A new determinant expression for the weighted Bartholdi zeta function of a digraph

Iwao Sato, Hideo Mitsuhasi

Oyama National College of Technology Oyama, Tochigi 323-0806, Japan

isato@oyama-ct.ac.jp

Hideaki Morita

Division of System Engineering for Mathematics Muroran Institute of Technology Muroran, Hokkaido 050-8585, Japan

Submitted: Sep 10, 2013; Accepted: Jan 26, 2013; Published: Feb 5, 2013 Mathematical Subject Classifications: 05C50, 15A15

Abstract

We consider the weighted Bartholdi zeta function of a digraph D, and give a new determinant expression of it. Furthermore, we treat a weighted L-function of D, and give a new determinant expression of it. As a corollary, we present determinant expressions for the Bartholdi edge zeta functions of a graph and a digraph.

Key words: zeta function, digraph covering, L-function

1 Introduction

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [7]. In [7], he showed that their reciprocals are explicit polynomials. A zeta function of a regular graph G associated with a unitary representation of the fundamental group of G was developed by Sunada [12,13]. Hashimoto [6] generalized Ihara's result on the zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial by a determinant containing the edge matrix. Bass [2] presented another determinant expression for the Ihara zeta function of an irregular graph by using its adjacency matrix.

Stark and Terras [11] gave an elementary proof of Bass' Theorem, and discussed three different zeta functions of any graph. Furthermore, various proofs of Bass' Theorem were given by Foata and Zeilberger [4], Kotani and Sunada [8].

^{*}Supported by Grant-in-Aid for Science Research (C)

The electronic journal of combinatorics 20(1) (2013), #P27

For two variable zeta function of a graph, Bartholdi [1] defined and gave a determinant expression of the Bartholdi zeta function of a graph. Mizuno and Sato [9] presented a decomposition formula for the Bartholdi zeta function of a regular covering of a graph.

As a digraph version of the Bartholdi zeta function, Choe, Kwak, Park and Sato [3] defined the weighted Bartholdi zeta function of a digraph, and presented its determinant expression.

As a multi-variable zeta function of a graph, Stark and Terras [11] defined the edge zeta function of a graph. Watanabe and Fukumizu [14] presented a determinant expression for the edge zeta function of a graph G with n vertices by $n \times n$ matrices.

In this paper, we present a new determinant expression of the weighted Bartholdi zeta function of a digraph D by using the method of Watanabe and Fukumizu [14]:

Main Theorem.

Let D be a connected digraph with n vertices and m arcs, and let $\mathbf{W} = \mathbf{W}(D)$ be a weighted matrix of D. Then the reciprocal of the weighted Bartholdi zeta function of D is given by

$$\zeta(D, w, u, t)^{-1} = \det(\mathbf{I}_n + (1 - u)t^2 \tilde{\mathbf{D}} - t\tilde{\mathbf{A}}_1 - t\tilde{\mathbf{A}}_0) \prod_{i=1}^{m_1} (1 - w(f_i)w(f_i^{-1})(1 - u)^2 t^2),$$

where $\tilde{\mathbf{D}}$, $\tilde{\mathbf{A}}_1$ and $\tilde{\mathbf{A}}_0$ are defined in Section 3, and $f_1^{\pm 1}, \ldots, f_{m_1}^{\pm 1}$ are symmetric arcs of D.

Furthermore, we present a new decomposition formula for the weighted Bartholdi zeta function of a group covering of D, and a new determinant expression for the weighted Bartholdi L-function of D.

2 Preliminaries

Graphs and digraphs treated here are finite. Let G = (V(G), E(G)) be a connected graph (possibly multiple edges and loops) with the set V(G) of vertices and the set E(G) of unoriented edges uv joining two vertices u and v. For $uv \in E(G)$, an arc (u, v) is the oriented edge from u to v. Set $D(G) = \{(u, v), (v, u) \mid uv \in E(G)\}$. For $e = (u, v) \in D(G)$, set u = o(e) and v = t(e). Furthermore, let $e^{-1} = (v, u)$ be the *inverse* of e = (u, v).

A path P of length n in G is a sequence $P = (e_1, \dots, e_n)$ of n arcs such that $e_i \in D(G)$, $t(e_i) = o(e_{i+1})(1 \leq i \leq n-1)$, where indices are treated mod n. Set |P| = n, $o(P) = o(e_1)$ and $t(P) = t(e_n)$. Also, P is called an (o(P), t(P))-path. We say that a path $P = (e_1, \dots, e_n)$ has a backtracking or a bump at $t(e_i)$ if $e_{i+1}^{-1} = e_i$ for some $i(1 \leq i \leq n-1)$. A (v, w)-path is called a v-cycle (or v-closed path) if v = w.

We introduce an equivalence relation between cycles. Two cycles $C_1 = (e_1, \dots, e_m)$ and $C_2 = (f_1, \dots, f_m)$ are called *equivalent* if there exists k such that $f_j = e_{j+k}$ for all j. The inverse cycle of C is in general not equivalent to C. Let [C] be the equivalence class which contains a cycle C. Let B^r be the cycle obtained by going r times around a cycle B. Such a cycle is called a *power* of B. A cycle C is *reduced* if C has no backtracking. Furthermore, a cycle C is *prime* if it is not a power of a strictly smaller cycle. The *Ihara zeta function* of a graph G is a function of $u \in \mathbf{C}$ with |u| sufficiently small, defined by

$$\mathbf{Z}(G,t) = \prod_{[C]} (1 - t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime, reduced cycles of G(see [7]).

Let *m* be the number of edges of *G*. Furthermore, let two $m \times m$ matrices $\mathbf{B} = (\mathbf{B}_{e,f})_{e,f \in A(D)}$ and $\mathbf{J}_0 = (\mathbf{J}_{e,f})_{e,f \in A(D)}$ be defined as follows:

$$\mathbf{B}_{e,f} = \begin{cases} 1 & \text{if } t(e) = o(f), \\ 0 & \text{otherwise} \end{cases}, \mathbf{J}_{e,f} = \begin{cases} 1 & \text{if } f = e^{-1}, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mathbf{B} - \mathbf{J}_0$ is called the *edge matrix* of *G*.

Theorem 1 (Hashimoto; Bass). Let G be a connected graph with n vertices and m edges. Then the reciprocal of the Ihara zeta function of G is given by

$$\mathbf{Z}(G,t)^{-1} = \det(\mathbf{I}_{2m} - t(\mathbf{B} - \mathbf{J}_0)) = (1 - t^2)^{m-n} \det(\mathbf{I} - t\mathbf{A}(G) + t^2(\mathbf{D} - \mathbf{I})),$$

where $\mathbf{A}(G)$ is the adjacency matrix of G, and $\mathbf{D} = (d_{ij})$ is the diagonal matrix with $d_{ii} = \deg v_i$ where $V(G) = \{v_1, \dots, v_n\}$.

Then the Bartholdi zeta function of G is defined by

$$\zeta_G(u,t) = \zeta(G, u, t) = \prod_{[C]} (1 - u^{cbc(C)} t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of G(see [1]).

Theorem 2 (Bartholdi). Let G be a connected graph with n vertices and m unoriented edges. Then the reciprocal of the Bartholdi zeta function of G is given by

$$\zeta(G, u, t)^{-1} = \det(\mathbf{I}_{2m} - t(\mathbf{B} - (1 - u)\mathbf{J}_0))$$

= $(1 - (1 - u)^2 t^2)^{m-n} \det(\mathbf{I} - t\mathbf{A}(G) + (1 - u)(\mathbf{D} - (1 - u)\mathbf{I})t^2).$

In the case of u = 0, Theorem 2 implies Theorem 1.

