in detail how to glue two tours together. In
Section 4 we use these idea to prove Theorem 3. In Section 5 we show we can apply
this technique to the problem of knight tours with more general moves and mention a
conjecture of our own.

2 Notation

In graph theoretical terms we can consider an n×m chessboard as a grid of n×m points.
We associate with this grid a graph, the knight graph K(n,m), where each point is joined
to all points a knight’s move away. Equivalently:

Definition 4. G = K(n,m) is the graph where V (G) = {(i, j) : 1 6 i 6 n , 1 6 j 6 m}
and

(

(i, j), (k, l)
)

∈ E(G) ⇔ (i− k, j − l) ∈ {(±1,±2) , (±2,±1)}.

So a closed knight tour on an n ×m chessboard is precisely a Hamiltonian cycle in
K(n,m). We will only consider closed tours in this paper and so for brevity’s sake will
refer to a closed knight’s tour on an n×m chessboard as simply an n×m tour.

Beyond this we can define the knight graph for higher dimensional chessboards. For
a board with dimensions n1 × n2...× nr, we define K(n1, n2 . . . , nr) in a similar fashion.

Definition 5. G = K(n1, . . . , nr) is the graph where

V (G) = {(i1, . . . , ir) : 1 6 ij 6 nj for all j}

and

E(G) = {
(

(a1, . . . , ar), (b1, . . . , br)
)

: there exists i1, i2 such that

|ai1 − bi1 | = 1 , |ai2 − bi2 | = 2 and aj = bj for all j 6= i1, i2}.

We note that K(n1, . . . , nr) is bi-partite, e.g., consider the map φ : K(n1, . . . , nr) →
{−1, 1} given by φ(a1, . . . , anr

) := (−1)a1×...×anr which assigns the color black or white to
each square. Where the context is clear we will denote vertices of K(n1, . . . , nr) as vectors
a ∈ R

r.

Remark 6. Given n1, . . . nr and ψ a permutation on [1, r] it is clear that K(n1, . . . , nr)
is isomorphic to K(nψ(1), . . . , nψ(r)) and so K(n1, . . . , nr) contains a Hamiltonian cycle if
and only if K(nψ(1), . . . , nψ(r)) does.
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3 Looking for patterns

We will first discuss how we glue together 2 dimensional boards before giving more general
definitions so as to familiarise the reader with the concepts. Given an n×m chessboard,
we say that a pair of edges

(

(a1, a2), (b1, b2)
)

and
(

(c1, c2), (d1, d2)
)

in a tour is a site if

(|a1 − c1|, |a2 − c2|) = (|b1 − d1|, |b2 − d2|) ∈ {(0, 2), (2, 0)} (1)

or if
(|a1 − d1|, |a2 − d2|) = (|b1 − c1|, |b2 − c2|) ∈ {(0, 2), (2, 0)}. (2)

Roughly speaking, there is a pairing of the endpoints of the edges such that the pairs
are each two squares away from each other. Up to orientation, we give examples from
Figure 1 of the three possible configurations for sites in Figure 4.

Figure 4: Sites in dimension 2.

As we saw in the introduction we can use sites to join together two knight tours
and gain a dimension. If we have an n × m tour which contains a site, that is a
pair of edges without loss of generality satisfying 3. Then if we place two copies of
the tour on top of each other we see that 3 guarantees that the two points (a1, a2, 1)
and (c1, c2, 2) are adjacent in K(n,m, 2), as are (b1, b2, 1) and (d1, d2, 2). So if we re-
move the edges

(

(a1, a2, 1), (b1, b2, 1)
)

and
(

(c1, c2, 2), (d1, d2, 2)
)

and add in the edges
(

(a1, a2, 1), (c1, c2, 2)
)

and
(

(b1, b2, 1), (d1, d2, 2)
)

then we have a tour on n ×m × 2. The
process can be thought of as in Figure 5.

