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Abstract

We consider the weighted Bartholdi zeta function of a digraph D, and give a new
determinant expression of it. Furthermore, we treat a weighted L-function of D,
and give a new determinant expression of it. As a corollary, we present determinant
expressions for the Bartholdi edge zeta functions of a graph and a digraph.
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1 Introduction

Zeta functions of graphs started from zeta functions of regular graphs by Ihara [7]. In
[7], he showed that their reciprocals are explicit polynomials. A zeta function of a regular
graph G associated with a unitary representation of the fundamental group of G was de-
veloped by Sunada [12,13]. Hashimoto [6] generalized Ihara’s result on the zeta function
of a regular graph to an irregular graph, and showed that its reciprocal is again a polyno-
mial by a determinant containing the edge matrix. Bass [2] presented another determinant
expression for the Ihara zeta function of an irregular graph by using its adjacency matrix.

Stark and Terras [11] gave an elementary proof of Bass’ Theorem, and discussed three
different zeta functions of any graph. Furthermore, various proofs of Bass’ Theorem were
given by Foata and Zeilberger [4], Kotani and Sunada [8].
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For two variable zeta function of a graph, Bartholdi [1] defined and gave a determinant
expression of the Bartholdi zeta function of a graph. Mizuno and Sato [9] presented a
decomposition formula for the Bartholdi zeta function of a regular covering of a graph.

As a digraph version of the Bartholdi zeta function, Choe, Kwak, Park and Sato [3]
defined the weighted Bartholdi zeta function of a digraph, and presented its determinant
expression.

As a multi-variable zeta function of a graph, Stark and Terras [11] defined the edge zeta
function of a graph. Watanabe and Fukumizu [14] presented a determinant expression for
the edge zeta function of a graph G with n vertices by n× n matrices.

In this paper, we present a new determinant expression of the weighted Bartholdi zeta
function of a digraph D by using the method of Watanabe and Fukumizu [14]:

Main Theorem.
Let D be a connected digraph with n vertices and m arcs, and let W = W(D) be a

weighted matrix of D. Then the reciprocal of the weighted Bartholdi zeta function of D
is given by

ζ(D,w, u, t)−1 = det(In + (1− u)t2D̃− tÃ1 − tÃ0)

m1∏
i=1

(1− w(fi)w(f−1
i )(1− u)2t2),

where D̃, Ã1 and Ã0 are defined in Section 3, and f±1
1 , . . . , f±1

m1
are symmetric arcs of D.

Furthermore, we present a new decomposition formula for the weighted Bartholdi zeta
function of a group covering of D, and a new determinant expression for the weighted
Bartholdi L-function of D.

2 Preliminaries

Graphs and digraphs treated here are finite. Let G = (V (G), E(G)) be a connected
graph (possibly multiple edges and loops) with the set V (G) of vertices and the set
E(G) of unoriented edges uv joining two vertices u and v. For uv ∈ E(G), an arc
(u, v) is the oriented edge from u to v. Set D(G) = {(u, v), (v, u) | uv ∈ E(G)}. For
e = (u, v) ∈ D(G), set u = o(e) and v = t(e). Furthermore, let e−1 = (v, u) be the inverse
of e = (u, v).

A path P of length n in G is a sequence P = (e1, · · · , en) of n arcs such that ei ∈
D(G), t(ei) = o(ei+1)(1 6 i 6 n − 1), where indices are treated mod n. Set | P |= n,
o(P ) = o(e1) and t(P ) = t(en). Also, P is called an (o(P ), t(P ))-path. We say that a path
P = (e1, · · · , en) has a backtracking or a bump at t(ei) if e−1

i+1 = ei for some i(1 6 i 6 n−1).
A (v, w)-path is called a v-cycle (or v-closed path) if v = w.

We introduce an equivalence relation between cycles. Two cycles C1 = (e1, · · · , em)
and C2 = (f1, · · · , fm) are called equivalent if there exists k such that fj = ej+k for all j.
The inverse cycle of C is in general not equivalent to C. Let [C] be the equivalence class
which contains a cycle C. Let Br be the cycle obtained by going r times around a cycle
B. Such a cycle is called a power of B. A cycle C is reduced if C has no backtracking.
Furthermore, a cycle C is prime if it is not a power of a strictly smaller cycle.
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The Ihara zeta function of a graph G is a function of u ∈ C with |u| sufficiently small,
defined by

Z(G, t) =
∏
[C]

(1− t|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G(see [7]).
Let m be the number of edges of G. Furthermore, let two m × m matrices B =

(Be,f )e,f∈A(D) and J0 = (Je,f )e,f∈A(D) be defined as follows:

Be,f =

{
1 if t(e) = o(f),
0 otherwise

,Je,f =

{
1 if f = e−1,
0 otherwise.