We now state the weighted Bartholdi zeta function of a digraph. Let D = (V(D), A(D))be a connected digraph with the set V(D) of vertices and the set A(D) of arcs. Furthermore, let D have n vertices v_1, \ldots, v_n and m arcs. Then we consider an $n \times n$ matrix $\mathbf{W} = \mathbf{W}(D) = (w_{ij})_{1 \leq i,j \leq n}$ with ij entry nonzero complex number w_{ij} if $(v_i, v_j) \in A(D)$, and $w_{ij} = 0$ otherwise. The matrix $\mathbf{W} = \mathbf{W}(D)$ is called the *weighted matrix* of D. Furthermore, let $w(v_i, v_j) = w_{ij}, v_i, v_j \in V(D)$ and $w(e) = w_{ij}, e = (v_i, v_j) \in A(D)$. For each path $P = (e_1, \cdots, e_r)$ of G, the norm w(P) of P is defined as follows: $w(P) = w(e_1) \cdots w(e_r)$.

The cyclic bump count cbc(C) of a cycle $C = (e_1, \dots, e_n)$ of G is

$$cbc(C) = |\{i = 1, \cdots, n \mid e_i = e_{i+1}^{-1}\}|,$$

where $e_{n+1} = e_1$. Then the weighted Bartholdi zeta function of D is a function of $u, t \in \mathbb{C}$ with |u|, |t| sufficiently small, defined by

$$\zeta(D, w, u, t) = \prod_{[C]} (1 - w(C)u^{cbc(C)}t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of D.

If $w = \mathbf{1}$, i.e., $w(v_i, v_j) = 1$ for each $(v_i, v_j) \in A(D)$, then the weighted Bartholdi zeta function of D is the Bartholdi zeta function of D. If $D = D_G$ is the symmetric digraph corresponding to a graph G, and $w = \mathbf{1}$, then the weighted Bartholdi zeta function of D_G is the Bartholdi zeta function of G. If $D = D_G$, $w = \mathbf{1}$ and u = 0, then the weighted Bartholdi zeta function of G is the Ihara zeta function of G.

Two $m \times m$ matrices $\mathbf{B}_w = (\mathbf{B}_{e,f}^w)_{e,f \in A(D)}$ and $\mathbf{J}_w = (\mathbf{J}_{e,f}^w)_{e,f \in A(D)}$ are defined as follows:

$$\mathbf{B}_{e,f}^w = \left\{ \begin{array}{ll} w(e) & \text{if } t(e) = o(f), \\ 0 & \text{otherwise} \end{array} \right., \mathbf{J}_{e,f}^w = \left\{ \begin{array}{ll} w(e) & \text{if } f = e^{-1}, \\ 0 & \text{otherwise.} \end{array} \right.$$

Furthermore, we define two $n \times n$ matrices $\mathbf{W}_1 = \mathbf{W}_1(D) = (a_{uv})$ and \mathbf{W}_0 as follows:

$$a_{uv} = \begin{cases} w(u,v) & \text{if both } (u,v) \text{ and } (v,u) \in A(D), \\ 0 & \text{otherwise} \end{cases}$$

and

$$\mathbf{W}_0 = \mathbf{W}_0(D) = \mathbf{W}(D) - \mathbf{W}_1.$$

Let an $n \times n$ matrix $\mathbf{S} = (s_{xy})$ is the diagonal matrix defined by

$$s_{xx} = |\{e \in A(D) \mid o(e) = x, e^{-1} \in A(D)\}|.$$

Theorem 3 (Choe, Kwak, Park and Sato). Let D be a connected digraph, and let $\mathbf{W} = \mathbf{W}(D)$ be a weighted matrix of D. Furthermore, let $m_1 = |\{e \in A(D) \mid e^{-1} \in A(D)\}|/2$. Then the reciprocal of the weighted Bartholdi zeta function of D is given by

$$\zeta(D, w, u, t)^{-1} = \det(\mathbf{I}_m - (\mathbf{B}_w - (1 - u)\mathbf{J}_w)t),$$

where $n = \mid V(D) \mid and m = \mid A(D) \mid$.

Furthermore, if $w(e^{-1}) = w(e)^{-1}$ for each $e \in A(D)$ such that $e^{-1} \in A(D)$, then

$$\zeta(D, w, u, t)^{-1} = (1 - (1 - u)^2 t^2)^{m_1 - r}$$

× det(
$$\mathbf{I}_n - t\mathbf{W}_1(D) - (1 - (1 - u)^2 t^2) t\mathbf{W}_0(D) + (1 - u)t^2(\mathbf{S} - (1 - u)\mathbf{I}_n)$$
).

If $D = D_G$, w = 1 and u = 0, then Theorem 2 implies Theorem 1.

Now, we proceed to the edge zeta function of a graph G with m edges. Let G be a connected graph and $D(G) = \{e_1, \ldots, e_m, e_{m+1}, \ldots, e_{2m}\}(e_{m+i} = e_i^{-1}(1 \le i \le m)).$ We introduce 2m variables z_1, \ldots, z_{2m} , and set $g(C) = z_{i_1} \cdots z_{i_k}$ for each cycle C =

 (e_{i_1},\ldots,e_{i_k}) of G. Set $z_{e_i} = z_i (1 \leq i \leq 2m)$ and $\mathbf{z} = (z_1,\ldots,z_{2m})$. Then the *edge zeta* function $\zeta_G(\mathbf{z})$ of G is defined by

$$\zeta_G(\mathbf{z}) = \prod_{[C]} (1 - g(C))^{-1},$$

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Theorem 4 (Stark and Terras). Let G be a connected graph with m edges. Then

$$\zeta_G(\mathbf{z})^{-1} = \det(\mathbf{I}_{2m} - (\mathbf{B} - \mathbf{J}_0)\mathbf{U}),$$

where

$$\mathbf{U} = \begin{bmatrix} z_1 & & & 0 \\ & \ddots & & & \\ & & z_m & & \\ & & & z_{m+1} & \\ 0 & & & & \ddots & \\ 0 & & & & & z_{2m} \end{bmatrix}$$

Let G be a graph with n vertices. Then we define an $n \times n$ matrix $\widehat{\mathbf{A}} = (a_{xy})$ as follows:

$$a_{xy} = \begin{cases} z_{(x,y)}/(1 - z_{(x,y)}z_{(y,x)}) & \text{if } (x,y) \in D(G), \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore, an $n \times n$ matrix $\widehat{\mathbf{D}} = (d_{xy})$ is the diagonal matrix defined by

$$d_{xx} = \sum_{o(e)=x} \frac{z_e z_{e^{-1}}}{1 - z_e z_{e^{-1}}}.$$

Theorem 5 (Watanabe and Fukumizu). Let G be a connected graph with n vertices and m edges. Then

$$\zeta_G(\mathbf{z})^{-1} = \det(\mathbf{I}_n + \widehat{\mathbf{D}} - \widehat{\mathbf{A}}) \prod_{i=1}^m (1 - z_{f_i} z_{f_i^{-1}}),$$

where $D(G) = \{f_1, f_1^{-1}, \dots, f_m f_m^{-1}\}.$

In Section 2, we present a new determinant expression of the weighted Bartholdi zeta function of a digraph D by using the method of Watanabe and Fukumizu [14]. In Section 3, we present a new decomposition formula for the weighted Bartholdi zeta function of a group covering of D. In Section 4, we present a new determinant expression for the weighted Bartholdi *L*-function of D. In Section 5, we define the Bartholdi edge zeta functions of graphs and digraphs, and present their determinant expressions as corollaries of Theorem 6.

