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Abstract

We extend the colourful complete bipartite subgraph theorems of [G. Simonyi,
G. Tardos, Local chromatic number, Ky Fan’s theorem, and circular colorings, Com-
binatorica 26 (2006), 587–626] and [G. Simonyi, G. Tardos, Colorful subgraphs of
Kneser-like graphs, European J. Combin. 28 (2007), 2188–2200] to more general
topological settings. We give examples showing that the hypotheses are indeed
more general. We use our results to show that the topological bounds on chro-
matic numbers of digraphs with tree duality are at most one better than the clique
number. We investigate combinatorial and complexity-theoretic aspects of relevant
order-theoretic maps.
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1 Introduction

For any proper colouring c of a graph G and any linear ordering of the colours, G contains
a path with k = χ(G) vertices all of which have different colours, appearing in increasing
order along the path. Indeed this is a consequence of the classical result of Gallai on
colourings and orientations: If we orient each edge towards its endpoint with the larger
colour, we get an acyclic orientation of a k-chromatic graph, which must contain a directed
k-path, that is, a path with k colours appearing in increasing order. Furthermore if c uses
only k = χ(G) colours, we can say more: According to an exercise in Douglas West’s
textbook [28], if T is any tree on k vertices labeled by the colours, then G contains a
coloured copy of T .

These are elementary examples of “colourful subgraph” theorems. The existence of
graphs with large girth and large chromatic number shows that trees cannot be replaced
by other types of graphs in these results. Also, the existence of graphs with local chromatic
number 3 and large chromatic number (see [9]) shows that if c uses more than k = χ(G)
colours, then G is not even guaranteed to contain a claw using four different colours. So
these two colourful subgraph results cannot be extended in the general case.

Nonetheless, the context of the local chromatic number prompted the authors of [24,
25] to investigate analogous results involving colourful complete bipartite subgraphs. They
had to restrict their attention to classes of graphs with suitable structural properties. As
their results show, effective criteria exist among the topological obstructions to having a
small chromatic number, measured by indices and coindices of complexes associated with
graphs, in the spirit of [8, 17, 18].

Theorem 1 (Zig-zag theorem [24]). Let G be a graph such that coind(B0(G)) + 1 > t.

Let c be a proper colouring of G by an arbitrary number of colours. We assume the

colours are linearly ordered. Then G contains a complete bipartite subgraph K⌈ t
2⌉,⌊

t
2⌋

such that c assigns distinct colours to all t vertices of this subgraph and these colours

appear alternating on the two sides of the bipartite subgraph with respect to their order.

The parameter coind(B0(G)) used in this result is the “coindex of the box complex
B0(G)”; for its definition see Section 3. The inequality χ(G) > coind(B0(G)) + 1 belongs
to a hierarchy of topological lower bounds for χ(G) that will also be discussed in Section
3. When the bound is tight, more can be said about the structure of colourings:

Theorem 2 (Colourful Kl,m theorem [25]). Let G be a graph for which χ(G) =
coind(B0(G)) + 1 = t. Let c : V (G) → {1, . . . , t} be a proper colouring of G and let

A,B ⊆ {1, . . . , t} form a bipartition of the colour set, i.e., A ∪ B = {1, . . . , t} and

A ∩ B = ∅.
Then there exists a complete bipartite subgraph Kl,m of G with sides L,M such that

|L| = l = |A|, |M | = m = |B|, and {c(v) : v ∈ L} = A, and {c(v) : v ∈ M} = B. In

particular, this Kl,m is completely multicoloured by c.

Theorems 1 and 2 were proved using results from algebraic topology, namely Ky Fan’s
theorem for Theorem 1 and the Tucker-Bacon theorem for Theorem 2 (both of which

the electronic journal of combinatorics 20(1) (2013), #P10 2



are equivalent versions of the celebrated Borsuk-Ulam theorem, see [2]). Here we present
extensions of Theorems 1 and 2 using the parameter ind(Hom(K2, G)) + 2 instead of
coind(B0(G)) + 1. Our extension of Theorem 1 is purely discrete and order-theoretic,
while the extension of Theorem 2 (communicated to us by Carsten Schultz) uses the
continuum in an essential way.

The paper is structured as follows: In Section 2, we present order-theoretic prereq-
uisites, and an order-theoretic version of Theorem 1. Then we move on to topological
spaces in Section 3, where we prove the main results. In Section 4 we apply our results
to the class of digraphs with tree duality, to show that for these digraphs all the stan-
dard topological lower bounds on the chromatic number give a bound at most one better
than the clique number. Finally in Section 5, we explore the complexity aspects of the
order-theoretic context.