Then B− J0 is called the edge matrix of G.

Theorem 1 (Hashimoto; Bass). Let G be a connected graph with n vertices and m edges.
Then the reciprocal of the Ihara zeta function of G is given by

Z(G, t)−1 = det(I2m − t(B− J0)) = (1− t2)m−n det(I− tA(G) + t2(D− I)),

where A(G) is the adjacency matrix of G, and D = (dij) is the diagonal matrix with
dii = deg vi where V (G) = {v1, · · · , vn}.

Then the Bartholdi zeta function of G is defined by

ζG(u, t) = ζ(G, u, t) =
∏
[C]

(1− ucbc(C)t|C|)−1,

where [C] runs over all equivalence classes of prime cycles of G(see [1]).

Theorem 2 (Bartholdi). Let G be a connected graph with n vertices and m unoriented
edges. Then the reciprocal of the Bartholdi zeta function of G is given by

ζ(G, u, t)−1 = det(I2m − t(B− (1− u)J0))

= (1− (1− u)2t2)m−n det(I− tA(G) + (1− u)(D− (1− u)I)t2).

In the case of u = 0, Theorem 2 implies Theorem 1.
We now state the weighted Bartholdi zeta function of a digraph. LetD= (V (D), A(D))

be a connected digraph with the set V (D) of vertices and the set A(D) of arcs. Further-
more, let D have n vertices v1, . . . , vn and m arcs. Then we consider an n × n matrix
W = W(D) = (wij)16i,j6n with ij entry nonzero complex number wij if (vi, vj) ∈ A(D),
and wij = 0 otherwise. The matrix W = W(D) is called the weighted matrix of D.
Furthermore, let w(vi, vj) = wij, vi, vj ∈ V (D) and w(e) = wij, e = (vi, vj) ∈ A(D).
For each path P = (e1, · · · , er) of G, the norm w(P ) of P is defined as follows: w(P ) =
w(e1) · · ·w(er).

The cyclic bump count cbc(C) of a cycle C = (e1, · · · , en) of G is

cbc(C) =| {i = 1, · · · , n | ei = e−1
i+1} |,
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where en+1 = e1. Then the weighted Bartholdi zeta function of D is a function of u, t ∈ C
with |u|, |t| sufficiently small, defined by

ζ(D,w, u, t) =
∏
[C]

(1− w(C)ucbc(C)t|C|)−1,

where [C] runs over all equivalence classes of prime cycles of D.
If w = 1, i.e., w(vi, vj) = 1 for each (vi, vj) ∈ A(D), then the weighted Bartholdi zeta

function of D is the Bartholdi zeta function of D. If D = DG is the symmetric digraph
corresponding to a graph G, and w = 1, then the weighted Bartholdi zeta function of DG

is the Bartholdi zeta function of G. If D = DG, w = 1 and u = 0, then the weighted
Bartholdi zeta function of G is the Ihara zeta function of G.

Two m×m matrices Bw = (Bw
e,f )e,f∈A(D) and Jw = (Jwe,f )e,f∈A(D) are defined as follows:

Bw
e,f =

{
w(e) if t(e) = o(f),
0 otherwise

,Jwe,f =

{
w(e) if f = e−1,
0 otherwise.

Furthermore, we define two n× n matrices W1 = W1(D) = (auv) and W0 as follows:

auv =

{
w(u, v) if both (u, v) and (v, u) ∈ A(D),
0 otherwise

and
W0 = W0(D) = W(D)−W1.

Let an n× n matrix S = (sxy) is the diagonal matrix defined by

sxx =| {e ∈ A(D) | o(e) = x, e−1 ∈ A(D)} | .

Theorem 3 (Choe, Kwak, Park and Sato). Let D be a connected digraph, and let W =
W(D) be a weighted matrix of D. Furthermore, let m1 =| {e ∈ A(D) | e−1 ∈ A(D)} | /2.
Then the reciprocal of the weighted Bartholdi zeta function of D is given by

ζ(D,w, u, t)−1 = det(Im − (Bw − (1− u)Jw)t),

where n =| V (D) | and m =| A(D) |.
Furthermore, if w(e−1) = w(e)−1 for each e ∈ A(D) such that e−1 ∈ A(D), then

ζ(D,w, u, t)−1 = (1− (1− u)2t2)m1−n

× det(In − tW1(D)− (1− (1− u)2t2)tW0(D) + (1− u)t2(S− (1− u)In)).

If D = DG, w = 1 and u = 0, then Theorem 2 implies Theorem 1.
Now, we proceed to the edge zeta function of a graph G with m edges. Let G be

a connected graph and D(G) = {e1, . . . , em, em+1, . . . , e2m}(em+i = e−1
i (1 6 i 6 m)).