3 Weighted Bartholdi zeta functions of digraphs

We present a new determinant expression of the weighted Bartholdi zeta function of a digraph.

Let *D* be a connected digraph with *n* vertices v_1, \dots, v_n and *m* arcs, and $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of *D*. Then we define two $n \times n$ matrices $\tilde{\mathbf{A}}_1 = \tilde{\mathbf{A}}_1(D) = (a_{xy})$ and $\tilde{\mathbf{A}}_0 = \tilde{\mathbf{A}}_0(D) = (b_{xy})$ as follows:

$$a_{xy} = \begin{cases} w(x,y)/(1-w(x,y)w(y,x)(1-u)^2t^2) & \text{if both } (x,y) \text{ and } (y,x) \in A(D), \\ 0 & \text{otherwise} \end{cases}$$

and

$$b_{xy} = \begin{cases} w(x,y) & \text{if } (x,y) \in A(D) \text{ and } (y,x) \notin A(D), \\ 0 & \text{otherwise} \end{cases}$$

Furthermore, an $n \times n$ matrix $\tilde{\mathbf{D}} = \tilde{\mathbf{D}}(D) = (d_{xy})$ is the diagonal matrix defined by

$$d_{xx} = \sum_{o(e)=x, e^{-1} \in A(D)} \frac{w(e)w(e^{-1})}{1 - w(e)w(e^{-1})(1 - u)^2 t^2}$$

.

Let $\mathbf{M}_1 \oplus \cdots \oplus \mathbf{M}_s$ be the block diagonal sum of square matrices $\mathbf{M}_1, \cdots, \mathbf{M}_s$. A new determinant expression for $\zeta(D, w, u, t)$ is given as follows:

Theorem 6. Let D be a connected digraph, and let $\mathbf{W} = \mathbf{W}(D)$ be a weighted matrix of D. Then the reciprocal of the weighted Bartholdi zeta function of D is given by

$$\zeta(D, w, u, t)^{-1} = \det(\mathbf{I}_n + (1 - u)t^2\tilde{\mathbf{D}} - t\tilde{\mathbf{A}}_1 - t\tilde{\mathbf{A}}_0)\prod_{i=1}^{m_1}(1 - w(f_i)w(f_i^{-1})(1 - u)^2t^2),$$

where n = |V(D)|, m = |A(D)| and $f_1^{\pm 1}, \ldots, f_{m_1}^{\pm 1}$ are symmetric arcs of D.

Proof. Let $V(D) = \{v_1, \dots, v_n\}$ and, let $A(D) = \{e_1, \dots, e_{m_0}, f_1, \dots, f_{m_1}, f_1^{-1}, \dots, f_{m_1}\}$ such that $e_i^{-1} \notin A(D) (1 \le i \le m_0)$. Note that $m = m_0 + 2m_1$.

Arrange arcs of D as follows:

$$e_1, \cdots, e_{m_0}, f_1, f_1^{-1}, \cdots, f_{m_1}, f_{m_1}^{-1}$$

Let

$$\mathbf{U} = \begin{bmatrix} w(e_1) & & & & 0 \\ & \ddots & & & & \\ & & w(e_{m_0}) & & & \\ & & & & w(f_1) & \\ & & & & & w(f_1^{-1}) \\ 0 & & & & \ddots \end{bmatrix}.$$

Then we have

$$\mathbf{UB} = \mathbf{B}_w \text{ and } \mathbf{UJ}_0 = \mathbf{J}_w$$

Thus,

$$\mathbf{B}_w - (1-u)\mathbf{J}_w = \mathbf{U}(\mathbf{B} - (1-u)\mathbf{J}_0).$$

By Theorem 2, it follows that

$$\zeta(D, w, u, t)^{-1} = \det(\mathbf{I}_m - t\mathbf{U}(\mathbf{B} - (1 - u)\mathbf{J}_0)).$$

Now, let $\mathbf{K} = (\mathbf{K}_{ev})_{e \in A(D); v \in V(D)}$ be the $m \times n$ matrix defined as follows:

$$\mathbf{K}_{ev} := \begin{cases} 1 & \text{if } o(e) = v, \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore, we define the $m \times n$ matrix $\mathbf{L} = (\mathbf{L}_{ev})_{e \in A(D); v \in V(D)}$ as follows:

$$\mathbf{L}_{ev} := \begin{cases} 1 & \text{if } t(e) = v, \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$\mathbf{L}^{t}\mathbf{K}=\mathbf{B}.$$

Thus,

$$\det(\mathbf{I}_m - t\mathbf{U}(\mathbf{B} - (1 - u)\mathbf{J}_0))$$

=
$$\det(\mathbf{I}_m - t\mathbf{U}(\mathbf{L}^t\mathbf{K} - (1 - u)\mathbf{J}_0)) = \det(\mathbf{I}_m - t\mathbf{U}\mathbf{L}^t\mathbf{K} + (1 - u)t\mathbf{U}\mathbf{J}_0).$$

But, we have

$$\mathbf{I}_{m} + (1-u)t\mathbf{U}\mathbf{J}_{0} = \mathbf{I}_{m_{0}} \oplus \left(\bigoplus_{j=1}^{m_{1}} \begin{bmatrix} 1 & (1-u)tw(f_{j}) \\ (1-u)tw(f_{j}^{-1}) & 1 \end{bmatrix} \right).$$
(1)

Since |u|, |t| are sufficiently small, we have

$$\det\left(\begin{bmatrix} 1 & (1-u)tw(f_j)\\ (1-u)tw(f_j^{-1}) & 1 \end{bmatrix}\right) = 1 - (1-u)^2 t^2 w(f_j) w(f_j^{-1}) \neq 0 \ (1 \le j \le m_1).$$

Thus, $\mathbf{I}_m + (1-u)t\mathbf{U}\mathbf{J}_0$ is invertible. Therefore,

$$\det(\mathbf{I}_m - t\mathbf{U}(\mathbf{B} - (1 - u)\mathbf{J}_0))$$

=
$$\det(\mathbf{I}_m - t\mathbf{U}\mathbf{L}^t\mathbf{K}(\mathbf{I}_m + (1 - u)t\mathbf{U}\mathbf{J}_0)^{-1})\det(\mathbf{I}_m + (1 - u)t\mathbf{U}\mathbf{J}_0).$$

But, if **A** and **B** are a $m \times n$ and $n \times m$ matrices, respectively, then we have

$$\det(\mathbf{I}_m - \mathbf{AB}) = \det(\mathbf{I}_n - \mathbf{BA}).$$
⁽²⁾

Thus, we have

$$\det(\mathbf{I}_m - t\mathbf{U}(\mathbf{B} - (1 - u)\mathbf{J}_0))$$

=
$$\det(\mathbf{I}_n - t^{t}\mathbf{K}(\mathbf{I}_m + (1 - u)t\mathbf{U}\mathbf{J}_0)^{-1}\mathbf{U}\mathbf{L})\det(\mathbf{I}_m + (1 - u)t\mathbf{U}\mathbf{J}_0).$$

Next, we have

$$\det(\mathbf{I}_m + (1-u)t\mathbf{U}\mathbf{J}_0) = \prod_{i=1}^{m_1} (1-w(f_i)w(f_i^{-1})(1-u)^2 t^2).$$

Furthermore, the $m \times n$ matrix $\mathbf{UL} = (c_{ev})_{e \in A(D); v \in V(D)}$ is given as follows:

$$c_{ev} := \begin{cases} w(e) & \text{if } t(e) = v, \\ 0 & \text{otherwise.} \end{cases}$$