2 Z2-posets

Two sets A,B of vertices of a graph G are said to be totally joined if every vertex of
A is adjacent to every vertex of B. We denote Hom(K2, G) the set of ordered couples
(A,B) of totally joined nonempty sets of vertices of G. There is a natural ordering 6

on Hom(K2, G), defined by (A,B) 6 (A′, B′) if A ⊆ A′ and B ⊆ B′. We also consider
the involution − on Hom(K2, G) defined by −(A,B) = (B,A). Hom(K2, G) endowed
with 6 and − is a Z2-poset, that is, an ordered set with a fixed-point free automorphism
− of order 2. (Note that we call Hom(K2, G) the face poset of the polyhedral complex
usually called Hom(K2, G) in the literature.) A Z2-map between Z2-posets P and Q is an
order-preserving map φ : P → Q such that φ(−x) = −φ(x).

The notation Hom(K2, G) stands for the homomorphism complex ofK2 in G: For every
(A,B) ∈ Hom(K2, G), we get a homomorphism of the complete graph K2 (with vertex-set
{0, 1}) to G by selecting any pair of elements a ∈ A, b ∈ B as respective images of 0 and
1. For graphs G and H, if there exists a homomorphism ψ : G → H, then we can define
a Z2-map ψ̂ : Hom(K2, G) → Hom(K2, H) by ψ̂(A,B) = (ψ(A), ψ(B)).

For an integer n > 0, letQn be the Z2-poset on the 2(n+1)-element set±0,±1, . . . ,±n,
with its natural involution and the order defined by x < y (in Qn) if |x| < |y| (in N).
For a Z2-poset P , we denote Xind(P ) the smallest t such that P admits a Z2-map to Qt.
Xind(P ) is called the cross-index of P , because of the connection between Qn and the
cross-polytope that will be presented in the next section.

Let Kn+2 be the complete graph with vertex-set {0, . . . , n+1}. Then Hom(K2, Kn+2)
is just the set of pairs (A,B) of disjoints nonempty subsets of V (Kn+2). There exists a
Z2-map φ : Hom(K2, Kn+2) → Qn defined by

φ(A,B) =

{

|A ∪ B| − 2 if min(A ∪ B) ∈ A

−(|A ∪ B| − 2) if min(A ∪ B) ∈ B.

Therefore, for any graph G with chromatic number n + 2 and any proper colouring c :
V (G) → V (Kn+2), φ ◦ ĉ is a Z2-map of Hom(K2, G) to Qn. Thus we have χ(G) >

Xind(Hom(K2, G)) + 2.
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Lemma 3. Let G be a graph such that Xind(Hom(K2, G)) + 2 > t, and let c be a proper

colouring of G by an arbitrary number of colours. We assume the colours are linearly

ordered. Then G contains a complete bipartite subgraph K⌈ t
2⌉,⌊

t
2⌋

such that c assigns

distinct colours to all t vertices of this subgraph and these colours appear alternating on

the two sides of the bipartite subgraph with respect to their order.

Proof. For (A,B) ∈ Hom(K2, G), there exists a longest sequence x1, . . . , xℓ alternating
between elements of A and elements of B, and such that c(x1) < · · · < c(xℓ). We put
ℓ(A,B) = ℓ, σ(A,B) = + if c(x1) is used in A, and σ(A,B) = − if c(x1) is used in B.
(Although the sequence x1, . . . , xℓ may not be unique, σ(A,B) is well defined.) We define
φ : Hom(K2, G) → Q|V (G)|−2 by

φ(A,B) =

{

ℓ(A,B)− 2 if σ(A,B) = +,
−(ℓ(A,B)− 2) if σ(A,B) = −.

Then φ is a Z2-map. If Xind(Hom(K2, G)) + 2 > t, then φ(Hom(K2, G)) 6⊆ Qt−3, hence
there exists (A,B) ∈ Hom(K2, G) such that φ(A,B) 6∈ Qt−3. By definition of φ, there
exists a sequence x1, . . . , xt alternating between elements of A and elements of B, and
such that c(x1) < · · · < c(xt).

The conclusion of Lemma 3 is the same as that of Theorem 1. In the next section,
we will see that Xind(Hom(K2, G))+ 2 > coind(B0(G))+ 1, hence the hypothesis is more
general.

3 The hierarchy of topological bounds

To any poset P , one can associate a simplicial complex whose simplices are the chains of
P . We denote ∆P the geometric realization of this complex, that is, the set of functions
f : P → [0, 1] such that {p ∈ P : f(p) > 0} is a chain, and

∑

p∈P f(p) = 1. In particular,
∆Qn is the n-dimensional cross polytope, which is homeomorphic to the n-dimensional
sphere Sn (see [17]). More generally, if P is a Z2-poset, then ∆P is a Z2-space, that is,
a topological space with a continuous fixed-point free involution −. A Z2-map between
Z2-spaces X, Y is a continuous map f : X → Y such that f(−x) = −f(x). Note that the
natural homeomorphism between ∆Qn and Sn is in fact a Z2-homeomorphism.

