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Abstract
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ous statistics. The generating functions obtained involve refinements
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1 Introduction

The study of statistics on permutation pairs was initiated by Carlitz, Scoville,
and Vaughan [4]. Stanley [18] q-extended their work to finite sequences of
permutations. In [6], we exploited the recursive technique of Carlitz et. al.
to obtain some additional refinements. We also discussed numerous related
distributions. Our purpose here is to further extend the study of statistics on
finite permutation sequences. Our method is based on the theory of inversion
presented in [7]. For clarity, we primarily focus on permutation pairs.

Let Sn denote the symmetric group on {1, 2, . . . , n}. For a permutation
σ = σ(1)σ(2) · · ·σ(n) ∈ Sn, the descent and rise sets are defined as

Desσ = {i : 1 ≤ i ≤ n− 1, σ(i) > σ(i+ 1)} ,

Ris σ = {i : 1 ≤ i ≤ n− 1, σ(i) < σ(i+ 1)} .
These sets are of course complementary relative to {1, 2, . . . , n − 1}. The
descent and rise numbers of σ are respectively defined to be the cardinalities
of Des σ and Ris σ, that is,

des σ = |Desσ| and risσ = |Ris σ| .
Furthermore, let

majσ =
∑

k∈Des σ

k , comajσ =
∑

k∈Des σ

(n− k) ,

rinσ =
∑

k∈Ris σ

k , corin σ =
∑

k∈Ris σ

(n − k) .

The statistics in the first column were originally referred to as the greater and
lesser indices by Major MacMahon [16]. Many authors have since adopted
the term major index for the former. Being the sum of the rise indices, we
will refer to rinσ as the rise index. The statistics of the second column
will respectively be called the comajor and corise indices. Since Des σ and
Ris σ are complementary, des σ + ris σ = n − 1, maj σ + rinσ =

(
n
2

)
, and

comajσ + corin σ =
(
n
2

)
.

We also consider the number of common iddescents of a permutation pair;
for (α, β) in the cartesian product S2

n = Sn × Sn, let

iddes(α, β) = |Desα−1
⋂

Desβ−1|
where σ−1 denotes the inverse of σ.
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Our initial results involve the first two terms of a sequence {J (i,j)
ν }ν≥0 of

refined bibasic Bessel functions. For a positive integer n, let

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1) .

By convention, (a; q)0 = 1. The q-binomial coefficient (or Gaussian polyno-
mial ) is defined to be [

n
k

]
q

=
(q; q)n

(q; q)k(q; q)n−k

when 0 ≤ k ≤ n and to be 0 when k > n. The function J (i,j)
ν is defined as

J (i,j)
ν (z; q, p) =

∑
n≥0

(−1)nq(
n+ν

2 )
[
i+ 1
n+ ν

]
q

[
j + n
n

]
p

zn+ν .

A few properties of {J (i,j)
ν }ν≥0 are worth immediate remark. First, J(i−1,j)

0

is a Hadamard product of the two series appearing in the q-binomial theorem
and q-binomial series ([1, p. 36]):

q-Binomial Theorem (t; q)i =
∑
n≥0(−1)nq(

n
2)
[
i
n

]
q

tn .

q-Binomial Series For |q|, |t| < 1, 1/(t; q)j+1 =
∑
n≥0

[
j + n
n

]
q

tn .

Also note that J (i−1,j)
0 (z; q, 0) = (z; q)i.

Second, for |q|, |p| < 1, special cases of the function

Jν(z; q, p) = lim
i,j→∞

J(i,j)
ν (z; q, p) =

∑
n≥0

(−1)nq(
n+ν

2 )zn+ν

(q; q)n+ν(p; p)n

arise in a variety of other contexts. As demonstrated by Delest and Fedou [5],
the coefficient of qmzn in the expansion of the quotient J1(zq; q, q)/J0(zq; q, q)
is equal to the number of skew Ferrers’ diagrams (also known as parallelo-
gram polyominoes) having n columns and area m. Also, J0(−z; q, 0) is the
second q-analogue of the exponential function [11, p. 9], often denoted by

Eq(z). Finally, omitting q(
n+ν

2 ) and replacing zn+ν in the series Jν(z; q, q) by
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(z/2)2n+ν gives one of the sequences of q-Bessel (or basic Bessel) functions
originally studied by Jackson [15] and further explored by Ismail [14]. Thus,
J (i,j)
ν (z; q, p) is indeed a refined bibasic Bessel function.