We introduce 2m variables z1, . . . , z2m, and set g(C) = zi1 · · · zik for each cycle C =
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(ei1 , . . . , eik) of G. Set zei = zi(1 6 i 6 2m) and z = (z1, . . . , z2m). Then the edge zeta
function ζG(z) of G is defined by

ζG(z) =
∏
[C]

(1− g(C))−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G.

Theorem 4 (Stark and Terras). Let G be a connected graph with m edges. Then

ζG(z)−1 = det(I2m − (B− J0)U),

where

U =



z1 0
. . .

zm
zm+1

. . .

0 z2m


.

Let G be a graph with n vertices. Then we define an n × n matrix Â = (axy) as
follows:

axy =

{
z(x,y)/(1− z(x,y)z(y,x)) if (x, y) ∈ D(G),
0 otherwise.

Furthermore, an n× n matrix D̂ = (dxy) is the diagonal matrix defined by

dxx =
∑
o(e)=x

zeze−1

1− zeze−1

.

Theorem 5 (Watanabe and Fukumizu). Let G be a connected graph with n vertices and
m edges. Then

ζG(z)−1 = det(In + D̂− Â)
m∏
i=1

(1− zfizf−1
i

),

where D(G) = {f1, f
−1
1 , . . . , fmf

−1
m }.

In Section 2, we present a new determinant expression of the weighted Bartholdi zeta
function of a digraph D by using the method of Watanabe and Fukumizu [14]. In Section
3, we present a new decomposition formula for the weighted Bartholdi zeta function of
a group covering of D. In Section 4, we present a new determinant expression for the
weighted Bartholdi L-function of D. In Section 5, we define the Bartholdi edge zeta
functions of graphs and digraphs, and present their determinant expressions as corollaries
of Theorem 6.
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3 Weighted Bartholdi zeta functions of digraphs

We present a new determinant expression of the weighted Bartholdi zeta function of a
digraph.

Let D be a connected digraph with n vertices v1, · · · , vn and m arcs, and W = W(D)
a weighted matrix of D. Then we define two n × n matrices Ã1 = Ã1(D) = (axy) and
Ã0 = Ã0(D) = (bxy) as follows:

axy =

{
w(x, y)/(1− w(x, y)w(y, x)(1− u)2t2) if both (x, y) and (y, x) ∈ A(D),
0 otherwise

and

bxy =

{
w(x, y) if (x, y) ∈ A(D) and (y, x) 6∈ A(D),
0 otherwise

Furthermore, an n× n matrix D̃ = D̃(D) = (dxy) is the diagonal matrix defined by

dxx =
∑

o(e)=x,e−1∈A(D)

w(e)w(e−1)

1− w(e)w(e−1)(1− u)2t2
.

Let M1⊕ · · ·⊕Ms be the block diagonal sum of square matrices M1, · · · ,Ms. A new
determinant expression for ζ(D,w, u, t) is given as follows:

Theorem 6. Let D be a connected digraph, and let W = W(D) be a weighted matrix of
D. Then the reciprocal of the weighted Bartholdi zeta function of D is given by

ζ(D,w, u, t)−1 = det(In + (1− u)t2D̃− tÃ1 − tÃ0)

m1∏
i=1

(1− w(fi)w(f−1
i )(1− u)2t2),

where n =| V (D) |, m =| A(D) | and f±1
1 , . . . , f±1

m1
are symmetric arcs of D.

Proof. Let V (D) = {v1, · · · , vn} and, let A(D) = {e1, · · · , em0 , f1, · · · , fm1 , f
−1
1 , · · · ,

f−1
m1
} such that e−1

i 6∈ A(D)(1 6 i 6 m0). Note that m = m0 + 2m1.
Arrange arcs of D as follows:

e1, · · · , em0 , f1, f
−1
1 , · · · , fm1 , f

−1
m1
.

Let

U =



w(e1) 0
. . .

w(em0)
w(f1)

w(f−1
1 )

0
. . .


.

Then we have
UB = Bw and UJ0 = Jw.
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Thus,
Bw − (1− u)Jw = U(B− (1− u)J0).

By Theorem 2, it follows that

ζ(D,w, u, t)−1 = det(Im − tU(B− (1− u)J0)).

Now, let K = (Kev) e∈A(D);v∈V (D) be the m× n matrix defined as follows:

Kev :=

{
1 if o(e) = v,
0 otherwise.

Furthermore, we define the m× n matrix L = (Lev)e∈A(D);v∈V (D) as follows:

Lev :=

{
1 if t(e) = v,
0 otherwise.

Then we have
LtK = B.

Thus,

det(Im − tU(B− (1− u)J0))

= det(Im − tU(LtK− (1− u)J0)) = det(Im − tULtK + (1− u)tUJ0).