The index ind(X) of a Z2-space X is the least n such that there exists a Z2-map from
X to Sn, and its coindex coind(X) is the largest n such that there exists a Z2-map from
Sn to X. By the Borsuk-Ulam theorem (see [17]), we always have coind(X) 6 ind(X).

Any Z2-map between Z2-posets P and Q lifts naturally to a Z2-map between the Z2-
spaces ∆P and ∆Q. Therefore since ∆Qn admits a Z2-homeomorphism to Sn, we always
have Xind(P ) > ind(∆P ). (See Section 5 for examples where this inequality is strict.)
We will write ind(P ) for ind(∆P ).

In the case of a graph G, Lemma 3 has the following consequence.
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Theorem 4. Let G be a graph such that ind(Hom(K2, G)) + 2 > t, and let c be a proper

colouring of G by an arbitrary number of colours. We assume the colours are linearly

ordered. Then G contains a complete bipartite subgraph K⌈ t
2⌉,⌊

t
2⌋

such that c assigns

distinct colours to all t vertices of this subgraph and these colours appear alternating on

the two sides of the bipartite subgraph with respect to their order.

To compare this result to Theorem 1, we will need to introduce the parameters corre-
sponding to the box complex B0(G). In a slightly unconventional manner, we will define
B0(G) to be Hom(K2, G

+), where G+ is the graph obtained from G by adding a universal
vertex adjacent to all the vertices of G. The reader is referred to [5, 6, 7, 18] for the
“conventional” definition of B0(G), and the homotopy equivalence with B0(G) as defined
here. The hierarchy of “topological bounds” on the chromatic number of a graph G is the
following.

χ(G) > ind(Hom(K2, G)) + 2 > ind(B0(G)) + 1

> coind(B0(G)) + 1 > coind(Hom(K2, G)) + 2 > ω(G).

In particular, this implies that ind(Hom(K2, G))+2 > coind(B0(G))+1, hence Theorem 4
generalises Theorem 1. The same hypothesis can also be used to generalise Theorem 2.
We present below the proof communicated to us by Carsten Schultz [23].

Theorem 5. Let G be a graph for which χ(G) = ind(Hom(K2, G)) + 2 = t. Let c :
V (G) → {1, . . . , t} be a proper colouring of G and let A,B ⊆ {1, . . . , t} form a bipartition

of the colour set, i.e., A ∪ B = {1, . . . , t} and A ∩ B = ∅.
Then there exists a complete bipartite subgraph Kl,m of G with sides L,M such that

|L| = l = |A|, |M | = m = |B|, and {c(v) : v ∈ L} = A, and {c(v) : v ∈ M} = B. In

particular, this Kl,m is completely multicoloured by c.

Proof. The colouring c : G → Kt lifts naturally to a Z2-map ĉ : ∆Hom(K2, G) →
∆Hom(K2, Kt). It is known that ∆Hom(K2, Kt) is Z2-homeomorphic to the sphere St−2

(see [1, 22]). Hence, since ind(Hom(K2, G)) = t− 2, ĉ must be surjective.
For the partition A,B of V (Kt), the characteristic function ξ(A,B) of the single-

ton {(A,B)} is an element of ∆Hom(K2, Kt). Therefore there exists an element f of
∆Hom(K2, G) such that ĉ(f) = ξ(A,B). The support of f is a chain (X1, Y1), . . . , (Xℓ, Yℓ)
in Hom(K2, G), and since ĉ(f) = ξ(A,B), we have (c(Xi), c(Yi)) = (A,B) for 1 6 i 6 ℓ.
Therefore, there exist L ⊆ X1, M ⊆ Y1 such that |L| = l = |A|, |M | = m = |B|, and
c(L) = A, c(M) = B.

According to [8], the condition ind(Hom(K2, G)) + 2 > l + m alone guarantees the
existence of some Kl,m in G, without reference to colourings. The idea of using the
surjectivity of a map lifted from a colouring c : G→ Kt to a Z2-map ĉ from the geometric
realization of B0(G) to that of B0(Kt) appeared in Xuding Zhu’s presentation [29] of some
results of [19, 24]. It can be used to prove the colourful Kl,m theorem with the hypothesis
χ(G) = ind(B0(G)) + 1 = t. (This was also observed by Carsten Schultz [21].)
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Theorems 4 and 5 both use the hypothesis ind(Hom(K2, G)) + 2 > t. It is interesting
to note that while the proof of Theorem 5 uses an argument of continuity, the proof of
Theorem 4 is essentially discrete, based on the weaker hypothesis Xind(Hom(K2, G))+2 >

t. In the last section we give examples of posets P such that Xind(P ) > ind(P ), though we
do not have an example of a graph G such that Xind(Hom(K2, G)) > ind(Hom(K2, G)).
In particular, we cannot prove or disprove that the conclusion of Theorem 5 can be derived
from the weaker hypothesis Xind(Hom(K2, G)) + 2 > t, or any of its discrete variations
(obtained by replacing Qn by other Z2-posets representing spheres). The best we can do
in this direction is the following.