Several theorems could be used to demonstrate our method. Our first ob-
jective will be on determining the distribution of (iddes; des, comaj, ris, corin)
over unrestricted pairs in S2

n and over restricted pairs (α, β) ∈ S2
n with

β(1) = n. In sections 3 through 7, we prove

Theorem 1 The generating functions for the sequences

An(t, x, y, q, p) =
∑

(α,β)∈S2
n

tiddes(α,β)xdesαqcomajαyris βpcorinβ ,

A1
n(t, x, y, q, p) =

∑
{(α,β)∈S2

n : β(1)=n}
tiddes(α,β)xdesαqcomajαyris βpcorin β

(1)

are ∑
n≥0

An(t, x, y, q, p)zn

(x; q)n+1(y; p)n+1

=
∑
i,j≥0

xiyj
1− t

J
(i,j)
0 (z(1− t); q, p)− t

, (2)

∑
n≥0

A1
n+1(t, x, y, q, p)zn+1

(x; q)n+2(y; p)n+1

=
∑
i,j≥0

xiyj
J

(i,j)
1 (z(1− t); q, p)

J (i,j)
0 (z(1− t); q, p)− t

. (3)

For comparison with previously obtained results on permutations and per-
mutation pairs, a number of corollaries are presented in the next section.

Other closely related five-variate distributions on permutation pairs are
considered in section 8. Specifically, we give the generating functions for
the distribution of (iddes; des, comaj, ris, corin) over pairs (α,β) ∈ S2

n satisfy-
ing α(1) = n and for the distributions of (iddes; des, comaj, des, comaj) and
(iddes; ris, corin, ris, corin) for unrestricted and restricted pairs in S2

n. The
corresponding refined bibasic Bessel functions are variations on J(i,j)

ν . In
section 9, we give two theorems for finite sequences of permutations which
contain the ones for permutation pairs as special cases.

2 Selected Corollaries

Multiplying (2) and (3) through by (1− x)(1− y) and then taking the limit
as x, y → 1− leads respectively to the following corollaries:
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Corollary 1 The distribution of (iddes; comaj, corin) on S2
n is generated by

∑
n≥0

An(t, 1, 1, q, p)zn

(q; q)n(p; p)n
=

1− t
J0(z(1− t); q; p)− t .

Corollary 2 The distribution of (iddes; comaj, corin) on pairs (α, β) ∈ S2
n+1

satisfying the condition β(1) = n+ 1 is generated by

∑
n≥0

A1
n+1(t, 1, 1, q, p)zn+1

(q; q)n+1(p; p)n
=

J1(z(1− t); q, p)

J0(z(1− t); q, p)− t .

These corollaries are equivalent to special cases of Theorems 2 and 4 in [6].
Several equivalent distributions are discussed in section 4 of [6]. Corollary 1
is essentially due to Stanley [18].

Further replacing z by z(1−q)(1−p) in Corollary 1 and letting q, p→ 1−

gives the initial result on permutation pairs due to Carlitz et al. [4]:

Corollary 3 The distribution of iddes over S2
n is generated by

∑
n≥0

An(t, 1, 1, 1, 1)zn

n!n!
=

1− t∑
n≥0(−1)nzn/n!n! − t

.