But, we have

Im + (1− u)tUJ0 = Im0 ⊕ (⊕m1
j=1

[
1 (1− u)tw(fj)

(1− u)tw(f−1
j ) 1

]
). (1)

Since |u|, |t| are sufficiently small, we have

det(

[
1 (1− u)tw(fj)

(1− u)tw(f−1
j ) 1

]
) = 1− (1− u)2t2w(fj)w(f−1

j ) 6= 0 (1 6 j 6 m1).

Thus, Im + (1− u)tUJ0 is invertible. Therefore,

det(Im − tU(B− (1− u)J0))

= det(Im − tULtK(Im + (1− u)tUJ0)−1) det(Im + (1− u)tUJ0).

But, if A and B are a m× n and n×m matrices, respectively, then we have

det(Im −AB) = det(In −BA). (2)

Thus, we have

det(Im − tU(B− (1− u)J0))

= det(In − t tK(Im + (1− u)tUJ0)−1UL) det(Im + (1− u)tUJ0).
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Next, we have

det(Im + (1− u)tUJ0) =

m1∏
i=1

(1− w(fi)w(f−1
i )(1− u)2t2).

Furthermore, the m× n matrix UL = (cev)e∈A(D);v∈V (D) is given as follows:

cev :=

{
w(e) if t(e) = v,
0 otherwise.

But, we have

(Im + (1− u)tUJ0)−1 = Im0 ⊕ (⊕m1
j=1

[
1/xj −(1− u)tw(fj)/xj

−(1− u)tw(f−1
j )/xj 1/xj

]
),

where xi = 1− w(fi)w(f−1
i )(1− u)2t2 (1 6 i 6 m1).

Now, for a symmetric arc (x, y) ∈ A(D),

(tK(Im + (1− u)tUJ0)−1UL)xy = w(x, y)/(1− w(x, y)w(y, x)(1− u)2t2).

For a nonsymmetric arc (x, y) ∈ A(D),

(tK(Im + (1− u)tUJ0)−1UL)xy = w(x, y).

Furthermore, if x = y, then

(tK(Im + (1− u)tUJ0)−1UL)xx = −
∑

o(e)=x,e−1∈A(D)

(1− u)tw(e)w(e−1)

1− w(e)w(e−1)(1− u)2t2
.

Thus,

det(In − t tK(Im + (1− u)tUJ0)−1UL) = det(In + (1− u)t2D̃− tÃ1 − tÃ0).

Therefore, it follows that

ζ(D,w, u, t)−1 = det(In + (1− u)t2D̃− tÃ1 − tÃ0)

m1∏
i=1

(1− w(fi)w(f−1
i )(1− u)2t2).

�
By Theorem 5, we obtain the second identity of Theorem 2.

Corollary 1 (Choe, Kwak, Park and Sato). Let D be a connected digraph, and let W =
W(D) be a weighted matrix of D. Furthermore, assume that w(e−1) = w(e)−1 for each
e ∈ A(D) such that e−1 ∈ A(D). Then the reciprocal of the weighted Bartholdi zeta
function of D is given by

ζ(D,w, u, t)−1 = (1− (1− u)2t2)m1−n

× det(In − tW1(D)− (1− (1− u)2t2)tW0(D) + (1− u)t2(S− (1− u)In)).

where n =| V (D) | and m =| A(D) |.
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Proof. Since w(e−1) = w(e)−1 for each symmetric arc e ∈ A(D), we have w(e−1)
w(e)−1 = 1. Then we have

D̃ =
1

1− (1− u)2t2
S, Ã1 =

1

1− (1− u)2t2
W1(D).

Furthermore, Ã0 = W0(D). Thus,

ζ(D,w, u, t)−1 = (1− (1− u)2t2)m1 det
(
In − t/(1− (1− u)2t2)W1(D)

− tW0(D) + (1− u)t2/(1− (1− u)2t2)S
)

= (1− (1− u)2t2)m1−n det
(
In − tW1(D)− (1− (1− u)2t2)tW0(D)

+ (1− u)t2(S− (1− u)In)
)
.

�

4 Weighted Bartholdi zeta functions of group cover-

ings of digraphs

We can generalize the notion of a Γ-covering of a graph to a simple digraph. Let D be
a connected digraph and Γ a finite group. Then a mapping α : A(D) −→ Γ is called a
pseudo ordinary voltage assignment if α(v, u) = α(u, v)−1 for each (u, v) ∈ A(D) such that
(v, u) ∈ A(D). The pair (D,α) is called an ordinary voltage digraph. The derived digraph
Dα of the ordinary voltage digraph (D,α) is defined as follows: V (Dα) = V (D)× Γ and
((u, h), (v, k)) ∈ A(Dα) if and only if (u, v) ∈ A(D) and k = hα(u, v). The digraph Dα is
called a Γ-covering of D. Note that a Γ-covering of the symmetric digraph corresponding
to a graph G is a Γ-covering of G(see [5]).