Theorem 6. Let G be a graph such that χ(G) = Xind(Hom(K2, G)) + 2 = 2n > 4. Let

c : V (G) → {1, . . . , 2n} be a proper colouring of G. Then G contains a copy C of Kn+1,n−1

such that c uses all 2n colours on C.

Proof. Suppose that χ(G) = 2n and c is a 2n-colouring of G. If there are no copies C of
Kn+1,n−1 such that c uses all 2n colours on C, we can define a Z2-map φ : Hom(K2, G) →
Q2n−3 as follows. We partition Hom(K2, G) into three sets

S1 = {(A,B) : max{|c(A)|, |c(B)|} 6 n and |c(A ∪ B)| 6 2n− 2},

S2 = {(A,B) : max{|c(A)|, |c(B)|} > n+ 1},

S3 = {(A,B) : (|c(A)|, |c(B)|) ∈ {(n− 1, n), (n, n− 1), (n, n)}}.

If (A,B) ∈ S1, we put

φ(A,B) =

{

|c(A ∪ B)| − 2 if min c(A ∪ B) ∈ c(A),
−(|c(A ∪ B)| − 2) if min c(A ∪B) ∈ c(B).

Note that φ clearly preserves the order and the involution on S1, and φ(S1) ⊆
{±0, . . . ,±2n−4}. The remaining elements on Hom(K2, G) will be mapped to ±(2n−3).
If (A,B) ∈ S2, we put

φ(A,B) =

{

2n− 3 if |c(A)| > n+ 1,
−(2n− 3) if |c(B)| > n+ 1.

Clearly, φ preserves the order and involution on S1∪S2. It remains to define φ on S3. Here
we use the hypothesis that there is no colourful copy of Kn+1,n−1, which implies that no
element of S3 is below an element of S2. For (A,B) ∈ S3, let (XA,B, YA,B) be the partition
of {1, . . . , 2n} such that c(A) ⊆ XA,B, c(B) ⊆ YA,B and |XA,B| = |YA,B| = n. Since no
copy of Kn+1,n−1 is multicoloured by c, for (A′, B′) > (A,B) ∈ S3 we have (A′, B′) ∈ S3,
XA′,B′ = XA,B and YA′,B′ = YA,B. We put

φ(A,B) =

{

2n− 3 if 1 ∈ XA,B,

−(2n− 3) if 1 ∈ YA,B.

Thus φ : Hom(K2, G) → Q2n−3 is a Z2-map, whence Xind(Hom(K2, G)) 6 2n− 3.
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The question whether coind(Hom(K2, G)) + 2 > 2k implies also the existence of a
completely multicoloured Kk−1,k+1 subgraph of G in every proper colouring is also posed
in [27]. Note that although the conclusion in this statement is identical to the conclusion
of our Theorem 6, the hypotheses are not comparable: in Theorem 6 the topological
condition is weaker but we insist on using the minimum number of colours.

Our last result of this section will show that the hypotheses χ(G) = ind(Hom(K2, G))+
2 and χ(G) = ind(B0(G))+ 1 are different. Csorba [7] proved that the difference between
ind(Hom(K2, G)) + 2 and ind(B0(G)) + 1 is at most 1, and there are graphs G such that
ind(Hom(K2, G)) + 2 > ind(B0(G)) + 1. (Note that this could still allow the equality
χ(G) = ind(Hom(K2, G)) + 2 to never hold for graphs with this property.) No “combina-
torial”construction of such graphs is known.

Proposition 7. For every odd integer t > 5 there exists a graph Ht such that

t = χ(Ht) = ind(Hom(K2, Ht)) + 2 > ind(B0(Ht)) + 1 = t− 1.

Proof. By results of Csorba [4], for every odd t > 5 there exists a graph Gt such that
ind(Hom(K2, Gt)) + 2 = t and ind(B0(Gt)) + 1 = t − 1. However χ(Gt) could be larger
than t. (See also [7] for the case t = 5.)

LetHt be the categorical product Gt×Kt; that is, the vertex set ofHt is V (Gt)×V (Kt)
and the edges of Ht join the pairs (u, u′), (v, v′) such that {u, v} ∈ E(Gt) and {u′, v′} ∈
E(Kt). Then we have χ(Ht) 6 t. In fact, if χ(Gt) = t, then there are homomor-
phisms both ways between Gt and Ht, hence ind(Hom(K2, Ht)) = ind(Hom(K2, Gt)) and
ind(B0(Ht)) = ind(B0(Gt)).