By appropriately selecting the values of various parameters, it is also
possible to obtain generating functions for the analogues of the Eulerian
polynomials of Carlitz [2, 3] and of Stanley [18] respectively defined by

Cn(y, p) =
∑
σ∈Sn

yris σprinσ and Sn(t, q) =
∑
σ∈Sn

tdesσqinv σ

where invσ denotes the number of inversions of σ, that is, the number of pairs
(i, j) such that 1 ≤ i < j ≤ n and σ(i) > σ(j). The bijective techniques of
Foata [8] may be easily adapted to show that

Cn(y, p) =
∑
σ∈Sn

yris σpcorinσ and Sn(t, q) =
∑
σ∈Sn

tides σqcomaj σ

where idesσ = des σ−1. When x = 0, the only pairs contributing non-zero
weight in (1) are of the form (12 . . . n, β). Thus, An(1, 0, y, 0, p) = Cn(y, p).
Similarly, An(t, 1, 0, q, 0) = Sn(t, q). We therefore have the following imme-
diate corollaries of (2):
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Corollary 4 The distribution of (ris, corin) over Sn is generated by

∑
n≥0

Cn(y, p)zn

(y; p)n+1

=
∑
j≥0

yj

1− [j + 1]p z

where [j + 1]p = (1− pj)/(1− p).

Corollary 5 (Stanley) The distribution of (des, inv) on Sn is generated by

∑
n≥0

Sn(t, q)zn

(q; q)n
=

1− t
Eq(−z(1− t))− t

where Eq(z) = J0(−z; q, 0).

Another generating function for Cn(y, p) was given by Garsia [9].

3 A key partition lemma

In proving Theorem 1, we make repeated use of a result on partitions. For
later purposes, we present this result in the language of the free monoid.

Let A be an alphabet, that is, a non-empty set whose elements are referred
to as letters. A finite sequence (possibly empty) w = a1a2 . . . an of n letters
is said to be a word of length n. The length of w will be denoted by l(w).
The empty word is signified by 1. The set of all words that may be formed
with the letters from A along with the concatenation product is known as
the free monoid generated by A and is denoted by A∗. We let An signify the
set of words in A∗ of length n.

To state the needed partition result, we select the alphabet N of non-
negative integers and let Nr = {0, 1, 2, . . . , r}. For w = a1a2 . . . an ∈ Nn,
set

‖w‖ = a1 + a2 + . . . + an .

For K ⊆ {1, 2, . . . , n− 1}, a partition belonging to the set

Cnr (K) = {γ = γ1γ2 . . . γn ∈ Nn
r : γ1 ≤ γ2 ≤ . . . ≤ γn, γk < γk+1 if k ∈ K}

has at most n parts (each bounded by r) and is said to be compatible with
K. We define the index of a set K ⊆ {1, 2, . . . , n− 1} to be
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indK =
∑
k∈K

(n− k) .

For σ ∈ Sn, note that ind(Desσ) = comajσ and ind(Risσ) = corinσ. The
key partition result for the coming argumentation is

Lemma 1 For K ⊆ {1, 2, . . . , n− 1} and r a non-negative integer,

∑
γ∈Cnr (K)

q‖γ‖ = qindK

[
r − |K|+ n

n

]
q

.

Proof. This is a trivial consequence of a well-known result in the theory of
partitions. As may be referenced in [1, p. 33],

∑
0≤λ1≤λ2≤...≤λn≤s

q‖λ‖ =

[
s+ n
n

]
q

(4)

where λ = λ1λ2 . . . λn. Suppose γ = γ1γ2 . . . γn ∈ Cnr (K). The bijection
γ1γ2 . . . γn → λ1λ2 . . . λn defined by λj = (γj − |{i ∈ K : i < j}|) satisfies the
properties that 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn ≤ (r − |K|) and ‖γ‖ = ‖λ‖+ indK.
The desired result then follows from (4).