But, we have

$$(\mathbf{I}_m + (1-u)t\mathbf{U}\mathbf{J}_0)^{-1} = \mathbf{I}_{m_0} \oplus (\bigoplus_{j=1}^{m_1} \begin{bmatrix} 1/x_j & -(1-u)tw(f_j)/x_j \\ -(1-u)tw(f_j^{-1})/x_j & 1/x_j \end{bmatrix}),$$

where $x_i = 1 - w(f_i)w(f_i^{-1})(1-u)^2 t^2$ $(1 \le i \le m_1)$. Now, for a symmetric arc $(x, y) \in A(D)$,

$$({}^{t}\mathbf{K}(\mathbf{I}_{m}+(1-u)t\mathbf{U}\mathbf{J}_{0})^{-1}\mathbf{U}\mathbf{L})_{xy} = w(x,y)/(1-w(x,y)w(y,x)(1-u)^{2}t^{2}).$$

For a nonsymmetric arc $(x, y) \in A(D)$,

$$({}^{t}\mathbf{K}(\mathbf{I}_{m}+(1-u)t\mathbf{U}\mathbf{J}_{0})^{-1}\mathbf{U}\mathbf{L})_{xy} = w(x,y)$$

Furthermore, if x = y, then

$$({}^{t}\mathbf{K}(\mathbf{I}_{m} + (1-u)t\mathbf{U}\mathbf{J}_{0})^{-1}\mathbf{U}\mathbf{L})_{xx} = -\sum_{o(e)=x,e^{-1}\in A(D)} \frac{(1-u)tw(e)w(e^{-1})}{1-w(e)w(e^{-1})(1-u)^{2}t^{2}}$$

Thus,

$$\det(\mathbf{I}_n - t^{t}\mathbf{K}(\mathbf{I}_m + (1-u)t\mathbf{U}\mathbf{J}_0)^{-1}\mathbf{U}\mathbf{L}) = \det(\mathbf{I}_n + (1-u)t^2\tilde{\mathbf{D}} - t\tilde{\mathbf{A}}_1 - t\tilde{\mathbf{A}}_0).$$

Therefore, it follows that

$$\zeta(D, w, u, t)^{-1} = \det(\mathbf{I}_n + (1 - u)t^2\tilde{\mathbf{D}} - t\tilde{\mathbf{A}}_1 - t\tilde{\mathbf{A}}_0) \prod_{i=1}^{m_1} (1 - w(f_i)w(f_i^{-1})(1 - u)^2t^2).$$

By Theorem 5, we obtain the second identity of Theorem 2.

Corollary 1 (Choe, Kwak, Park and Sato). Let D be a connected digraph, and let $\mathbf{W} = \mathbf{W}(D)$ be a weighted matrix of D. Furthermore, assume that $w(e^{-1}) = w(e)^{-1}$ for each $e \in A(D)$ such that $e^{-1} \in A(D)$. Then the reciprocal of the weighted Bartholdi zeta function of D is given by

$$\zeta(D,w,u,t)^{-1} = (1-(1-u)^2t^2)^{m_1-m_2}$$

× det(
$$\mathbf{I}_n - t\mathbf{W}_1(D) - (1 - (1 - u)^2 t^2) t\mathbf{W}_0(D) + (1 - u)t^2(\mathbf{S} - (1 - u)\mathbf{I}_n)$$
).
where $n = |V(D)|$ and $m = |A(D)|$.

Proof. Since $w(e^{-1}) = w(e)^{-1}$ for each symmetric arc $e \in A(D)$, we have $w(e^{-1}) w(e)^{-1} = 1$. Then we have

$$\tilde{\mathbf{D}} = \frac{1}{1 - (1 - u)^2 t^2} \mathbf{S}, \ \tilde{\mathbf{A}}_1 = \frac{1}{1 - (1 - u)^2 t^2} \mathbf{W}_1(D).$$

Furthermore, $\tilde{\mathbf{A}}_0 = \mathbf{W}_0(D)$. Thus,

$$\begin{aligned} \zeta(D, w, u, t)^{-1} &= (1 - (1 - u)^2 t^2)^{m_1} \det \left(\mathbf{I}_n - t/(1 - (1 - u)^2 t^2) \mathbf{W}_1(D) \right. \\ &- t \mathbf{W}_0(D) + (1 - u) t^2/(1 - (1 - u)^2 t^2) \mathbf{S} \right) \\ &= (1 - (1 - u)^2 t^2)^{m_1 - n} \det \left(\mathbf{I}_n - t \mathbf{W}_1(D) - (1 - (1 - u)^2 t^2) t \mathbf{W}_0(D) \right. \\ &+ (1 - u) t^2 (\mathbf{S} - (1 - u) \mathbf{I}_n) \right). \end{aligned}$$

4 Weighted Bartholdi zeta functions of group coverings of digraphs

We can generalize the notion of a Γ -covering of a graph to a simple digraph. Let D be a connected digraph and Γ a finite group. Then a mapping $\alpha : A(D) \longrightarrow \Gamma$ is called a *pseudo ordinary voltage assignment* if $\alpha(v, u) = \alpha(u, v)^{-1}$ for each $(u, v) \in A(D)$ such that $(v, u) \in A(D)$. The pair (D, α) is called an *ordinary voltage digraph*. The *derived digraph* D^{α} of the ordinary voltage digraph (D, α) is defined as follows: $V(D^{\alpha}) = V(D) \times \Gamma$ and $((u, h), (v, k)) \in A(D^{\alpha})$ if and only if $(u, v) \in A(D)$ and $k = h\alpha(u, v)$. The digraph D^{α} is called a Γ -covering of D. Note that a Γ -covering of the symmetric digraph corresponding to a graph G is a Γ -covering of G(see [5]).

Let D be a connected digraph, Γ a finite group and $\alpha : A(D) \longrightarrow \Gamma$ a pseudo ordinary voltage assignment. In the Γ -covering D^{α} , set $v_g = (v, g)$ and $e_g = (e, g)$, where $v \in V(D), e \in A(D), g \in \Gamma$. For $e = (u, v) \in A(D)$, the arc e_g emanates from u_g and terminates at $v_{q\alpha(e)}$.

Let $\mathbf{W} = \mathbf{W}(D)$ be a weighted matrix of D. Then we define the weighted matrix $\tilde{\mathbf{W}} = \mathbf{W}(D^{\alpha}) = (\tilde{w}(u_q, v_h))$ of D^{α} derived from \mathbf{W} as follows:

$$\tilde{w}(u_g, v_h) := \begin{cases} w(u, v) & \text{if } (u, v) \in A(D) \text{ and } h = g\alpha(u, v), \\ 0 & \text{otherwise.} \end{cases}$$

If $\mathbf{M}_1 = \mathbf{M}_2 = \cdots = \mathbf{M}_s = \mathbf{M}$, then we write $s \circ \mathbf{M} = \mathbf{M}_1 \oplus \cdots \oplus \mathbf{M}_s$. The Kronecker product $\mathbf{A} \bigotimes \mathbf{B}$ of matrices \mathbf{A} and \mathbf{B} is considered as the matrix \mathbf{A} having the element a_{ij} replaced by the matrix $a_{ij}\mathbf{B}$.