If χ(Gt) > t, then there is no homomorphism from Gt to Kt, hence no homo-
morphism from Gt to Ht. However, since ind(Hom(K2, Gt)) = t − 2, there exists
a Z2-map f from the geometric realization of Hom(K2, Gt) to St−2. Also, there ex-
ists a Z2-homeomorphism g from St−2 to the geometric realization of Hom(K2, Kt).
Hence (id, g ◦ f) is a Z2-map from the geometric realization of Hom(K2, Gt) to that of
Hom(K2, Gt)×Hom(K2, Kt) ⊆ Hom(K2, Gt×Kt) = Hom(K2, Ht). Since the first projec-
tion on Gt×Kt is a homomorphism from Ht to Gt, we conclude that there exist Z2-maps
both ways between the geometric realizations of Hom(K2, Gt) and Hom(K2, Ht), therefore
ind(Hom(K2, Ht)) + 2 = ind(Hom(K2, Gt)) + 2 = t. Since there is a homomorphism from
Ht to Gt, we also have ind(B0(Ht)) + 1 6 ind(B0(Gt)) + 1 = t− 1.

4 Tree duality

For 1 6 k < n, the shift graph δk( ~Kn) is the directed graph whose vertices are the vectors
(a0, a1, . . . , ak) such that 1 6 a0 < a1 < · · · < ak 6 n and whose arcs join consecutive

vectors (a0, a1, . . . , ak), (a1, a2, . . . , ak+1). Let S(n, k) be the symmetrisation of δk( ~Kn),

that is, the undirected graph obtained from δk( ~Kn) by replacing every arc by an undirected

edge. It is well known (see [14]) that χ(S(n, k)) ≃ log
(k)
2 (n); these are “folklore” examples

of graphs with arbitrarily large odd girth and chromatic number. In [26] the zig-zag
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theorem is used to show that coind(B0(S(n, k))) + 1 = 3. Thus our Theorem 4 can be
used to show that in fact we have ind(Hom(K2, S(n, k))) + 2 = 3. In this section, we
provide a generalisation of this result involving tree duality.

We will consider orientations of graphs. An orientation ~G of a graph G is a directed
graph containing one of the arcs (u, v), (v, u) for each of the edges [u, v] of G. A homo-

morphism of ~G to ~H is a map from V (G) to V (H) that preserves the orientation as well

as the adjacency. An oriented graph ~H is said to have tree duality if the following holds.

For any oriented graph ~G, either there exists a homomorphism of ~G to ~H or
there exists an oriented tree ~T such that ~T admits a homomorphism to ~G but
not to ~H.

The oriented graphs with tree duality have been characterised in [10]. In particular, the
shift graphs have tree duality (see [12]). The result of [26] stating that coind(B0(S(n, k)))+
1 = 3 can be generalised as follows.

Theorem 8. Let H be a graph which admits an orientation ~H with tree duality. Then

ω(H) 6 ind(Hom(K2, H)) + 2 6 ω(H) + 1.

Proof. The first inequality is well known (for any H). The proof of the second inequality
uses basic properties of oriented graphs with tree duality. The simplest examples are the
transitive tournaments { ~Kn}n>1: An oriented graph ~G admits a homomorphism to ~Kn

if and only if there is no homomorphism of ~Pn to ~G, where ~Pn is the directed path with
vertices 0, 1, . . . , n and arcs (0, 1), . . . , (n − 1, n). Also note that since any oriented tree
admits a homomorphism into any directed cycle (i.e., with all edges oriented in the same
direction), an oriented graph with tree duality is necessarily acyclic.

Let H be a graph which admits an orientation ~H with tree duality. The oriented
trees ~T not admitting a homomorphism to ~H will be called tree obstructions of ~H. For
n = ω(H), the copies of Kn in H must be oriented transitively in ~H. Therefore ω(H)

is the largest n such that ~Kn admits a homomorphism to ~H. By tree duality of ~H, this
is the largest n such that no tree obstruction of ~H admits a homomorphism to ~Kn. By
tree duality of ~Kn this is the largest n such that every tree obstruction of ~H contains a
homomorphic image (that is, a copy) of ~Pn.

Let f : V (H) → N be a linear extension of ~H, that is, a map such that if (u, v) is an

arc of ~H, then f(u) < f(v). In particular f is a proper vertex-colouring of H, hence by
Theorem 4, for t = ind(Hom(K2, H)) + 2, H contains a multicoloured copy of K⌈ t

2⌉,⌊
t
2⌋
,

with the colours alternating sides. With the orientation, this is a copy of ~K⌈ t
2⌉,⌊

t
2⌋
, with

vertices 0, . . . , t − 1 and arcs (i, j) such that i < j and i, j have different parities. We

will show that ~H does not admit a homomorphic image (and in particular a copy) of
~K⌈n+2

2 ⌉,⌊n+2

2 ⌋.