We have taken two cycles and removed a single edge from each, the red edges in Figure
5, leaving us with two paths. The definition of a site guarantees that there is a pairing of
the endpoints of these paths such that the pairs are each a knight’s move apart. By adding
in the green edges in Figure 5, the two options corresponding to the two possible way to
pair the endpoints, we form a larger cycle on the combined vertex set of the original two
cycles. We refer to this process as gluing the two sites together.

We now embed the 2-dimensional case into r-dimensions. The basic idea will be to
consider a pair of edges a site if they are a site when restricted to some 2-dimensional
subspace of the n1 × . . . × nr chessboard. We denote by (ei)i∈[1,r] the canonical basis of
R
r.
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Figure 5: Gluing two sites

Definition 7. We say that a pair of edges {
(

a, b
)

,
(

c, d
)

} in K(n1, . . . , nr) is a site if there
exist i1 6= i2 such that:

aj = cj and bj = dj, for all j /∈ {i1, i2}

and either

(|ai1 − ci1 |, |ai2 − ci2 |) = (|bi1 − di1|, |bi2 − di2 |) ∈ {(0, 2), (2, 0)} (3)

or
(|ai1 − di1|, |ai2 − di2 |) = (|bi1 − ci1 |, |bi2 − ci2 |) ∈ {(0, 2), (2, 0)} (4)

holds true.

Definition 8. An n1 × . . . nr tour, equivalently a Hamiltonian cycle on K(n1, . . . , nr), is
called bi-sited if it contains two edge-disjoint sites.

We now turn to the definition of adjacent sites and explain how to “glue” them.

Definition 9. We say two sites {(a, b), (c, d)} and {(e, f), (g, h)} in K(n1, . . . , nr) are
adjacent if they have the same i1 and i2 in Definition 7 and if there exists j /∈ {i1, i2}
such that

(a, b, c, d) ∈ (e, f , g, h) ± (ej , ej, ej , ej).

We note that if we have an n1 × . . .×nr tour that contains a site [p] and we place two
copies of the tour on top of each other, denoting by [p, i] the site in the i-th copy, so as
to cover an n1 × . . .× nr × 2 chessboard then [p, 1] is adjacent to [p, 2]. This is in essence
the only property of Definition 9 that we will use.

We turn to the gluing operation which was illustrated above in Figure 5.

Definition 10. Take two adjacent sites [p] = {(a, b), (c, d)} and [q] = {(e, f), (g, h)}.

1. If [p] satisfies condition 3 (so does [q]), we delete the edges (a, b) and (g, h) and add
the edges (a, g) and (b, h).
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2. If [p] satisfies condition 4 (so does [q]), we delete the edges (a, b) and (g, h) and add
the edges (a, h) and (b, g).

We say that [p] and [q] are glued.

Remark 11. It is a simple consequence of Definitions 7 and 9 that the new edges are all
knight’s moves.

We note, with reference to Figure 5, that if the sites lie in disjoint cycles then gluing
the two sites together will join the cycles. We illustrate the preceding definitions with an
example of a 5 × 6 tour, given in Figure 6.

Figure 6: A 5 × 6 tour

In Figure 6 there is a site in the top right corner consisting of the lines (3, 4) and (9, 10).
If we were to place two copies of the tour on top of each other, labelling the two tours (1)i
to (30)i as in the introduction we see that the two sites {

(

(3)1, (4)1

)

,
(

(9)1, (10)1

)

} and
{
(

(3)2, (4)2

)

,
(

(9)2, (10)2

)

} are adjacent. Therefore we can form a tour on the 5 × 6 × 2
chessboard by gluing the two sites together, that is we remove the edges

(

(3)1, (4)1

)

and
(

(9)2, (10)2

)

and add in the edges
(

(3)1, (9)2

)

and
(

(4)1, (10)2

)

.
We generalize this example to prove the following Proposition, which is the key idea

in the paper.

Proposition 12. Given a bi-sited n1× . . .×nr tour and k > 2 then there exists a bi-sited

n1 × . . .× nr × k tour.