4 Words by θ-adjacencies

The essence of our proof to Theorem 1 relies on two inversion theorems that
enumerate words in the free monoid by θ-adjacencies. Let θ be a binary
relation on the alphabet A. A word w = a1a2 . . . an ∈ An is said to have a
θ-adjacency in position k if akθak+1. The set of θ-adjacencies and the number
of θ-adjacencies of w = a1a2 . . . an are respectively denoted by

θAdjw = {k : 1 ≤ k ≤ n− 1, akθak+1} and θadjw = |θAdjw| .

An element of the set TA,θ = {w = a1a2 . . . al(w) ∈ A∗ : a1θa2θ . . . θal(w)}
is said to be a θ-chain. We let T +

A,θ denote the set of θ-chains of positive
length. In Z[t] << A >>, the algebra of formal power series on A∗ with
coefficients from the ring of polynomials in t having integer coefficients, the
following inversion formulas hold:
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Theorem 2 Words by θ-adjacencies are generated by

∑
w∈A∗

tθadjww =
1

1 +
∑
w∈T +

A,θ
(−1)l(w)(1− t)l(w)−1w

.

Theorem 3 For a non-empty set X ⊆ A, let A∗X = {va ∈ A∗ : a ∈ X}.
Then, words ending in a letter from X by θ-adjacencies are generated by

∑
w∈A∗X

tθadjww =
−∑w∈TA,θX (−1)l(w)(1− t)l(w)−1w

1 +
∑
w∈T +

A,θ
(−1)l(w)(1− t)l(w)−1w

where TA,θX = {va ∈ TA,θ : a ∈ X} and where the ratio is to be interpreted
as the product of the reciprocal of its denominator (the left factor) with its
numerator (the right factor).

A number of related theories of inversion [12, 13, 18, 20, 21] have been devel-
oped and applied to a wide range of combinatorial problems. Both Theorems
2 and 3 may be readily deduced from the theory of inversion presented in [7].

5 The role played by Theorems 2 and 3

To see precisely how Theorems 2 and 3 intervene in the proof of Theorem 1,
we first rewrite them as∑

w∈A∗
tθadjww =

1− t∑
w∈TA,θ (−1)l(w)(1− t)l(w)w − t

, (5)

∑
w∈A∗X

tθadjww =
−∑w∈TA,θX (−1)l(w)(1− t)l(w)w∑
w∈TA,θ (−1)l(w)(1− t)l(w)w − t

. (6)

Next, let θ be the binary relation on N×N consisting of the pairs
((

i
j

)
,
(
k
m

))
satisfying i > k and j ≥ m;(

i

j

)
θ

(
k

m

)
⇐⇒ i > k and j ≥ m . (7)
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Thus, the set of θ-adjacencies for a biword
(
v
w

)
=
(
a1a2...an
b1b2...bn

)
∈ (N ×N)n is

θAdj

(
v

w

)
= {k : 1 ≤ k ≤ n− 1, ak > ak+1, bk ≥ bk+1} .

Moreover,
(
v
w

)
=
(
a1a2...an
b1b2...bn

)
∈ (Ni ×Nj)n is a θ-chain if and only if

i ≥ a1 > a2 > . . . > an and j ≥ b1 ≥ b2 ≥ . . . ≥ bn. (8)

As will be seen, the crucial step in establishing Theorem 1 is the evalua-
tion of

∑
(vw)∈(Ni×Nj)∗

tθadj (vw)W

(
v

w

)
and

∑
(vw)∈(Ni×Nj)∗Xi

tθadj (vw)W

(
v

w

)

where Xi denotes the set of biletters Ni × N0 = {
(
k
0

)
: 0 ≤ k ≤ i} and

where W is the homomorphism on (N ×N)∗ obtained by multiplicatively

extending the weight W
(
i
j

)
= qipjz defined on each

(
i
j

)
∈ N ×N . In view of

(5) and (6), this can be accomplished by computing a sum of the form

∑
(−1)l(

v
w)(1− t)l(

v
w)W

(
v

w

)
(9)

twice; once summed over the set TNi×Nj ,θ of θ-chains in (Ni ×Nj)
∗ and once

summed over the set TNi×Nj ,θXi of θ-chains ending in a biletter from Xi.
By (8), expression (9) summed over TNi×Nj ,θ is equal to∑

n≥0

(−1)n(1− t)nzn
∑

i≥a1>a2>...>an≥0

q‖v‖
∑

j≥b1≥b2≥...≥bn≥0

p‖w‖

which, by Lemma 1, reduces to

∑
n≥0

(−1)nq(
n
2)
[
i+ 1
n

]
q

[
j + n
n

]
p

(1− t)nzn = J(i,j)
0 (z(1− t); q, p) .