Let D be a connected digraph, Γ a finite group and α : A(D) −→ Γ a pseudo ordinary
voltage assignment. In the Γ-covering Dα, set vg = (v, g) and eg = (e, g), where v ∈
V (D), e ∈ A(D), g ∈ Γ. For e = (u, v) ∈ A(D), the arc eg emanates from ug and
terminates at vgα(e).

Let W = W(D) be a weighted matrix of D. Then we define the weighted matrix
W̃ = W(Dα) = (w̃(ug, vh)) of Dα derived from W as follows:

w̃(ug, vh) :=

{
w(u, v) if (u, v) ∈ A(D) and h = gα(u, v),
0 otherwise.

If M1 = M2 = · · · = Ms = M, then we write s ◦M = M1⊕ · · · ⊕Ms. The Kronecker
product A

⊗
B of matrices A and B is considered as the matrix A having the element

aij replaced by the matrix aijB.

Theorem 7. Let D be a connected digraph with n vertices and m arcs, Γ a finite group,
α : A(D) −→ Γ a pseudo ordinary voltage assignment and W = W(D) a weighted

the electronic journal of combinatorics 20(1) (2013), #P27 9



matrix of D. Set m1 =| {e ∈ A(D) | e−1 ∈ A(D)} | /2 and | Γ |= r. Furthermore, let
ρ1 = 1, ρ2, · · · , ρk be the irreducible representations of Γ, and di the degree of ρi for each
i, where d1 = 1. For g ∈ Γ, the matrix A1,g = (a

(g)
xy ) is defined as follows:

a(g)
xy :=

{
w(x, y)/(1− w(x, y)w(y, x)(1− u)2t2) if (x, y), (y, x) ∈ A(D) and α(x, y) = g,
0 otherwise.

Furthermore, the matrix A0,g = (b
(g)
xy ) is defined as follows:

b(g)
xy :=

{
w(x, y) if (x, y) ∈ A(D),(y, x) 6∈ A(D) and α(x, y) = g,
0 otherwise.

Suppose that the Γ-covering Dα of D is connected. Then the reciprocal of the weighted
Bartholdi zeta function of Dα is

ζ(Dα, w̃, u, t)−1 =

m1∏
i=1

(1− w(fi)w(f−1
i )(1− u)2t2)r

×
k∏
i=1

{det(Indi − t
∑
h∈Γ

ρi(h)
⊗

A1,h − t
∑
h∈Γ

ρi(h)
⊗

A0,h + (1− u)t2(Idi
⊗

D̃(D)))}di ,

where f±1
1 , . . . , f±1

m1
are symmetric arcs of D.

Proof . Let V (D) = {v1, · · · , vn} and Γ = {1 = g1, g2, · · · , gr}. Arrange vertices
of Dα in n blocks: (v1, 1), · · · , (vn, 1); (v1, g2), · · · , (vn, g2); · · · ; (v1, gr), · · · , (vn, gr). We
consider the three matrices Ã1(Dα), W̃0(Dα) and D̃(Dα) under this order. By Theorem
5, we have

ζ(Dα, w̃, u, t)−1 = det(Iνm − tÃ1(Dα)− tÃ0(Dα) + (1− u)t2D̃(Dα))

·
m1∏
i=1

(1− w(fi)w(f−1
i )(1− u)2t2)r.

For h ∈ Γ, the matrix Ph = (p
(h)
ij ) is defined as follows:

p
(h)
ij =

{
1 if gih = gj,
0 otherwise.

Suppose that p
(h)
ij = 1, i.e., gj = gih. Then ((u, gi), (v, gj)) ∈ A(Dα) if and only if

(u, v) ∈ A(D) and gj = giα(u, v), i.e., α(u, v) = g−1
i gj = g−1

i gih = h. Thus we have

Ã0(Dα) =
∑
h∈Γ

Ph

⊗
A0,h and Ã1(Dα) =

∑
h∈Γ

Ph

⊗
A1,h.

Let ρ be the right regular representation of Γ. Furthermore, let ρ1 = 1, ρ2, · · · , ρk be
the irreducible representations of Γ, and di the degree of ρi for each i, where d1 = 1. Then
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we have ρ(h) = Ph for h ∈ Γ. Furthermore, there exists a nonsingular matrix P such
that P−1ρ(h)P = (1) ⊕ d2 ◦ ρ2(h) ⊕ · · · ⊕ dk ◦ ρk(h) for each h ∈ Γ(see [10]). Putting
B = (P−1

⊗
In)(Ã1(Dα) + Ã0(Dα))(P

⊗
In), we have

B =
∑
h∈Γ

{(1)⊕ d2 ◦ ρ2(h)⊕ · · · ⊕ dk ◦ ρk(h)}
⊗

(A1,h + A0,h).