Proof. We start by taking k copies of the n1 × . . . × nr tour and place them on top of
each other, so as to cover the n1 × . . .× nr × k chessboard. Let us denote by [p1, i] and
[p2, i] the copies of the two sites in the ith copy of the tour, note that [pj, i] and [pj , i+ 1]
are adjacent for all 1 6 i 6 k− 1, 1 6 j 6 2. We glue together [p1, 1] and [p1, 2] and then
[p2, 2] and [p2, 3], continuing this way we glue together [p1, i] and [p1, i+ 1] for i even and
[p2, i] and [p2, i+ 1] for i odd. We started with k disjoint cycles covering K(n1, . . . , n2, k)
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and each time we glued two sites together we joined two cycles together. Hence at the
end we are left with a Hamiltonian cycle on K(n1, . . . , nr, k), an n1 × . . .× nr × k tour.

It remains to check that the tour is bi-sited, and indeed there are two sites we haven’t
used, [p2, 1] and [p2, k] if k is even and [p2, 1] and [p1, k] if k is odd.

Our plan is thus to construct bi-sited tours in of small dimension and use Proposition
12 to prove Theorem 3 inductively.

4 Into the proof

In this section we present a proof of our main result. As mentioned our plan is first
to construct bi-sited tours for low dimensional chessboards. We prove first that in 2
dimensions in fact all tours are bi-sited.

Proposition 13. Every closed tour on an n×m board is bi-sited.

Proof. First, there is no closed tour on a 2 ×m and on 4 ×m boards.
i) Case 3× m, for m > 10: Note that m is even. First one has (1, 1) which is linked
to (3, 2) and to (2, 3). The possible neighbors of (1, 3) are (3, 2),(2, 1), (3, 4), (2, 5), see
Figure 7. As we have a cycle, exactly two of them are linked to (1, 3) and three of them
are part of site. Then, there is at least one site. Secondly we repeat the argument for the
upper right corner and get a new site. Since m > 10, the two sites are edge disjoint.

Figure 7:

ii) Case n ×m, for n > 5, and m > 6: We flip the board and consider m × n. We
repeat twice the first part of the point i) for the sub-board of size 3× n that contains the
upper left corner and for the one that contains the lower left corner. We get two disjoint
sites.

Combining this with Proposition 12 already gives us a large family of high dimensional
tours.
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Corollary 14. If an n ×m tour exists then so does an n×m × p1.... × pr tour for any

p1, . . . , pr ∈ N \ {0}.

We were not able to prove an analogue to Proposition 13 for 3 dimensional boards,
however for our purposes it is enough to prove the existence of specific bi-sited tours, for
which we will rely on the construction of [3].

Theorem 15. Let 2 6 n 6 m 6 p. The n ×m × p chessboard has a bi-sited tour if and

only if the following conditions hold:

1. n, m, or p is even,

2. m > 3,

3. p > 4.

Proof. It is a simple, albeit lengthy check that the tours constructed in [3] are all bi-sited.
For completeness we have compiled a list of the sites with references to the Figures in [3]
which can be found in Appendix A.

We are now able to prove our main result which is a clear consequence of the following
theorem.

Theorem 16. Let 2 6 n1 6 n2 6 ... 6 nr, with r > 3. The n1 × . . .× nr chessboard has

a bi-sited tour if and only if the following conditions hold:

1. Some ni is even,

2. nr−1 > 3,

3. nr > 4.

We discuss the sufficient condition first.

Remark 17. We note first if condition a) does not hold then, as K(n1, . . . , nr) is bipartite,
no tour can exist by a simple parity consideration. Now if neither b) nor c) holds true,
notice that (2, 2, . . . , 2) is not connected to (2, 2, . . . , 1).

Proof. Keeping in mind the preceding remark, we focus on the necessary condition. We
proceed by induction on r. The case r = 3 is the content of Theorem 15. Given that the
result folds for all s < r and given 2 6 n1 6 ... 6 nr that satisfies the conditions of the
statement we see that 2 6 n2 6 ... 6 nr is an r− 1 tuple which satisfies the conditions of
the statement and hence by the induction hypothesis a bi-sited n2 × . . .× nr tour exists.
By Proposition 12 a bi-sited n2 × . . .× nr × n1 tour exists, and by so Remark 6 a bi-sited
n1 × n2 × . . .× nr tour exists.