Summarizing, we have established that

∑
(vw)∈TNi×Nj,θ

(−1)l(
v
w)(1− t)l(

v
w)W

(
v

w

)
= J (i,j)

0 (z(1− t); q, p) .
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Similarly,

∑
(vw)∈TNi×Nj,θXi

(−1)l(
v
w)(1− t)l(

v
w)W

(
v

w

)
= −J(i,j)

1 (z(1− t); q, p) .

The last two identities together with (5) and (6) imply

∑
(vw)∈(Ni×Nj )∗

tθadj(vw)W

(
v

w

)
=

1− t
J(i,j)

0 (z(1− t); q, p) − t
, (10)

∑
(vw)∈(Ni×Nj)∗Xi

tθadj(vw)W

(
v

w

)
=

J
(i,j)
1 (z(1− t); q, p)

J(i,j)
0 (z(1− t); q, p) − t

. (11)

6 Component bijections

To connect the left-hand sides of (10) and (11) with pairs of permutations,
we have the following lemma.

Lemma 2 For each n ≥ 0, there is a bijection f × g from the set

{
(
α, γ

β, µ

)
: α, β ∈ Sn, γ ∈ Cni (Desα), µ ∈ Cnj (Risβ)}

to the set (Ni ×Nj)
n such that, if

f × g
(
α, γ

β, µ

)
=

(
f(α, γ)

g(β, µ)

)
=

(
v

w

)
,

then ‖γ‖ = ‖v‖, ‖µ‖ = ‖w‖, and

k ∈ Desα−1
⋂

Des β−1 ⇐⇒ k ∈ θAdj

(
v

w

)
. (12)

Moreover, if w = b1b2 . . . bn, we have

β(1) = n whenever bn = 0 (13)
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Proof. The bijection f × g is described in terms of two component bijections
f and g. The map f sends elements from the set of pairs

{(α, γ) : α ∈ Sn, γ ∈ Cni (Desα)}

to the set Nn
i by

f (α, γ) = γα−1(1)γα−1(2) . . . γα−1(n) .

The inverse of f is easily described: For v = a1a2 . . . an ∈ Nn
i and s ≥ 0,

let Ps(v) = {r : ar = s}. Furthermore, let ↑ Ps(v) denote the increasing
word consisting of the integers from Ps(v) and ↑ v be the non-decreasing
rearrangement of v. Then,

f−1(v) = (↑ P0(v) ↑ P1(v) . . . ↑ Pi(v), ↑ v) .

As an illustration, v = 3 0 3 0 2 2 3 ∈ N 7
3 is mapped to

f−1(3 0 3 0 2 2 3) = (↑ {2, 4} ↑ ∅ ↑ {5, 6} ↑ {1, 3, 7}, ↑ 3 0 3 0 2 2 3)

= (2 4 5 6 1 3 7, 0 0 2 2 3 3 3) .

Note that 0 0 2 2 3 3 3 ∈ C7
3({4}). The bijection f−1 was previously used by

Garsia and Gessel [10] and in [17] in the study of statistics on Sn.
As a partial verification of (12), suppose f(α, γ) = a1a2 . . . an ∈ Nn

i , that
is, γα−1(k) = ak for 1 ≤ k ≤ n. ¿From the characterization of f−1 and from
the observation that Desα−1 consists of the integers k such that (k + 1)
appears to the left of k in α, we have k ∈ Desα−1 if and only if ak > ak+1.
Also note that ‖γ‖ = ‖a1a2 . . . an‖.