Theorem 7. Let D be a connected digraph with n vertices and m arcs, Γ a finite group, $\alpha : A(D) \longrightarrow \Gamma$ a pseudo ordinary voltage assignment and $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of D. Set $m_1 = |\{e \in A(D) \mid e^{-1} \in A(D)\}| / 2$ and $|\Gamma| = r$. Furthermore, let $\rho_1 = 1, \rho_2, \cdots, \rho_k$ be the irreducible representations of Γ , and d_i the degree of ρ_i for each i, where $d_1 = 1$. For $g \in \Gamma$, the matrix $\mathbf{A}_{1,g} = (a_{xy}^{(g)})$ is defined as follows:

$$a_{xy}^{(g)} := \begin{cases} w(x,y)/(1-w(x,y)w(y,x)(1-u)^2t^2) & if (x,y), (y,x) \in A(D) \text{ and } \alpha(x,y) = g, \\ 0 & otherwise. \end{cases}$$

Furthermore, the matrix $\mathbf{A}_{0,g} = (b_{xy}^{(g)})$ is defined as follows:

$$b_{xy}^{(g)} := \begin{cases} w(x,y) & \text{if } (x,y) \in A(D), (y,x) \notin A(D) \text{ and } \alpha(x,y) = g, \\ 0 & \text{otherwise.} \end{cases}$$

Suppose that the Γ -covering D^{α} of D is connected. Then the reciprocal of the weighted Bartholdi zeta function of D^{α} is

$$\zeta(D^{\alpha}, \tilde{w}, u, t)^{-1} = \prod_{i=1}^{m_1} (1 - w(f_i)w(f_i^{-1})(1 - u)^2 t^2)^r$$

$$\times \prod_{i=1}^{k} \{ \det(\mathbf{I}_{nd_{i}} - t \sum_{h \in \Gamma} \rho_{i}(h) \bigotimes \mathbf{A}_{1,h} - t \sum_{h \in \Gamma} \rho_{i}(h) \bigotimes \mathbf{A}_{0,h} + (1-u)t^{2}(\mathbf{I}_{d_{i}} \bigotimes \tilde{\mathbf{D}}(D))) \}^{d_{i}},$$

where $f_1^{\pm 1}, \ldots, f_{m_1}^{\pm 1}$ are symmetric arcs of D.

Proof. Let $V(D) = \{v_1, \dots, v_n\}$ and $\Gamma = \{1 = g_1, g_2, \dots, g_r\}$. Arrange vertices of D^{α} in *n* blocks: $(v_1, 1), \dots, (v_n, 1); (v_1, g_2), \dots, (v_n, g_2); \dots; (v_1, g_r), \dots, (v_n, g_r)$. We consider the three matrices $\tilde{\mathbf{A}}_1(D^{\alpha})$, $\tilde{\mathbf{W}}_0(D^{\alpha})$ and $\tilde{\mathbf{D}}(D^{\alpha})$ under this order. By Theorem 5, we have

$$\zeta(D^{\alpha}, \tilde{w}, u, t)^{-1} = \det(\mathbf{I}_{\nu m} - t\tilde{\mathbf{A}}_{1}(D^{\alpha}) - t\tilde{\mathbf{A}}_{0}(D^{\alpha}) + (1 - u)t^{2}\tilde{\mathbf{D}}(D^{\alpha}))$$
$$\cdot \prod_{i=1}^{m_{1}} (1 - w(f_{i})w(f_{i}^{-1})(1 - u)^{2}t^{2})^{r}.$$

For $h \in \Gamma$, the matrix $\mathbf{P}_h = (p_{ij}^{(h)})$ is defined as follows:

$$p_{ij}^{(h)} = \begin{cases} 1 & \text{if } g_i h = g_j, \\ 0 & \text{otherwise.} \end{cases}$$

Suppose that $p_{ij}^{(h)} = 1$, i.e., $g_j = g_i h$. Then $((u, g_i), (v, g_j)) \in A(D^{\alpha})$ if and only if $(u, v) \in A(D)$ and $g_j = g_i \alpha(u, v)$, i.e., $\alpha(u, v) = g_i^{-1}g_j = g_i^{-1}g_i h = h$. Thus we have

$$\tilde{\mathbf{A}}_0(D^{\alpha}) = \sum_{h \in \Gamma} \mathbf{P}_h \bigotimes \mathbf{A}_{0,h} \text{ and } \tilde{\mathbf{A}}_1(D^{\alpha}) = \sum_{h \in \Gamma} \mathbf{P}_h \bigotimes \mathbf{A}_{1,h}.$$

Let ρ be the right regular representation of Γ . Furthermore, let $\rho_1 = 1, \rho_2, \dots, \rho_k$ be the irreducible representations of Γ , and d_i the degree of ρ_i for each *i*, where $d_1 = 1$. Then

we have $\rho(h) = \mathbf{P}_h$ for $h \in \Gamma$. Furthermore, there exists a nonsingular matrix \mathbf{P} such that $\mathbf{P}^{-1}\rho(h)\mathbf{P} = (1) \oplus d_2 \circ \rho_2(h) \oplus \cdots \oplus d_k \circ \rho_k(h)$ for each $h \in \Gamma$ (see [10]). Putting $\mathbf{B} = (\mathbf{P}^{-1} \bigotimes \mathbf{I}_n)(\tilde{\mathbf{A}}_1(D^{\alpha}) + \tilde{\mathbf{A}}_0(D^{\alpha}))(\mathbf{P} \bigotimes \mathbf{I}_n)$, we have

$$\mathbf{B} = \sum_{h \in \Gamma} \{(1) \oplus d_2 \circ \rho_2(h) \oplus \cdots \oplus d_k \circ \rho_k(h)\} \bigotimes (\mathbf{A}_{1,h} + \mathbf{A}_{0,h}).$$

Note that $\tilde{\mathbf{A}}_i(D) = \sum_{h \in \Gamma} \mathbf{A}_{i,h}$ (i = 0, 1) and $1 + d_2^2 + \cdots + d_k^2 = r$. Therefore it follows that

$$\zeta(D^{\alpha}, \tilde{w}, u, t)^{-1} = \prod_{j=1}^{m_1} (1 - w(f_j)w(f_j^{-1})(1 - u)^2 t^2)^r$$

$$\times \prod_{i=1}^{k} \det(\mathbf{I}_{nd_{i}} - t \sum_{h \in \Gamma} \rho_{i}(h) \bigotimes \mathbf{A}_{1,h} - t \sum_{h \in \Gamma} \rho_{i}(h) \bigotimes \mathbf{A}_{0,h} + (1-u)t^{2}(\mathbf{I}_{d_{i}} \bigotimes \tilde{\mathbf{D}}(D)))^{d_{i}}.$$

5 *L*-functions of digraphs

Let *D* be a connected digraph with *m* arcs, Γ a finite group, $\alpha : A(D) \longrightarrow \Gamma$ a pseudo ordinary voltage assignment and $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of *D*. For each path $P = (e_1, \dots, e_l)$ of *D*, set $\alpha(P) = \alpha(e_1) \cdots \alpha(e_l)$ and $w(P) = w(e_1) \cdots w(e_l)$. Furthermore, let ρ be a representation of Γ and *d* its degree.

The weighted Bartholdi L-function of D associated with ρ and α is defined by

$$\zeta_D(w, u, t, \rho, \alpha) = \prod_{[C]} \det(\mathbf{I}_d - w(C)\rho(\alpha(C))u^{cbc(C)}t^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of D.