An immediate consequence of Theorem 16 and of Remark 17 is:

Corollary 18. Let 2 6 n1 6 . . . 6 nr, r > 3. Suppose that some ni is even. Then the

n1 × . . . nr chessboard has a knight tour if and only if K(n1, . . . nr) is connected.
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5 Generalised knight tours on a chessboard

The knight’s tour is a specific case of many general questions. A natural one to ask would
be, what about more general moves? For example instead of the knight being able to
move (±1,±2) or (±2,±1) what if the knight could move (±α,±β) or (±β,±α)?

As in Section 2 we define the (α, β) knight graph on an n1 × . . .× nr chessboard, the
graph corresponding to all moves of a generalised knight, in the obvious way:

Definition 19. G = Kα,β(n1, . . . , nr) is the graph where

V (G) = {(i1, . . . , ir) : 1 6 ij 6 nj for all j}

and

E(G) = {
(

(a1, . . . , ar), (b1, . . . , br)
)

: there exists i1, i2 such that

|ai1 − bi1 | = α , |ai2 − bi2 | = β and aj = bj for all j 6= i1, i2}.

We define as before an (α, β)-tour on an n1 × . . . nr chessboard to be a Hamiltonian
cycle on the graph Kα,β(n1, . . . , nr) . For brevity’s sake we will refer to this as an n1 ×
. . .× nr (α, β)-tour. We refer to Figure 5 for an example.

Figure 8: A 10 × 10 (2, 3)-tour constructed by A. H. Frost [5]
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Remark 20. If an n1 × . . .× nr (α, β)-tour exists then α and β must be coprime. Indeed,
(1, 1, . . . , 1) is connected to (2, 1, 1 . . . , 1). Therefore, there are k, l ∈ Z such that kα+lβ =
1.

Our plan is to extend the concept of sites to this setting and show the methods of
Section 3 can be used to obtain an analogue of Proposition 12 for (α, β)-tours. As before
it will be instructive to consider examples in small dimensions first. Figure 5 shows a
10 × 10 (2, 3)-tour. If we look at the edges (1, 2) and (25, 26) we see that the squares 1
and 26 and the squares 2 and 25 are both three squares away from each other. Therefore
if we placed three copies of Figure 5 on top of each other, denoting the squares in the
ith copy (1)i to (100)i in the order they appear in the tour, we see that the squares (1)1

and (26)3 are a (2, 3) knight move away, as are the squares (2)1 and (25)3. Therefore we
could form an (2, 3)-tour of the first and third layers by starting at (1)1, moving to (26)3

and following the third tour to (25)3, then moving to (2)1 and following the first tour to
(1)1. Alternatively we can view this as deleting the edges

(

(1)1, (2)1

)

) and
(

(25)3, (26)3

)

)
and adding in the edges

(

(1)1, (26)3

)

) and
(

(2)1, (25)3

)

). Similarly if we looked at a pair
of edges like (30, 31) and (96, 97) where the squares 30 and 96 and the squares 31 and 97
are both two squares away from each other we could use the same idea to join two cycles
that are 3 layers apart.

With this in mind we extend the definitions in Section 3 in the obvious way, as before
we denote by (ei)i∈[1,r] the canonical basis of R

r.

Definition 21. We say that a pair of edges
(

a, b
)

and
(

c, d
)

in Kα,β(n1, . . . , nr) is an
α-site if there exist i1, i2

aj = cj and bj = dj, for all j /∈ {i1, i2}

and either

(|ai1 − ci1 |, |ai2 − ci2 |) = (|bi1 − di1|, |bi2 − di2 |) ∈ {(0, α), (α, 0)} (5)

or
(|ai1 − di1|, |ai2 − di2 |) = (|bi1 − ci1 |, |bi2 − ci2 |) ∈ {(0, α), (α, 0)} (6)

holds true.