By the above characterization of n = ω(H), there exists a tree obstruction ~T of
~H which does not contain a homomorphic image of ~Pn+1. Let h : ~T → ~Kn+1 be a
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homomorphism (with V (Kn+1) = {0, . . . , n}). Let c : T → {0, 1} be a proper 2-colouring.
We can then define a map g : V (T ) → V (K⌈n+2

2 ⌉,⌊n+2

2 ⌋) by

g(u) =











2 ·
⌈

h(u)
2

⌉

if c(u) = 0,

2 ·
⌊

h(u)
2

⌋

+ 1 if c(u) = 1.

It is straightforward to show that g is a homomorphism of ~T to ~K⌈n+2

2 ⌉,⌊n+2

2 ⌋. Therefore

~H does not contain a copy of ~K⌈n+2

2 ⌉,⌊n+2

2 ⌋, hence ind(Hom(K2, H)) + 2 6 n+ 1.

In [20, 11] it is shown that the gap between the clique number and the chromatic
number can be arbitrarily large even for graphs admitting an orientation with tree duality.
In [11] good reasons are given to find tight lower bounds on the chromatic numbers of
some of these graphs. In this respect, Theorem 8 is bad news, showing that the topological
bounds will not be of help. On the other hand, no known efficient procedure answers the
problem of determining whether an input graph H satisfies ind(Hom(K2, H)) + 2 6 n.
Perhaps sometimes exhibiting an oriented tree T not admitting a homomorphism to some
orientation of H will be the best resource at hand.

5 Complexity aspects of the cross-index

Some remarks on complexity aspects of topological lower bounds on the chromatic number
can be found in Kozlov’s survey paper [15] (at the end of Subsection 1.1.3) and also
in his book [16] (on page 295). He mentions that while Lovász’s original lower bound
expressed in terms of connectivity of a simplicial complex is difficult to compute, another
lower bound based on the so-called Stiefel-Whitney characteristic classes is polynomially
computable. (The latter bound also depends on a Z2-space and when it is chosen to be
Hom(K2, G), then it can be expressed as h(Hom(K2, G))+2, where h(Hom(K2, G)) is the
so-called Stiefel-Whitney height of Hom(K2, G), cf. page 328 in [16]. It is shown on page
123 of [16] that if X is any Z2-space, then coind(X) 6 h(X) 6 ind(X) holds.) There is
also an ongoing project to compute the Z2-index (see [3]).

For any integer d, we can decide whether Xind(Hom(K2, G)) 6 d with a finite compu-
tation. Therefore it is natural to ask the computational complexity of this question. It is
not clear that the problem is in NP, since the number of elements in the poset Hom(K2, G)
is exponential in |V (G)|. For general posets we prove the following.

Theorem 9. For an integer d > 0, the problem of determining whether an input Z2-poset

P satisfies Xind(P ) 6 d is polynomial if d = 0 and NP-complete otherwise.

This does not imply that deciding whether Xind(Hom(K2, G)) 6 d is NP-hard, since
the posets used in the reduction are not hom-complexes of graphs.

the electronic journal of combinatorics 20(1) (2013), #P10 9



Proof of Theorem 9. It is obvious that the problem is in NP, for one can verify that a
mapping from the elements of P to the elements of Qd is a Z2-map in time polynomial in
the size of P .

First, let us examine the case when d = 0. In this case Qd has only two elements, +0
and −0, and they are incomparable. Consider the comparability graph of the poset P .
This is a graph whose vertices are the elements of P , and {x, y} is an edge if and only
if x < y or y < x. We claim that the Z2-map to Q0 exists if and only if no element x is
connected to its mirror image −x by a path in this graph. To prove this, suppose first
that there is a Z2-map φ. If now {x, y} is an edge then necessarily φ(x) = φ(y) (because
Q0 does not have comparable but unequal elements), so the same must be true for any
two path connected vertices x and y as well. However, if there was a path from some
element x to −x, that would imply that φ(x) = φ(−x), but that is a contradiction since
we also know φ(−x) = −φ(x). Now suppose for the other hand that there is no such path,
and we want to construct the Z2-map. For this, notice that {x, y} being an edge implies
{−x,−y} also being an edge, so the connected components of the graph can be grouped
into pairs where the pair of a component consists of the mirror image of the vertices of the
component. We can then take each such pair of components and let φ map the vertices
of one of them to +0 and the vertices of the other one to −0. The two required identities
are now obvious: φ(−x) = −φ(x), and for any x, y ∈ P if x < y then φ(x) 6 φ(y) (in fact
they are equal). As the graph can be constructed from the poset and the condition of no
paths from x to −x can be checked in polynomial time, we have proved that the problem
corresponding to d = 0 is polynomially decidable.

The following consequence of the first part of the proof is worth remember-
ing. The only obstacle that can exclude a Z2-map to Q0 is a sequence of elements
x0, y0, x1, y1, . . . , xk−1, yk−1, xk = −x0 such that xi < yi and xi+1 < yi for each i. As
a special case, for k = 1 this obstacle is simply two elements such that x < y and −x < y,
which is the reason why there is no Q1 → Q0 map.