Two $md \times md$ matrices $\mathbf{B}_{w}^{\rho} = (\mathbf{B}_{e,f})_{e,f \in A(D)}$ and $\mathbf{J}_{w}^{\rho} = (\mathbf{J}_{e,f})_{e,f \in A(D)}$ are defined as follows:

$$\mathbf{B}_{e,f} = \begin{cases} w(e)\rho(\alpha(e)) & \text{if } t(e) = o(f), \\ \mathbf{0}_d & \text{otherwise} \end{cases}, \\ \mathbf{J}_{e,f} = \begin{cases} w(e)\rho(\alpha(e)) & \text{if } f = e^{-1}, \\ \mathbf{0}_d & \text{otherwise.} \end{cases}$$

A determinant expression for the weighted Bartholdi *L*-function of *D* associated with ρ and α was given by Choe, Kwak, Park and Sato [3]. Let $1 \leq i, j \leq n$. Then the (i, j)-block \mathbf{F}_{ij} of a $dn \times dn$ matrix \mathbf{F} is the submatrix of \mathbf{F} consisting of $d(i-1) + 1, \ldots, di$ rows and $d(j-1) + 1, \ldots, dj$ columns.

Theorem 8 (Choe, Kwak, Park and Sato). Let D be a connected digraph with m arcs, Γ a finite group, $\alpha : A(D) \longrightarrow \Gamma$ a pseudo ordinary voltage assignment and $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of D. Furthermore, let ρ be a representation of Γ , and d the degree of ρ . Then the reciprocal of the weighted Bartholdi L-function of D associated with ρ and α is

$$\zeta_D(w, u, t, \rho, \alpha)^{-1} = \det(\mathbf{I}_{md} - (\mathbf{B}_w^{\rho} - (1-u)\mathbf{J}_w^{\rho})t).$$

A new determinant expression for the weighted Bartholdi *L*-function of *D* associated with ρ and α is given as follows:

Theorem 9. Let D be a connected digraph, and let $\mathbf{W} = \mathbf{W}(D)$ be a weighted matrix of D. Then the reciprocal of the weighted Bartholdi L-function of D is given by

$$\zeta_D(w, u, t, \rho, \alpha)^{-1} = \prod_{i=1}^{m_1} (1 - w(f_i)w(f_i^{-1})(1 - u)^2 t^2)^d \times \det(\mathbf{I}_{nd} + (1 - u)t^2 \mathbf{I}_d \bigotimes \tilde{\mathbf{D}}(D) - t \sum_{g \in \Gamma} \rho(g) \bigotimes \mathbf{A}_{1,g} - t \sum_{g \in \Gamma} \rho(g) \bigotimes \mathbf{A}_{0,g}),$$

where n = |V(D)|, m = |A(D)| and $f_1^{\pm 1}, \ldots, f_{m_1}^{\pm 1}$ are symmetric arcs of D.

Proof. Let $V(D) = \{v_1, \dots, v_n\}$ and, let $A(D) = \{e_1, \dots, e_{m_0}, f_1, \dots, f_{m_1}, f_1^{-1}, \dots, f_{m_1}\}$ such that $e_i^{-1} \notin A(D)(1 \le i \le m_0)$. Note that $m = m_0 + 2m_1$.

Arrange arcs of D as follows:

$$e_1, \cdots, e_{m_0}, f_1, f_1^{-1}, \cdots, f_{m_1}, f_{m_1}^{-1}.$$

Let

$$\mathbf{U} = \begin{bmatrix} w(e_1) & & & 0 \\ & \ddots & & & \\ & & w(e_{m_0}) & & \\ & & & w(f_1) & \\ & & & & w(f_1^{-1}) \\ & & & & & \ddots \end{bmatrix}.$$

Furthermore, let two $md \times md$ matrices $\mathbf{B}_{\rho} = (\mathbf{B}_{e,f}^{\rho})_{e,f \in A(D)}$ and $\mathbf{J}_{\rho} = (\mathbf{J}_{e,f}^{\rho})_{e,f \in A(D)}$ be defined as follows:

$$\mathbf{B}_{e,f}^{\rho} = \begin{cases} \rho(\alpha(e)) & \text{if } t(e) = o(f), \\ \mathbf{0}_{d} & \text{otherwise} \end{cases}, \mathbf{J}_{e,f}^{\rho} = \begin{cases} \rho(\alpha(e)) & \text{if } f = e^{-1}, \\ \mathbf{0}_{d} & \text{otherwise.} \end{cases}$$

Then we have

$$(\mathbf{U}\bigotimes \mathbf{I}_d)\mathbf{B}_{\rho} = \mathbf{B}_w^{\rho} and \ (\mathbf{U}\bigotimes \mathbf{I}_d)\mathbf{J}_{\rho} = \mathbf{J}_w^{\rho}.$$

Thus,

$$\mathbf{B}_{w}^{\rho} - (1-u)\mathbf{J}_{w}^{\rho} = (\mathbf{U}\bigotimes\mathbf{I}_{d})(\mathbf{B}_{\rho} - (1-u)\mathbf{J}_{\rho}).$$

By Theorem 7, it follows that

$$\zeta_D(w, u, t, \rho, \alpha)^{-1} = \det(\mathbf{I}_{md} - t(\mathbf{U}\bigotimes \mathbf{I}_d)(\mathbf{B}_{\rho} - (1-u)\mathbf{J}_{\rho})).$$

Now, let $\mathbf{K} = (\mathbf{K}_{ev})_{e \in A(D); v \in V(D)}$ be the $md \times nd$ matrix defined as follows:

$$\mathbf{K}_{ev} := \begin{cases} \mathbf{I}_d & \text{if } o(e) = v, \\ \mathbf{0}_d & \text{otherwise.} \end{cases}$$

Furthermore, we define the $md \times nd$ matrix $\mathbf{L} = (\mathbf{L}_{ev})_{e \in A(D); v \in V(D)}$ as follows:

$$\mathbf{L}_{ev} := \begin{cases} \rho(\alpha(e)) & \text{if } t(e) = v, \\ \mathbf{0}_d & \text{otherwise.} \end{cases}$$

Set $\mathbf{U}_d = \mathbf{U} \bigotimes \mathbf{I}_d$. Then we have

$$\mathbf{L}^t \mathbf{K} = \mathbf{B}_{\rho}$$

Thus,

$$\det(\mathbf{I}_{md} - t\mathbf{U}_d(\mathbf{B}_{\rho} - (1-u)\mathbf{J}_{\rho}))$$

=
$$\det(\mathbf{I}_{md} - t\mathbf{U}_d(\mathbf{L}^t\mathbf{K} - (1-u)\mathbf{J}_{\rho})) = \det(\mathbf{I}_{md} - t\mathbf{U}_d\mathbf{L}^t\mathbf{K} + (1-u)t\mathbf{U}_d\mathbf{J}_{\rho}).$$

But, we have

$$\mathbf{I}_{md} + (1-u)t\mathbf{U}_d\mathbf{J}_\rho$$

$$= \mathbf{I}_{m_0d} \oplus \left(\bigoplus_{j=1}^{m_1} \begin{bmatrix} \mathbf{I}_d & (1-u)tw(f_j)\rho(\alpha(f_j)) \\ (1-u)tw(f_j^{-1})\rho(\alpha(f_j^{-1})) & \mathbf{I}_d \end{bmatrix} \right).$$
(3)

Since |u|, |t| are sufficiently small, we have

$$\det\left(\begin{bmatrix} \mathbf{I}_{d} & (1-u)tw(f_{j})\rho(\alpha(f_{j})) \\ (1-u)tw(f_{j}^{-1})\rho(\alpha(f_{j}^{-1})) & \mathbf{I}_{d} \end{bmatrix}\right)$$
$$= (1-(1-u)^{2}t^{2}w(f_{j})w(f_{j}^{-1}))^{d} \neq 0 \ (1 \leq j \leq m_{1}).$$