Note that Ãi(D) =
∑

h∈Γ Ai,h (i = 0, 1) and 1 + d2
2 + · · · + d2

k = r. Therefore it follows
that

ζ(Dα, w̃, u, t)−1 =

m1∏
j=1

(1− w(fj)w(f−1
j )(1− u)2t2)r

×
k∏
i=1

det(Indi − t
∑
h∈Γ

ρi(h)
⊗

A1,h − t
∑
h∈Γ

ρi(h)
⊗

A0,h + (1− u)t2(Idi
⊗

D̃(D)))di .

�

5 L-functions of digraphs

Let D be a connected digraph with m arcs, Γ a finite group, α : A(D) −→ Γ a pseudo
ordinary voltage assignment and W = W(D) a weighted matrix of D. For each path P =
(e1, · · · , el) of D, set α(P ) = α(e1) · · ·α(el) and w(P ) = w(e1) · · ·w(el). Furthermore, let
ρ be a representation of Γ and d its degree.

The weighted Bartholdi L-function of D associated with ρ and α is defined by

ζD(w, u, t, ρ, α) =
∏
[C]

det(Id − w(C)ρ(α(C))ucbc(C)t|C|)−1,

where [C] runs over all equivalence classes of prime cycles of D.
Two md × md matrices Bρ

w = (Be,f )e,f∈A(D) and Jρw = (Je,f )e,f∈A(D) are defined as
follows:

Be,f =

{
w(e)ρ(α(e)) if t(e) = o(f),
0d otherwise

,Je,f =

{
w(e)ρ(α(e)) if f = e−1,
0d otherwise.

A determinant expression for the weighted Bartholdi L-function of D associated with
ρ and α was given by Choe, Kwak, Park and Sato [3]. Let 1 6 i, j 6 n. Then the (i, j)-
block Fij of a dn × dn matrix F is the submatrix of F consisting of d(i − 1) + 1, . . . , di
rows and d(j − 1) + 1, . . . , dj columns.

Theorem 8 (Choe, Kwak, Park and Sato). Let D be a connected digraph with m arcs, Γ
a finite group, α : A(D) −→ Γ a pseudo ordinary voltage assignment and W = W(D) a
weighted matrix of D. Furthermore, let ρ be a representation of Γ, and d the degree of ρ.
Then the reciprocal of the weighted Bartholdi L-function of D associated with ρ and α is

ζD(w, u, t, ρ, α)−1 = det(Imd − (Bρ
w − (1− u)Jρw)t).
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A new determinant expression for the weighted Bartholdi L-function of D associated
with ρ and α is given as follows:

Theorem 9. Let D be a connected digraph, and let W = W(D) be a weighted matrix of
D. Then the reciprocal of the weighted Bartholdi L-function of D is given by

ζD(w, u, t, ρ, α)−1 =

m1∏
i=1

(1− w(fi)w(f−1
i )(1− u)2t2)d

× det(Ind + (1− u)t2Id
⊗

D̃(D)− t
∑
g∈Γ

ρ(g)
⊗

A1,g − t
∑
g∈Γ

ρ(g)
⊗

A0,g),

where n =| V (D) |, m =| A(D) | and f±1
1 , . . . , f±1

m1
are symmetric arcs of D.

Proof. Let V (D) = {v1, · · · , vn} and, let A(D) = {e1, · · · , em0 , f1, · · · , fm1 , f
−1
1 , · · · ,

f−1
m1
} such that e−1

i 6∈ A(D)(1 6 i 6 m0). Note that m = m0 + 2m1.
Arrange arcs of D as follows:

e1, · · · , em0 , f1, f
−1
1 , · · · , fm1 , f

−1
m1
.

Let

U =



w(e1) 0
. . .

w(em0)
w(f1)

w(f−1
1 )

. . .


.

Furthermore, let two md × md matrices Bρ = (Bρ
e,f )e,f∈A(D) and Jρ = (Jρe,f )e,f∈A(D) be

defined as follows:

Bρ
e,f =

{
ρ(α(e)) if t(e) = o(f),
0d otherwise

,Jρe,f =

{
ρ(α(e)) if f = e−1,
0d otherwise.

Then we have
(U
⊗

Id)Bρ = Bρ
w and (U

⊗
Id)Jρ = Jρw.

Thus,

Bρ
w − (1− u)Jρw = (U

⊗
Id)(Bρ − (1− u)Jρ).

By Theorem 7, it follows that

ζD(w, u, t, ρ, α)−1 = det(Imd − t(U
⊗

Id)(Bρ − (1− u)Jρ)).