Now we shall prove that the problem is NP-hard if d = 1. For this, we give a Karp
reduction from the satisfiability problem of boolean expressions in conjunctive normal
form (CNF; for the definition and the NP-completeness of this problem, see, e.g., [13]).
What this means is that our proof will have three parts: given a boolean formula in
CNF, we first construct a Z2-poset P from it in polynomial time, then we show how
to construct a Z2-map from P to Q1 if we are given an evaluation of the variables that
satisfies the formula, and finally we show the reverse construction of such an evaluation
from a Z2-map.

To define P , we will give the list of its elements and the involution, and we will give
some defining relations in the form x < y. The partial order < is then understood to
be the least defined transitive relation invariant to the involution and satisfying these
defining relations (this is analogous to defining a poset with its Hasse diagram). One
can compute the full table for this relation from the defining relations by first adding
the relation −x < −y for each axiom x < y given, then taking the transitive closure.
This computation can indeed be done in polynomial time. It will be obvious from the
construction that it generates the list of defining relations from the formula in polynomial
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time, and that the partial order we get is indeed irreflexive. Now if P is given this way,
and we have a mapping φ from P to Q1, if we want to verify that this is indeed a Z2-map,
it is enough to check two identities: namely that φ(−x) = −φ(x) for all x ∈ P , and that
φ(x) 6 φ(y) for each defining relation x < y (i.e., we do not need to check all pairs x, y).

Let the boolean variables used be x1, . . . , xN , and the formula C1 ∧ · · · ∧ CK . Each
clause Ck has the form xn1

∨ xn2
∨ · · · ∨ xnm

. Here each variable independently may
or may not be negated; the list ni and its length m actually depend on k but we omit
that index for readability; and we assume for convenience that no variable occurs twice
in any one clause. The poset P we define has four elements for each variable and four
more elements for each term in each clause. Namely, for each variable xn, we take four
elements called pn,−pn, qn,−qn, and for each clause Ck, we take 4m new elements, namely
rk1 ,−r

k
1 , r

k
2 ,−r

k
2 , . . . , r

k
m,−r

k
m, and sk1,−s

k
1, s

k
2,−s

k
2, . . . , s

k
m,−s

k
m. For defining the partial

order, we first need an auxiliary definition. For every variable xn, define Tn as the set of
all elements rki where the i-th term of Ck is xn, and define Fn as the set of all elements rki
where the i-th term of Ck is xn. (We depend on the order of terms in the clauses we fixed.)
Notice that each of the rki elements is a member of exactly one of the 2N sets defined
here. Now we list all the defining relations of the partial order. Firstly, each variable xn
will have two corresponding relations for each occurrence in a term: t < pn and t < qn
for each t ∈ Tn, and f < pn and −f < qn for each f ∈ Fn, respectively. Secondly, each
clause Ck has two relations corresponding to each of the m terms in it: ski < rki for each
1 6 i 6 m; and ski+1 < rki for each 1 6 i < m, and additionally −sk1 < rkm. (One may
notice that the two groups contain the same number of relations, in fact each rki occurs
twice in the first group and twice in the second group.)

An example for this construction is shown on the figure, which lists some clauses of the
CNF expression we consider, and shows part of the Hasse diagram of the poset, except
that we use the convention that each element and its negation is drawn as only one point,
and a crossed out edge means −x < y where x is the endpoint of the edge that is lower
on the diagram.

Let us examine some properties of this construction. Firstly, (though this does not
really help us) notice that there always exists a Z2-map from P to Q2: namely the one
that maps pn 7→ +2; qn 7→ +2; rki 7→ +1; ski 7→ +0. Now suppose that there also is a
Z2-map φ : P → Q1. Observe that we may assume that this takes any pn or qn to ±1
without loss of generality: indeed it is easy to amend φ to have this property by changing
the image of such an element from ±0 to +1, and changing the image of its mirror image
to −1 accordingly. Similarly, we may assume that any ski is always brought to ±0. Now
observe that for any fixed k, at least one of the elements rk1 , r

k
2 , . . . , r

k
m must be mapped

to ±1: indeed in the sequence sk1, r
k
1 , s

k
2, r

k
2 , . . . , s

k
m, r

k
m each element is comparable to the

next one, and together with −sk1 < rkm they form the exact kind of obstacle we mentioned
that makes it impossible to map all these points to ±0. Finally fix any n, and observe
that if φ(pn) = φ(qn) then all elements f of Fn must be mapped to ±0, for we must
keep both φ(f) 6 φ(pn) and φ(−f) 6 φ(qn). Similarly if φ(pn) 6= φ(qn) then φ maps all
elements of Tn to ±0 (the signs may vary).

the electronic journal of combinatorics 20(1) (2013), #P10 11



p8 q8

r21∈T6 r22∈F7 r23∈T10 r24∈T8

r31∈T8 r41∈F8 r6m∈F8

r71∈F8 r72∈T9

s21 s22 s23 s24 s71 s72

Figure 1: Part of the Z2-poset constructed from a formula some of whose clauses are:
C2 = (x6 ∨ x7 ∨ x10 ∨ x8); C

3 = (x8 ∨ . . . ); C4 = (x8 ∨ . . . ); C6 = (· · · ∨ x8); C
7 =

(x8 ∨ x9 ∨ . . . ).