Definition 22. We say two α-sites {(a, b), (c, d)} and {(e, f), (g, h)} in Kα,β(n1, . . . , nr)
are adjacent if they have the same i1 and i2 in Definition 21 and if there exists j /∈ {i1, i2}
such that

(a, b, c, d) ∈ (e, f, g, h) ± (βej, βej, βej, βej).

We note that if we have an n1 × . . . × nr (α, β)-tour that contains an α-site [p] and
we place β + 1 copies of the tour on top of each other, denoting by [p, i] the site in the
ith copy, so as to cover an n1 × . . . × nr × (β + 1) chessboard then [p, 1] is adjacent to
[p, β + 1]. Again this is the only property of Definition 22 that we will use.

Definition 23. Take two adjacent α-sites [p] = {(a, b), (c, d)} and [q] = {(e, f), (g, h)}.
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1. If [p] satisfies condition 5, we delete the edges (a, b) and (g, h) and add the edges
(a, g) and (b, h).

2. If [p] satisfies condition 6, we delete the edges (a, b) and (g, h) and add the edges
(a, h) and (b, g).

We say that [p] and [q] are glued.

We note, again with reference to Figure 5, that if the sites lie in disjoint cycles then
gluing the two sites together will join the cycles. The corresponding definitions for β-sites
are defined in the obvious manner.

Figure 9: Construction of a 10 × 10 × 7 (2, 3) tour

If we want to use these ideas to construct a 10 × 10 × k (2, 3)-tour in a similar
manner to Proposition 12 we have to be a bit cleverer. We give an example with
k = 7, note that Figure 5 contains two 2-sites and two 3-sites, all of which are edge
disjoint. p1 = {(1, 2), (25, 25)}, p1 = {(30, 31), (96, 97)}, q1 = {(53, 54), (89, 90)}, and
q2 = {(34, 35), (76, 77)}.

As before we can take 7 copies of Figure 5 to cover the 10 × 10 × 7 chessboard, but
now we can only use 2-sites and 3-sites to join cycles which are 3 and 2 layers apart
respectively. So, in the manner of Proposition 12, we can use our 2-sites to construct a
cycle on the layers {1, 4, 7}, and similarly on the layers {2, 5} and the layers {3, 6}. At
this point we have three disjoint cycles which cover the 10 × 10 × 7 chessboard and also,
since the sites were edge disjoint, each cycle still contains both the 3-sites on each layer.
Therefore we can use our 3-sites to join layer 1 and layer 3 and since both these sites are
in different cycles this will reduce the number of cycles to two. Finally we can use the
second 3-site to join layer 3 to layer 5, completing the tour, see Figure 9.

the electronic journal of combinatorics 19(4) (2012), #P9 13



For general α and β our strategy will be the same, use the α sites to construct a cycle
on the layers {i, β + i, 2β + i, ...} for 1 6 i 6 β, then use the β sites to join these cycles
together. With these ideas we can prove an analogue of Proposition 12 for (α, β)-tours.

Proposition 24. Given 2 6 n1 . . . 6 nr and k > α + β + 1. Suppose that the n1 × . . .×
nr chessboard has an (α, β)-tour which contains 2 α-sites and 2 β-sites, which are edge

disjoint. Then the n1× . . .×nr×k chessboard has an (α, β)-tour which contains 2 α-sites

and 2 β-sites, which are edge disjoint.

Proof. Let α > β, recall that by Remark 20 α and β are coprime. As before we start
by taking k copies of the n1 × . . . × nr (α, β)-tour, so as to cover the n1 × . . . × nr × k
chessboard. We note at this stage we have k disjoint cycles covering Kα,β(n1, . . . , nr, k).
Let us denote by [p1, i] and [p2, i] the two α-sites in the ith tour and similar by [q1, i] and
[q2, i] the two β-sites.