Now, let K = (Kev) e∈A(D);v∈V (D) be the md× nd matrix defined as follows:

Kev :=

{
Id if o(e) = v,
0d otherwise.
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Furthermore, we define the md× nd matrix L = (Lev)e∈A(D);v∈V (D) as follows:

Lev :=

{
ρ(α(e)) if t(e) = v,
0d otherwise.

Set Ud = U
⊗

Id. Then we have

LtK = Bρ.

Thus,

det(Imd − tUd(Bρ − (1− u)Jρ))

= det(Imd − tUd(L
tK− (1− u)Jρ)) = det(Imd − tUdL

tK + (1− u)tUdJρ).

But, we have
Imd + (1− u)tUdJρ

= Im0d ⊕ (⊕m1
j=1

[
Id (1− u)tw(fj)ρ(α(fj))

(1− u)tw(f−1
j )ρ(α(f−1

j )) Id

]
). (3)

Since |u|, |t| are sufficiently small, we have

det(

[
Id (1− u)tw(fj)ρ(α(fj))

(1− u)tw(f−1
j )ρ(α(f−1

j )) Id

]
)

= (1− (1− u)2t2w(fj)w(f−1
j ))d 6= 0 (1 6 j 6 m1).

Thus, Imd + (1− u)tUdJρ is invertible. Therefore,

det(Imd − tUd(Bρ − (1− u)Jρ))

= det(Imd − tUdL
tK(Imd + (1− u)tUdJρ)

−1) det(Imd + (1− u)tUdJρ).

By (2), we have

det(Imd − tUd(Bρ − (1− u)Jρ))

= det(Ind − t tK(Ind + (1− u)tUdJρ)
−1UdL) det(Imd + (1− u)tUdJρ).

Next, we have

det(Imd + (1− u)tUdJρ) =

m1∏
i=1

(1− w(fi)w(f−1
i )(1− u)2t2)d.

Furthermore, the md× nd matrix UdL = (cev)e∈A(D);v∈V (D) is given as follows:

cev :=

{
w(e)ρ(α(e)) if t(e) = v,
0 otherwise.
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But, we have
(Imd + (1− u)tUdJρ)

−1

= Im0d ⊕ (⊕m1
j=1

[
1/xjId −(1− u)tw(fj)/xjρ(α(fj))

−(1− u)tw(f−1
j )/xjρ(α(f−1

j )) 1/xjId

]
).

where xi = 1− w(fi)w(f−1
i )(1− u)2t2 (1 6 i 6 m1).

But, for a symmetric arc (x, y) ∈ A(D),

(tK(Imd + (1− u)tUdJρ)
−1UdL)xy = w(x, y)/(1− w(x, y)w(y, x)(1− u)2t2)ρ(α(x, y)).

For a nonsymmetric arc (x, y) ∈ A(D),

(tK(Imd + (1− u)tUdJρ)
−1UdL)xy = w(x, y)ρ(α(x, y)).

Furthermore, if x = y, then

(tK(Imd + (1− u)tUdJρ)
−1UdL)xx = −

∑
o(e)=x,e−1∈A(D)

(1− u)tw(e)w(e−1)

1− w(e)w(e−1)(1− u)2t2
Id.

Thus,
det(Ind − t tK(Ind + (1− u)tUdJρ)

−1UdL)

= det(Ind + (1− u)t2D̃(D)
⊗

Id − t
∑
g∈Γ

A1,g

⊗
ρ(g)− t

∑
g∈Γ

A0,g

⊗
ρ(g)),

Therefore, it follows that

ζD(w, u, t, ρ, α)−1 =

m1∏
i=1

(1− w(fi)w(f−1
i )(1− u)2t2)d

× det(Ind + (1− u)t2Id
⊗

D̃(D)− t
∑
g∈Γ

ρ(g)
⊗

A1,g − t
∑
g∈Γ

ρ(g)
⊗

A0,g),

�
By Theorems 6,8, the following result holds.

Corollary 2 (Choe, Kwak, Park and Sato). Let D be a connected digraph, Γ a finite
group, α : A(D) −→ Γ a pseudo ordinary voltage assignment and W = W(D) a weighted
matrix of D. Then we have

ζ(Dα, w̃, u, t) =
∏
ρ

ζD(w, u, t, ρ, α)deg ρ,

where ρ runs over all inequivalent irreducible representations of Γ.
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6 Bartholdi edge zeta function of a digraph

Let D be a connected digraph with m arcs e1, . . . , em. Furthermore, let z1, . . . zm be m
variables. Set zei = zi(1 6 i 6 m) and z = (z1, . . . , zm). Then the Bartholdi edge zeta
function ζ(D,w, u) of D is defined by

ζ(D, z, u) =
∏
[C]

(1− g(C)ucbc(C))−1,

where [C] runs over all equivalence classes of prime cycles of D. If D = DG is the
symmetric digraph of a graph G, then the Bartholdi edge zeta function ζ(DG, z, u) of DG

is called the Bartholdi edge zeta function ζ(G, z, u) of G.
Now, set |V (D)| = n. Then we define an n×n matrix A′1 = A′1(D) = (axy) as follows:

axy =

{
z(x,y)/(1− z(x,y)z(y,x)(1− u)2) if both (x, y) and (y, x) ∈ A(D),
0 otherwise.