The bijection g is similarly defined from

{(β, µ) : β ∈ Sn, µ ∈ Cnj (Ris β)}

to Nn
j by setting

g(β, µ) = µβ−1(1)µβ−1(2) . . . µβ−1(n) .

For w = b1b2 . . . bn ∈ Nn
j , let ↓ Ps(w) denote the decreasing word consisting

of integers from the set Ps(w) = {r : br = s}. Then,

g−1(w) = (↓ P0(w) ↓ P1(w) . . . ↓ Pj(w),↑ w) .

The properties of g listed in Lemma 1 are easily verified.
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7 Proof of Theorem 1

Using the q-binomial series, the left-hand side of (2) expands as

∑
n≥0

zn
∑
i,j≥0

xiyj
i∑
l=0

j∑
k=0

An,l,k

[
i− l + n

n

]
q

[
j − k + n

n

]
p

where
An,l,k =

∑
tiddes(α,β)qcomajαpcorinβ

summed over pairs (α, β) ∈ S2
n satisfying desα = l and ris β = k. Combina-

tion with Lemma 1 gives

∑
n≥0

An(t, x, y, q, p)zn

(x; q)n+1(y; p)n+1
=
∑
i,j≥0

xiyj
∑
n≥0

zn
∑

(α,β)∈S2
n

tiddes(α,β)
∑

q‖γ‖p‖µ‖

where the last sum is over (γ, µ) ∈ Cni (Desα) × Cnj (Risβ). The bijection of
Lemma 2 then implies

∑
n≥0

An(t, x, y, q, p)zn

(x; q)n+1(y; p)n+1

=
∑
i,j≥0

xiyj
∑

(vw)∈(Ni×Nj)∗
tθadj (vw)W

(
v

w

)
. (14)

In view of (10), the proof of (2) is complete.
To establish (3), begin by noting that (13) implies that f×g is a bijection

from

{
(
α, γ

β, µ

)
: α, β ∈ Sn, β(1) = n, γ ∈ Cni (Desα), µ ∈ Cnj (Risβ), µ1 = 0}

to the set (Ni × Nj)
n−1Xi where Xi = Ni × N0. Then, by steps similar to

those used in deriving (14), it may be shown that

∑
n≥0

A1
n+1(t, x, y, q, p)zn+1

(x; q)n+2(y; p)n+1

=
∑
i,j≥0

xiyj
∑

(vw)∈(Ni×Nj )∗Xi

tθadj (vw)W

(
v

w

)
.

Together with (11), this implies (3).
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8 Other distributions on permutation pairs

With the aim of presenting theorems for finite sequences of permutations, we
give the generating functions for some other five-variate distributions on S2

n.
We first consider (iddes; des, comaj, ris, corin) over pairs (α, β) ∈ S2

n with
α(1) = n. Let

B1
n(t, x, y, q, p) =

∑
{(α,β)∈S2

n : α(1)=n}
tiddes(α,β)xdesαqcomajαyris βpcorinβ .

The sequence of refined bibasic Bessel functions

F (i,j)
ν (z; q, p) =

∑
n≥0

(−1)nq(
n+ν

2 )
[
i
n

]
q

[
j + n+ ν
n+ ν

]
p

zn+ν

plays the role of J(i,j)
ν . Actually, F

(i+1,j)
0 = J

(i,j)
0 . Define θ as in (7). Since

f × g is a bijection from the set

{
(
α, γ

β, µ

)
: α, β ∈ Sn, α(1) = n, γ ∈ Cni (Desα), γ1 = 0, µ ∈ Cnj (Ris β)}

to the set ((Ni\{0}) ×Nj)
n−1Yj where Yj = N0 × Nj, computations similar

to those of sections 5 and 7 may be used to verify

Theorem 4 The sequence {B1
n+1}n≥0 is generated by

∑
n≥0

B1
n+1(t, x, y, q, p)zn+1

(x; q)n+1(y; p)n+2

=
∑
i,j≥0

xiyj
F

(i,j)
1 (z(1− t); q, p)

F (i+1,j)
0 (z(1− t); q, p)− t

.