Thus, $\mathbf{I}_{md} + (1-u)t\mathbf{U}_d\mathbf{J}_{\rho}$ is invertible. Therefore,

$$\det(\mathbf{I}_{md} - t\mathbf{U}_d(\mathbf{B}_{\rho} - (1-u)\mathbf{J}_{\rho}))$$

=
$$\det(\mathbf{I}_{md} - t\mathbf{U}_d\mathbf{L}^t\mathbf{K}(\mathbf{I}_{md} + (1-u)t\mathbf{U}_d\mathbf{J}_{\rho})^{-1})\det(\mathbf{I}_{md} + (1-u)t\mathbf{U}_d\mathbf{J}_{\rho}).$$

By (2), we have

$$\det(\mathbf{I}_{md} - t\mathbf{U}_d(\mathbf{B}_{\rho} - (1-u)\mathbf{J}_{\rho}))$$

=
$$\det(\mathbf{I}_{nd} - t \ {}^t\mathbf{K}(\mathbf{I}_{nd} + (1-u)t\mathbf{U}_d\mathbf{J}_{\rho})^{-1}\mathbf{U}_d\mathbf{L})\det(\mathbf{I}_{md} + (1-u)t\mathbf{U}_d\mathbf{J}_{\rho}).$$

Next, we have

$$\det(\mathbf{I}_{md} + (1-u)t\mathbf{U}_d\mathbf{J}_{\rho}) = \prod_{i=1}^{m_1} (1-w(f_i)w(f_i^{-1})(1-u)^2t^2)^d.$$

Furthermore, the $md \times nd$ matrix $\mathbf{U}_d \mathbf{L} = (c_{ev})_{e \in A(D); v \in V(D)}$ is given as follows:

$$c_{ev} := \begin{cases} w(e)\rho(\alpha(e)) & \text{if } t(e) = v, \\ 0 & \text{otherwise.} \end{cases}$$

But, we have

$$(\mathbf{I}_{md} + (1-u)t\mathbf{U}_d\mathbf{J}_\rho)^{-1}$$

$$= \mathbf{I}_{m_0 d} \oplus (\bigoplus_{j=1}^{m_1} \left[\begin{array}{cc} 1/x_j \mathbf{I}_d & -(1-u)tw(f_j)/x_j \rho(\alpha(f_j)) \\ -(1-u)tw(f_j^{-1})/x_j \rho(\alpha(f_j^{-1})) & 1/x_j \mathbf{I}_d \end{array} \right]).$$

where $x_i = 1 - w(f_i)w(f_i^{-1})(1-u)^2 t^2$ $(1 \le i \le m_1)$. But, for a symmetric arc $(x, y) \in A(D)$,

$$({}^{t}\mathbf{K}(\mathbf{I}_{md} + (1-u)t\mathbf{U}_{d}\mathbf{J}_{\rho})^{-1}\mathbf{U}_{d}\mathbf{L})_{xy} = w(x,y)/(1-w(x,y)w(y,x)(1-u)^{2}t^{2})\rho(\alpha(x,y)).$$

For a nonsymmetric arc $(x, y) \in A(D)$,

$$({}^{t}\mathbf{K}(\mathbf{I}_{md} + (1-u)t\mathbf{U}_{d}\mathbf{J}_{\rho})^{-1}\mathbf{U}_{d}\mathbf{L})_{xy} = w(x,y)\rho(\alpha(x,y)).$$

Furthermore, if x = y, then

$$({}^{t}\mathbf{K}(\mathbf{I}_{md} + (1-u)t\mathbf{U}_{d}\mathbf{J}_{\rho})^{-1}\mathbf{U}_{d}\mathbf{L})_{xx} = -\sum_{o(e)=x,e^{-1}\in A(D)} \frac{(1-u)tw(e)w(e^{-1})}{1-w(e)w(e^{-1})(1-u)^{2}t^{2}}\mathbf{I}_{d}.$$

Thus,

$$\det(\mathbf{I}_{nd} - t \ {}^{t}\mathbf{K}(\mathbf{I}_{nd} + (1 - u)t\mathbf{U}_{d}\mathbf{J}_{\rho})^{-1}\mathbf{U}_{d}\mathbf{L})$$

=
$$\det(\mathbf{I}_{nd} + (1 - u)t^{2}\tilde{\mathbf{D}}(D)\bigotimes\mathbf{I}_{d} - t\sum_{g\in\Gamma}\mathbf{A}_{1,g}\bigotimes\rho(g) - t\sum_{g\in\Gamma}\mathbf{A}_{0,g}\bigotimes\rho(g)),$$

Therefore, it follows that

$$\zeta_D(w, u, t, \rho, \alpha)^{-1} = \prod_{i=1}^{m_1} (1 - w(f_i)w(f_i^{-1})(1 - u)^2 t^2)^d$$
$$\times \det(\mathbf{I}_{nd} + (1 - u)t^2 \mathbf{I}_d \bigotimes \tilde{\mathbf{D}}(D) - t \sum_{g \in \Gamma} \rho(g) \bigotimes \mathbf{A}_{1,g} - t \sum_{g \in \Gamma} \rho(g) \bigotimes \mathbf{A}_{0,g}),$$

By Theorems 6,8, the following result holds.

Corollary 2 (Choe, Kwak, Park and Sato). Let D be a connected digraph, Γ a finite group, $\alpha : A(D) \longrightarrow \Gamma$ a pseudo ordinary voltage assignment and $\mathbf{W} = \mathbf{W}(D)$ a weighted matrix of D. Then we have

$$\zeta(D^{\alpha}, \tilde{w}, u, t) = \prod_{\rho} \zeta_D(w, u, t, \rho, \alpha)^{\deg \rho},$$

where ρ runs over all inequivalent irreducible representations of Γ .

6 Bartholdi edge zeta function of a digraph

Let *D* be a connected digraph with *m* arcs e_1, \ldots, e_m . Furthermore, let z_1, \ldots, z_m be *m* variables. Set $z_{e_i} = z_i (1 \leq i \leq m)$ and $\mathbf{z} = (z_1, \ldots, z_m)$. Then the Bartholdi edge zeta function $\zeta(D, w, u)$ of *D* is defined by

$$\zeta(D, \mathbf{z}, u) = \prod_{[C]} (1 - g(C)u^{cbc(C)})^{-1},$$

where [C] runs over all equivalence classes of prime cycles of D. If $D = D_G$ is the symmetric digraph of a graph G, then the Bartholdi edge zeta function $\zeta(D_G, \mathbf{z}, u)$ of D_G is called the *Bartholdi edge zeta function* $\zeta(G, \mathbf{z}, u)$ of G.

Now, set |V(D)| = n. Then we define an $n \times n$ matrix $\mathbf{A}'_1 = \mathbf{A}'_1(D) = (a_{xy})$ as follows:

$$a_{xy} = \begin{cases} z_{(x,y)}/(1 - z_{(x,y)}z_{(y,x)}(1 - u)^2) & \text{if both } (x,y) \text{ and } (y,x) \in A(D), \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore, an $n \times n$ matrix $\mathbf{D}' = \mathbf{D}'(D) = (d_{xy})$ is the diagonal matrix defined by

$$d_{xx} = \sum_{o(e)=x, e^{-1} \in A(D)} \frac{z_e z_{e^{-1}}}{1 - z_e z_{e^{-1}} (1 - u)^2}.$$

Substituting t = 1 in Theorem 5, we obtain the following result.