This suggests how to derive an evaluation σ of the variables from the Z2-map φ : P →
Q1: for any n, if φ(pn) = φ(qn) then let xσn be true, otherwise φ(pn) = −φ(qn) and let xσn
be false. Then φ takes all members of Fn to ±0 in the former case and all members of
Tn to ±0 in the latter. Consider any clause Ck and the elements corresponding to it: we
have observed that for at least one j, the element rkj is not mapped to ±0. If the term
corresponding to this index j in Ck is xn then this element rkj ∈ Tn, so together with
the above this means xn is true; whereas if that term is xn then similarly rkj ∈ Fn which
implies xn is false. In either case, we have found a term in the clause Ck that is true in σ,
and this can be repeated for each clause, thus σ indeed satisfies the boolean expression.

Now we assume an evaluation σ of the variables x1, . . . , xN is given and satisfies the
formula. We construct a Z2-map φ : P → Q1 the following way. Let

pn 7→ +1, qn 7→ +1, if xσn is true; but
pn 7→ +1, qn 7→ −1, if xσn is false.

Consider a clause Ck. The evaluation σ satisfies this clause, so at least one of its terms
xn1

, xn2
, . . . , xnm

must be evaluated to true: so choose j to be an index of one such term
xnj

or xnj
. Let φ act on the elements corresponding to this clause the following way.

rk1 7→ +0, . . . , rkj−1 7→ +0, rkj 7→ +1, rkj+1 7→ −0, . . . , rkm 7→ −0;
sk1 7→ +0, . . . , skj−1 7→ +0, skj 7→ +0, skj+1 7→ −0, . . . , skm 7→ −0.

It is easy to see that these latter assignments satisfy the requirements that φ(ski ) 6

φ(rki ) and φ(ski+1) 6 φ(rki ) and −φ(sk1) 6 φ(rkm). We must now check the restrictions
given by the first group of defining relations of P . These, for elements of Tn, are that
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φ(rki ) 6 φ(pni
) and φ(rki ) 6 φ(qni

) if the i-th term of the clause Ck is xni
. If i 6= j then

these are satisfied automatically, because then φ(rki ) = ±0. If, however, i = j, then use
the fact that we chose j such that xnj

is true, thus φ(pni
) = φ(qni

) = φ(rki ) = +1. The
defining relations involving the elements of Fn can be verified in a very similar way: if the
i-th term of Ck is xni

then we need φ(rki ) 6 φ(pni
) and −φ(rki ) 6 φ(qni

), but φ(rki ) = ±0
unless i = j, in which case xni

is false because of the choice of j, so φ(pni
) = φ(rki ) = +1

and φ(qni
) = −1 satisfy the restrictions. This proves that φ is indeed a Z2-map.

All that remains now is to prove that the cases of 1 < d are also NP-complete. This
we do by modifying the above Karp reduction. The simple observation we need for this
is the following: if we modify any Z2-poset P by adding two extra elements y and −y
that are greater than all other elements of the poset, then the cross-index of the resulting
Z2-poset P

∗ is exactly one greater than the cross-index of the original. Indeed, we can
extend a P → Qd map to a P ∗ → Qd+1 map by setting the image of y to be +(d + 1);
and conversely, by any P ∗ → Qd+1 map, no point other than y or −y can be mapped to
±(d + 1), thus restricting it to P gives a P → Qd map. Thus, applying the reduction
given in the d = 1 case then iterating this transformation d − 1 times gives a Z2-poset
that can be mapped to Qd if and only if the original expression is satisfiable, and this
construction still can be realized by a polynomial time computation.

Remark. Let P be a poset constructed from a boolean formula as in the above proof.
Then Xind(P ) depends on the satisfiability of the corresponding boolean formula. How-
ever one can prove that ind(∆P ) is always at most 1, because any two dimensional face
appearing in ∆P is a triangle which has at least one side that does not belong to any
other two dimensional face. This makes it possible to retract ∆P into a 1-dimensional
complex.
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[17] J. Matoušek, Using the Borsuk-Ulam theorem, Lectures on topological methods in
combinatorics and geometry, Written in cooperation with Anders Björner and Günter
M. Ziegler, Universitext, Springer-Verlag, Berlin, 2003.
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