Next, we determine the distribution of (iddes; des, comaj, des, comaj)
over unrestricted and restricted permutation pairs. Define Cn(t, x1, x2, q1, q2)
and C1

n(t, x1, x2, q1, q2) to be∑
(α,β)

tiddes(α,β)xdesα
1 qcomajα

1 xdes β
2 qcomaj β

2

summed respectively over S2
n and over pairs in S2

n with β(1) = n. The
appropriate sequence of refined bibasic Bessel functions is

G(i1,i2)
ν (z; q1, q2) =

∑
n≥0

(−1)nq
(n+ν

2 )
1 q

(n+ν
2 )

2

[
i1 + 1
n + ν

]
q1

[
i2
n

]
q2

zn+ν .
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Let φ be the binary relation on N ×N consisting of the pairs
((

i
j

)
,
(
k
m

))
such

that i > k and j > m. The map f × f from

{
(
α, γ

β, µ

)
: α,β ∈ Sn, γ ∈ Cni1(Desα), µ ∈ Cni2(Des β)}

to the set (Ni1 ×Ni2)
n defined by

f × f
(
α, γ

β, µ

)
=

(
f(α, γ)

f (β, µ)

)
=

(
v

w

)

is a bijection satisfying the properties that ‖γ‖ = ‖v‖, ‖µ‖ = ‖w‖, and

k ∈ Desα−1
⋂

Desβ−1 ⇐⇒ k ∈ φAdj

(
v

w

)
.

Then, proceeding as in sections 5 and 7, we have

Theorem 5 The sequences {Cn}n≥0 and {C1
n+1}n≥0 are respectively gener-

ated by

∑
n≥0

Cn(t, x1, x2, q1, q2)zn

(x1; q1)n+1(x2; q2)n+1
=

∑
i1,i2≥0

xi11 x
i2
2

1− t
G(i1,i2+1)

0 (z(1− t); q1, q2)− t
,

∑
n≥0

C1
n+1(t, x1, x2, q1, q2)zn+1

(x1; q1)n+2(x2; q2)n+1

=
∑

i1,i2≥0

xi11 x
i2
2

G(i1,i2)
1 (z(1− t); q1, q2)

G
(i1,i2+1)
0 (z(1− t); q1, q2)− t

.

Finally, we consider the distribution of (iddes; ris, corin, ris, corin). Define
Dn(t, y1, y2, p1, p2) and D1

n(t, y1, y2, p1, p2) to be∑
(α,β)

tiddes(α,β)yrisα
1 pcorinα

1 yris β
2 pcorinβ

2

summed respectively over S2
n and over pairs in S2

n with β(1) = n. Set

H(j1,j2)
ν (z; p1, p2) =

∑
n≥0

(−1)n
[
j1 + n+ ν
n+ ν

]
p1

[
j2 + n
n

]
p2

zn+ν .

Take δ to be the binary relation on N ×N consisting of the pairs
((

i
j

)
,
(
k
m

))
such that i ≥ k and j ≥ m. Using the bijection g × g, we obtain
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Theorem 6 The sequences {Dn}n≥0 and {D1
n+1}n≥0 are respectively gener-

ated by

∑
n≥0

Dn(t, y1, y2, p1, p2)z
n

(y1; p1)n+1(y2; p2)n+1

=
∑

j1,j2≥0

yj11 y
j2
2

1− t
H

(j1,j2)
0 (z(1− t); p1, p2)− t

,

∑
n≥0

D1
n+1(t, y1, y2, p1, p2)zn+1

(y1; p1)n+2(y2; p2)n+1

=
∑

j1,j2≥0

yj11 y
j2
2

H
(j1,j2)
1 (z(1− t); p1, p2)

H(j1,j2)
0 (z(1− t); p1, p2)− t

.