As in Proposition 12 we glue [p1, 1] and [p1, β+1], then [p2, β+1] and [p2, 2β+1] and
so on until we have a single cycle C1 which covers the layers

⋃

i≡1 mod β

(

n1 × . . .× nr, i
)

We do the same thing starting at [p1, i] for all i 6 β. At this point we have β disjoint
cycles, C1, . . . , Cβ , covering Kα,β(n1, . . . , nr, k). We note that Ci contains each β-site [q1, j]
and [q2, j] such that j ≡ i mod β. We now use these β-sites to join C1, . . . , Cβ into a
Hamiltonian cycle.

Let d1 := 1 and, for i ∈ [2, β] we set di ∈ [1, β] such that di = di−1+α mod β. Since α
and β are coprime, we stress that di is well-defined and that the map i 7→ di is a bijection
onto [1, β].

Now we glue [q1, 1] to [q1, 1 + α], noting that [q1, 1 + α] is in Cd2 . We then glue [q2, d2]
to [q2, d2 + α], noting that [q2, d2] is in Cd2 and [q2, d2 + α] is in Cd3 . We continue as such,
alternating sites, until all the cycles have been joined together. At this point we have
constructed a Hamiltonian cycle on Kα,β(n1, . . . , nr, k) and hence an n1 × . . . × nr × k
(α, β)-tour.

As in Proposition 12 it is a simple check that this construction leaves at least 2 α-sites
and 2 β-sites remaining.

We turn to the main result of this section. As in the (1, 2)-tour case, it is sufficient to
construct tours in a low dimension to show the existence of tours on all, sufficiently large,
chessboards in higher dimensions.

Theorem 25. Given α > β, n1, n2 > 2α + 1 and n3, . . . , nk > α + β + 1, if the n1 × n2

chessboard has an (α, β)-tour then the n1 × n2 × . . .× nk chessboard has an (α, β)-tour.

Proof. We first note that it is a straightforward generalization of Proposition 13 that for
n1, n2 > 2α+ 1 every (α, β)-tour on an n1 × n2 chessboard will contain 2 α-sites and 2 β-
sites. Therefore, as in the proof of Theorem 3, the result follows directly from Proposition
24
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It is not known in general for which α, β (α, β)-tours exist on sufficiently large chess-
boards. Knuth showed in [8] that in 2 dimensions if α > β then Kα,β(n1, n2) is connected
if and only if gcd(α+ β, α− β) = 1, n1 > 2α, and n2 > α+ β. In light of the conditional
nature of Theorem 25 it seems natural to conjecture

Conjecture 26. Take α, β such that gcd(α + β, α− β) = 1. Then, there exists M such
that an (α, β)-tour exists on all n1 × n2 chessboards, where n1 is even and n1, n2 > M .

Acknowledgements

We would like to thank Imre Leader for useful discussions and comments on the script.

A Bi-sited tours in 3 dimensions

Without going into the details, we give a rough idea of the approach of [3]. Given an
n×m× p chessboard that satisfies the conditions a), b) and c) in Theorem 2. Note that
at least one of them is even (say n). Then an n ×m× p chessboard can be written as a
union of the following ones: 2× 4× 4, 2× 4× 5, 2× 4× 6, 2× 4× 3, 2× 5× 5, 2× 5× 6,
2× 5× 3, 2× 6× 6, 2× 6× 3, 2× 7× 3, 4× 3× 3, 6× 3× 3. The list is rather long since
one has no closed knight tour for 2 × 2 × 3 and 2 × 3 × 3 boards. The authors construct
a knight tour for each elementary chessboard and describe a process for “gluing” these
tours together.

We study the tours of the elementary chessboards that are exhibited in [3]. For each
of them, we list two sites contained in the tour whose edges are not used in the process
of joining two tours together.