Furthermore, an n× n matrix D′ = D′(D) = (dxy) is the diagonal matrix defined by

dxx =
∑

o(e)=x,e−1∈A(D)

zeze−1

1− zeze−1(1− u)2
.

Substituting t = 1 in Theorem 5, we obtain the following result.

Corollary 3. Let D be a connected digraph with m arcs and let z = (z1, . . . , zm) be m
variables. Then the reciprocal of the Bartholdi edge zeta function of D is given by

ζ(D, z, u)−1 = det(In + (1− u)D′ −A′1(D)− Ã0)

m1∏
i=1

(1− zfizf−1
i

(1− u)2),

where n =| V (D) | and f±1
1 , . . . , f±1

m1
are symmetric arcs of D.

If D = DG, then

Corollary 4. Let G be a connected graph with m edges and let z = (z1, . . . , z2m) be
2m variables.and let W = W(G) be a weighted matrix of G. Then the reciprocal of the
Bartholdi edge zeta function of G is given by

ζ(G, z, u)−1 = det(In + (1− u)D′ −A′1(G)− Ã0)
m∏
i=1

(1− zfizf−1
i

(1− u)2),

where n =| V (G) | and D(G) = {f±1
1 , . . . , f±1

m }.
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7 Example

Finally, we give an example. Let D be the digraph with three vertices v1, v2, v3 and five
arcs (v1, v2), (v2, v1), (v2, v3), (v3, v2), (v3, v1). Furthermore, let

W(D) =

 0 a 0
b 0 c
d e 0

 .
Then we have n = 3,m = 5,m1 = 2. By Theorem 5, we have

ζ(D,w, u, t)−1

= (1− ab(1− u)2t2)(1− ce(1− u)2t2) det(I3 − tÃ1 − tÃ0 + (1− u)t2D̃)

= AB det

 1 + abF/A −at/A 0
−bt/A 1 + abF/A+ ceF/B −ct/B
−dt −et/B 1 + ceF/B


= 1− (ab+ ce)u2t2 + abce(u4 − u2)t4 − acdt3,

where A = 1− ab(1− u)2t2, B = 1− ce(1− u)2t2 and F = (1− u)t2.
Let Γ = Z3 = {1, τ, τ 2}(τ 3 = 1) be the cyclic group of order 3, and let α : A(D) −→ Z3

be the pseudo ordinary voltage assignment such that α(v1, v2) = τ , α(v2, v1) = τ 2 and
α(v2, v3) = α(v3, v2) = α(v3, v1) = 1. The characters of Z3 are given as follows: χi(τ

j) =

(ξi)j, 0 6 i, j 6 2, where ξ = −1+
√
−3

2
.

Now, we present the weighted Bartholdi L-function ζD(w, u, t, χ1, α) of D associated
with χ1 and α. Theorem 8 implies that

ζD(w, u, t, χ1, α)−1 = AB det(I3 − t
2∑
i=0

χ1(τ i)A1,τ i − t
2∑
i=0

χ1(τ i)A0,τ i + (1− u)t2D̃)

= AB det

 1 + abF/A −atξ/A 0
−btξ2/A 1 + abF/A+ ceF/B −ct/B
−dt −et/B 1 + ceF/B


= 1− (ab+ ce)u2t2 + abce(u4 − u2)t4 − acdt3ξ.

Similarly, we have

ζD(w, u, t, χ2, α)−1 = 1− (ab+ ce)u2t2 + abce(u4 − u2)t4 − acdt3ξ2.

By Corollary 2, it follows that

ζ(Dα, w̃, u, t)−1 = ζ(D,w, u, t)−1ζD(w, u, t, χ1, α)−1ζD(w, u, t, χ2, α)−1

= (1− (ab+ ce)u2t2 + abce(u4 − u2)t4)3 − a3c3d3t9.
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If w(e−1) = w(e)−1 for each symmetric arc e ∈ A(D), then

ζ(D,w, u, t)−1 = 1− 2u2t2 + (u4 − u2)t4 − acdt3,

ζD(w, u, t, χi, α)−1 = 1− 2u2t2 + (u4 − u2)t4 − acdt3ξi (i = 1, 2)

and
ζ(Dα, w̃, u, t)−1 = (1− 2u2t2 + (u4 − u2)t4)3 − a3c3d3t9.
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