Corollary 3. Let D be a connected digraph with m arcs and let $\mathbf{z} = (z_1, \ldots, z_m)$ be m variables. Then the reciprocal of the Bartholdi edge zeta function of D is given by

$$\zeta(D, \mathbf{z}, u)^{-1} = \det(\mathbf{I}_n + (1 - u)\mathbf{D}' - \mathbf{A}'_1(D) - \tilde{\mathbf{A}}_0) \prod_{i=1}^{m_1} (1 - z_{f_i} z_{f_i^{-1}} (1 - u)^2),$$

where n = |V(D)| and $f_1^{\pm 1}, \ldots, f_{m_1}^{\pm 1}$ are symmetric arcs of D.

If $D = D_G$, then

Corollary 4. Let G be a connected graph with m edges and let $\mathbf{z} = (z_1, \ldots, z_{2m})$ be 2m variables.and let $\mathbf{W} = \mathbf{W}(G)$ be a weighted matrix of G. Then the reciprocal of the Bartholdi edge zeta function of G is given by

$$\zeta(G, \mathbf{z}, u)^{-1} = \det(\mathbf{I}_n + (1 - u)\mathbf{D}' - \mathbf{A}'_1(G) - \tilde{\mathbf{A}}_0) \prod_{i=1}^m (1 - z_{f_i} z_{f_i^{-1}} (1 - u)^2),$$

where n = |V(G)| and $D(G) = \{f_1^{\pm 1}, \dots, f_m^{\pm 1}\}.$

7 Example

Finally, we give an example. Let D be the digraph with three vertices v_1, v_2, v_3 and five arcs $(v_1, v_2), (v_2, v_1), (v_2, v_3), (v_3, v_2), (v_3, v_1)$. Furthermore, let

$$\mathbf{W}(D) = \left[\begin{array}{rrr} 0 & a & 0 \\ b & 0 & c \\ d & e & 0 \end{array} \right].$$

Then we have $n = 3, m = 5, m_1 = 2$. By Theorem 5, we have

$$\begin{aligned} \zeta(D, w, u, t)^{-1} \\ &= (1 - ab(1 - u)^{2}t^{2})(1 - ce(1 - u)^{2}t^{2})\det(\mathbf{I}_{3} - t\tilde{\mathbf{A}}_{1} - t\tilde{\mathbf{A}}_{0} + (1 - u)t^{2}\tilde{\mathbf{D}}) \\ &= AB\det\left(\begin{bmatrix} 1 + abF/A & -at/A & 0\\ -bt/A & 1 + abF/A + ceF/B & -ct/B\\ -dt & -et/B & 1 + ceF/B \end{bmatrix}\right) \\ &= 1 - (ab + ce)u^{2}t^{2} + abce(u^{4} - u^{2})t^{4} - acdt^{3}, \end{aligned}$$

where $A = 1 - ab(1-u)^2 t^2$, $B = 1 - ce(1-u)^2 t^2$ and $F = (1-u)t^2$.

Let $\Gamma = Z_3 = \{1, \tau, \tau^2\}(\tau^3 = 1)$ be the cyclic group of order 3, and let $\alpha : A(D) \longrightarrow Z_3$ be the pseudo ordinary voltage assignment such that $\alpha(v_1, v_2) = \tau$, $\alpha(v_2, v_1) = \tau^2$ and $\alpha(v_2, v_3) = \alpha(v_3, v_2) = \alpha(v_3, v_1) = 1$. The characters of \mathbf{Z}_3 are given as follows: $\chi_i(\tau^j) = (\xi^i)^j, 0 \leq i, j \leq 2$, where $\xi = \frac{-1+\sqrt{-3}}{2}$.

Now, we present the weighted Bartholdi *L*-function $\zeta_D(w, u, t, \chi_1, \alpha)$ of *D* associated with χ_1 and α . Theorem 8 implies that

$$\begin{aligned} \zeta_D(w, u, t, \chi_1, \alpha)^{-1} &= AB \det(\mathbf{I}_3 - t \sum_{i=0}^2 \chi_1(\tau^i) \mathbf{A}_{1,\tau^i} - t \sum_{i=0}^2 \chi_1(\tau^i) \mathbf{A}_{0,\tau^i} + (1-u) t^2 \tilde{\mathbf{D}}) \\ &= AB \det\left(\begin{bmatrix} 1 + abF/A & -at\xi/A & 0\\ -bt\xi^2/A & 1 + abF/A + ceF/B & -ct/B\\ -dt & -et/B & 1 + ceF/B \end{bmatrix} \right) \\ &= 1 - (ab + ce)u^2 t^2 + abce(u^4 - u^2)t^4 - acdt^3\xi. \end{aligned}$$

Similarly, we have

$$\zeta_D(w, u, t, \chi_2, \alpha)^{-1} = 1 - (ab + ce)u^2t^2 + abce(u^4 - u^2)t^4 - acdt^3\xi^2.$$

By Corollary 2, it follows that

$$\zeta(D^{\alpha}, \tilde{w}, u, t)^{-1} = \zeta(D, w, u, t)^{-1} \zeta_D(w, u, t, \chi_1, \alpha)^{-1} \zeta_D(w, u, t, \chi_2, \alpha)^{-1}$$
$$= (1 - (ab + ce)u^2 t^2 + abce(u^4 - u^2)t^4)^3 - a^3 c^3 d^3 t^9.$$

If $w(e^{-1}) = w(e)^{-1}$ for each symmetric arc $e \in A(D)$, then

$$\zeta(D, w, u, t)^{-1} = 1 - 2u^2t^2 + (u^4 - u^2)t^4 - acdt^3,$$

$$\zeta_D(w, u, t, \chi_i, \alpha)^{-1} = 1 - 2u^2t^2 + (u^4 - u^2)t^4 - acdt^3\xi^i \ (i = 1, 2)$$

and

$$\zeta(D^{\alpha}, \tilde{w}, u, t)^{-1} = (1 - 2u^2t^2 + (u^4 - u^2)t^4)^3 - a^3c^3d^3t^9.$$

Acknowledgment

We would like to thank the referee for many valuable comments and helpful suggestions.

References

- [1] L. Bartholdi, Counting paths in graphs, Enseign. Math. 45 (1999) 83-131.
- [2] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992) 717-797.
- [3] Y. Choe, J. H. Kwak, Y. S. Park and I. Sato, Bartholdi zeta and L-functions of weighted digraphs, their coverings and products, Adv. Math. 213 (2007), 865-886.
- [4] D. Foata and D. Zeilberger, A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999) 2257-2274.
- [5] J. L. Gross and T. W. Tucker, Topological Graph Theory, (Wiley, New York, 1987).
- [6] K. Hashimoto, Zeta Functions of Finite Graphs and Representations of p-Adic Groups, in Adv. Stud. Pure Math. 15 (Academic Press, New York, 1989) 211-280.
- [7] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966) 219-235.
- [8] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. U. Tokyo 7 (2000) 7-25.
- [9] H. Mizuno and I. Sato, Bartholdi zeta functions of graph coverings, J. Combin. Theory Ser. B. 89 (2003) 27-41.
- [10] J.-P. Serre, Linear Representations of Finite Groups, (Springer-Verlag, New York, 1977).
- [11] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996) 124-165.
- [12] T. Sunada, L-Functions in Geometry and Some Applications, in Lecture Notes in Math. 1201 (Springer-Verlag, New York, 1986) 266-284.
- [13] T. Sunada, Fundamental Groups and Laplacians (in Japanese), (Kinokuniya, Tokyo, 1988).
- [14] Y. Watanabe and K. Fukumizu, Graph zeta function in the Bethe free energy and loopy belief propagation, Adv. Neural Inform. Proc. Sys. 22 (2010), 2017-2025.