Figure Chessboard Sites
Figure 6 2 × 4 × 4 (4, 5, 11, 12), (1, 2, 21, 22)
Figure 11 2 × 4 × 5 (1, 2, 30, 31), (19, 20, 24, 25)
Figure 14 2 × 4 × 6 (7, 8, 26, 27), (14, 15, 46, 47)
Figure 17 2 × 4 × 3 (8, 9, 21, 22), (9, 10, 16, 17)
Figure 20 2 × 5 × 5 (8, 9, 25, 26), (12, 13, 45, 46)
Figure 26 2 × 5 × 3 (3, 4, 21, 22), (9, 10, 15, 16)
Figure 29 2 × 6 × 6 (16, 17, 57, 58), (23, 24, 69, 70)
Figure 32 2 × 6 × 3 (6, 7, 15, 16), (8, 9, 17, 18)
Figure 35 2 × 7 × 3 (2, 3, 25, 26), (6, 7, 19, 20)
Figure 39 4 × 3 × 3 (3, 4, 35, 36), (11, 12, 15, 16)
Figure 40 6 × 3 × 3 (2, 3, 5, 6), (10, 11, 15, 16)

We have not included Figure 23 of [3], the 2 × 5 × 6 chessboard, since this is in fact
not a cycle. Indeed, one sees that 1 cannot be reached from 60. To fix this, we propose
to take:

We replace the table following the board, i.e., the table on the top of page 9. By
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Figure 10: A 5 × 6 × 2 bi-sited tour replacing Figure 23 of [3].

Delete edges Create edges
Vertical 11 − 12 top board, 38 − 39 bottom board 11 − 38, 12 − 39
Horizontal 58 − 59 left board, 47 − 48 right board 58 − 47, 59 − 48
Front 27 − 28 front board, 10 − 11 back board 27 − 10, 28 − 11

Giving us a final line of the above table:

Figure Chessboard Sites
Figure 23 5 × 6 × 2 (2, 3, 46, 47), (7, 8, 23, 24)

In every case there are two edge disjoint sites. Then, following the proof of Theorem 2
in [3], we get that the n×m×p chessboard has a closed knight tour which is obtained by
gluing together tours coming from the elementary chessboards that we have just discussed.
Therefore, the tour will be is bi-sited.
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Histoire de l’Académie Royale des Sciences et des Belles-Lettres de Berlin, vol. 15,
310–337, 1759.

[5] M. Frolow. Les Carrés Magiques. Plate VII, 1886.

[6] M. Hindry. Arithmetics. Springer, 2011.

the electronic journal of combinatorics 19(4) (2012), #P9 16



[7] M. R. Keen. The knight’s tour, http://www.markkeen.com/knight/index.html

[8] D. E. Knuth. Leaper Graphs. Math. Gazette, 78, 274–297, 1994.

[9] A. Kumar. Magic Knight’s Tours in Higher Dimensions. arXiv:1201.0458.

[10] I. Parberry. An Efficient Algorithm for the Knight’s Tour Problem. Discrete Applied

Mathematics, Vol. 73, 251–260, 1997.

[11] Y. Qing and J. J. Watkins. Knight’s Tours for Cubes and Boxes. Congressus

Numerantium, 181, 41–48, 2006.

[12] A. J. Schwenk. Which Rectangular Chessboards have a Knight’s Tour? Mathematics

Magazine, 64:5, 325–332, 1991.

[13] I. Stewart. Solid Knight’s Tours. Journal of Recreational Mathematics, Vol. 4 (1),
1971.

[14] J. J. Watkins. Across the board: the mathematics of chessboard problems. Princeton

University Press, Princeton, NJ, ISBN: 0-691-11503-6, 2004.

[15] J. J. Watkins. Knight’s tours on cylinders and other surfaces. Congr. Numer., 143,
117–127, 2000.

[16] J. J. Watkins. Knight’s tours on a torus. Mathematics Magazine, 70:3, 175–184,
1997.

the electronic journal of combinatorics 19(4) (2012), #P9 17

http://www.markkeen.com/knight/index.html
http://arxiv.org/abs/1201.0458

	Introduction
	Notation
	Looking for patterns
	Into the proof
	Generalised knight tours on a chessboard
	Bi-sited tours in 3 dimensions