9 Permutation sequences

We now consider distributions on finite sequences of permutations. For inte-
gers r, s ≥ 0 not both zero, let i = (i1, i2, . . . , ir) and j = (j1, j2, . . . , js). Se-
lect U ⊆ {1, 2, . . . , r} and V ⊆ {1, 2, . . . , s}. Further let i(U) = (i′1, i

′
2, . . . , i

′
r)

where i′l = il if l /∈ U and i′l = il + 1 if l ∈ U .
The required multibasic extension of the previously appearing sequences

of refined bibasic Bessel functions is defined by

K(i , j)
ν (z;U, V ) =

∑
n≥0

(−1)nQ1 Q2 P1 P2 z
n+ν

where

Q1 =
∏
l/∈U

q
(n+ν

2 )
l

[
il + 1
n+ ν

]
ql

, Q2 =
∏
l∈U

q
(n+ν

2 )
l

[
il
n

]
ql

,

P1 =
∏
m/∈V

[
jm + n+ ν
n+ ν

]
pm

, P2 =
∏
m∈V

[
jm + n
n

]
pm

.

For r = s = 1 with U = ∅ and V = {1}, note that K(i , j)
ν (z; ∅,{1}) =

J (i1 , j1)
ν (z; q1, p1). For r = 2, s = 0, U = {2}, and V = ∅, we have
K(i , j)
ν (z; {2}, ∅) = G(i1 , i2)

ν (z; q1, q2). Similar choices of r, s, U , and V give
the other refined bibasic Bessel functions appearing in section 8.

We define the number of common iddescents of a sequence (α;β) =
(α1, α2, . . . , αr;β1, β2, . . . , βs) ∈ Srn × Ssn to be

iddes(α; β) = |
r⋂

k=1

Desα−1
k

⋂ s⋂
m=1

Desβ−1
m | .
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Furthermore, set

xdesα = xdesα1
1 xdesα2

2 . . . xdesαr
r and yris β = yris β1

1 yris β2
2 . . . yris βs

s .

The symbols qcomajα and pcorinβ are to be similarly interpreted. Finally, let

Mn(t, U, V ) =
∑

tiddes(α;β)xdesαqcomajαyris βpcorin β

where the sum is over all (α,β) ∈ Srn × Ssn with αl(1) = n for l ∈ U and
βm(1) = n for m ∈ V . Then, the map f (r) × g(s) consisting of r copies of
the component bijection f and s copies of the component bijection g along
with judicious use of the analysis of sections 5 and 7 imply our theorems on
permutation sequences:

Theorem 7 The sequence {Mn(t, ∅, ∅)}n≥0 is generated by

∑
n≥0

Mn(t, ∅,∅)zn
(x; q)n+1(y; p)n+1

=
∑
i,j≥0

xiyj (1− t)
K

(i(U) , j)
0 (z(1− t);U, V )− t

where (x; q)n = (x1; q1)n · · · (xr; qr)n and (y; p)n = (y1; p1)n · · · (ys; ps)n.

Theorem 8 Provided that U and V are not both empty and their comple-
ments are not both empty, the sequence {Mn+1(t, U, V )}n≥0 is generated by

∑
n≥0

Mn+1(t, U, V )zn+1

(x,y; q,p)cn+2(x,y; q,p)n+1

=
∑

i, j≥0

xiyj K
(i , j)
1 (z(1− t))

K(i(U) , j)
0 (z(1− t);U, V )− t

where (x,y; q,p)cn =
∏
l /∈U (xl; ql)n

∏
m/∈V (ym; pm)n and

(x,y; q,p)n =
∏
l∈U(xl; ql)n

∏
m∈V (ym; pm)n.

Taking the limit as x, y → 1 and setting qi = 1, 1 ≤ i ≤ r, in Theorem 7
gives a result equivalent to one obtained by Stanley [18].
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