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Abstract

In the study of permutations, generalized patterns extend classical patterns by
adding the requirement that certain adjacent integers in a pattern must be adjacent
in the permutation.

For any generalized pattern π∗0 of length k with 1 6 b 6 k blocks, we prove that
for all µ > 0, there exists 0 < c = c(k, µ) < 1 so that whenever n > n0(k, µ, c), all
but cnn! many π ∈ Sn admit (1± µ) 1

k!

(
n
b

)
occurrences of π∗0. Up to the choice of c,

this result is best possible for all π∗0 with k > 2.
We also give a lower bound on avoidance of the generalized pattern 12-34, which

answers a question of S. Elizalde [8] (2006).

Keywords: generalized patterns; pattern avoidance; Azuma’s inequality; Cher-
noff’s inequality; Sharkovsky’s Theorem

1 Introduction

Pattern and generalized pattern avoidance in permutations is a well-studied area (see,
e.g.,[1–5, 7, 8, 10, 11]). Fix 1 6 k 6 n and π0 ∈ Sk and let π ∈ Sn. An occurrence
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the electronic journal of combinatorics 20(1) (2013), #P28 1



of a pattern π0 in π is a sequence of integers 1 6 `1 < · · · < `k 6 n so that, for all
1 6 i 6= j 6 k,

π(`i) < π(`j) ⇐⇒ π0(i) < π0(j). (1)

In order to define generalized patterns, take a classical pattern π0 = (a1, . . . , ak) =
(π0(1), . . . , π0(k)), and fix π∗0 = (a1, ε1, a2, ε2, . . . , εk−1, ak) where, for each 1 6 i 6 k − 1,
εi is either a dash ‘−’ or the empty string. Then, π ∈ Sn admits π∗0 as a generalized
pattern if it contains an occurrence 1 6 `1 < · · · < `k 6 n of the classical pattern π0
satisfying that,

whenever εi 6= −, then `i+1 = `i + 1. (2)

More explicitly, suppose, for some positive integer sequence q = (q1, . . . , qb), for which
q1 + · · ·+ qb = k, that

π∗0 = πq
0 =

(
a1, . . . , aq1 ,−, aq1+1, . . . , aq1+q2 ,−, . . . ,−, ak−qb+1, . . . , ak

)
= (A1,−, A2,−, . . . ,−, Ab).

(3)

Then, for some integers 1 6 ˆ̀
1 < · · · < ˆ̀

b 6 n,

(`1, . . . , `k) =
(

ˆ̀
1, . . . , ˆ̀

1 + q1 − 1, ˆ̀
2, . . . , ˆ̀

2 + q2 − 1, . . . , ˆ̀
b, . . . , ˆ̀

b + qb − 1
)

= (L1, . . . , Lb).
(4)

We shall refer to the subsequences A1, . . . , Ab and L1, . . . , Lb as blocks.
As an illustrative example, we note that the permutation (3, 5, 2, 4, 1) = 35241 contains

the classical pattern 132 (realized uniquely by the 3, 5, and 4 occuring in that order).
However, 35241 does not contain the generalized pattern 1-32, since the 5 and 4 are not
adjacent.

Let fπ∗0 (π) denote the frequency of the generalized pattern π∗0 in π, and set Fπ0(π) =
fπ∗0 (π) in the case that q = (1, . . . , 1) (i.e., classical patterns). In this notation, the
celebrated result of Marcus and Tardos [13] (cf. Klazar [11]) asserts Fπ0(π) > 1 for all
but Cn permutations π ∈ Sn, where C = C(π0) > 1 and n is sufficiently large. The first
author [7] proved that Fπ0 is concentrated about its mean: Fπ0(π) = (1 ± o(1)) 1

k!

(
n
k

)
for

all but o(n!) permutations π ∈ Sn. Our main result shows, more generally, that fπ∗0 is
also concentrated about its mean, and we provide a sharp estimate for the error o(n!) of
concentration.

Theorem 1. For every k > 1 and for all µ > 0, there exists 0 < c < 1 so that, for all
sufficiently large integers n, the following holds. For every π0 ∈ Sk and for every sequence
π∗0 with b blocks as in (3), all but cnn! many π ∈ Sn satisfy fπ∗0 (π) = (1± µ) 1

k!

(
n
b

)
.

Remark 2. In Section 2, we offer two proofs of Theorem 1. The first, based on martin-
gales, is fairly short. The second gives more detail, using a ‘quasi-random’ property (see
Lemma 6) typical of random permutations. Lemma 6 extends some results from [7] and
may be of independent interest.

Up to the choice of 0 < c < 1, Theorem 1 is best possible for all π∗0 with k > 2. In
particular, we prove the following result.
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Proposition 3. Fix k > 2, b > 1, and π0 = (a1, . . . , ak) ∈ Sk. Let π∗0 be any sequence,
as in (3), with b blocks. Then, there exists 0 < γ0 < 1 so that, for all 0 < γ < γ0,
there exist infinitely many integers n for which at least γnn! permutations π ∈ Sn satisfy
fπ∗0 (π) < γnb.

We prove Proposition 3 in Section 3.
Proposition 3 can often be strengthened. Indeed, S. Elizalde [8] proved the following

strong and quite general result (in [8], see Proposition 4.3).

Theorem 4 (Elizalde [8]). Let π∗0 be a sequence, as in (3), having a block Ai of length
at least 3. Then, there exists 0 < c < 1 so that for all n > k, at least cnn! permutations
π ∈ Sn satisfy fπ∗0 (π) = 0.

Elizalde [8] also considered to what extent Theorem 4 can be extended to sequences
π∗0 whose every block has length at most two. He showed that, in general, Theorem 4
can’t be extended to every such π∗0. To describe these results, let An(π∗0) denote the
set of permutations π ∈ Sn for which fπ∗0 (π) = 0, and let αn(π∗0) = |An(π∗0)|. For
(1,−, 2, 3,−, 4) = 1–23–4, Elizalde showed (see Corollary 6.2 in [8])

lim
n→∞

(
αn(1–23–4)

n!

)1/n

= 0. (5)

He asked (see Section 7 of [8]):

does lim
n→∞

(
αn(12–34)

n!

)1/n

= 0? (6)

We answer this question in the negative.

Theorem 5. For odd integers n,

αn(12–34) >

(
1

2
− o(1)

)n
n!.

We prove Theorem 5 in Section 4, and also consider some related problems.

2 Proofs of Theorem 1

For both of the following proofs, fix a positive integer k and fix µ > 0.

2.1 The martingale proof

Let

c = exp

{
− µ2

9k4k!2

}
(7)
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and let n be a sufficiently large integer wherever needed. Fix π∗0 with b blocks as in (3).
We show that all but cnn! many π ∈ Sn satisfy fπ∗0 (π) = (1± µ) 1

k!

(
n
b

)
.

To that end, let π ∈ Sn be chosen uniformly at random. We use the ‘exposure process’
to define the following sequence of random variables. Set

X0 = E[fπ∗0 (π)], where from (4), we have (1− o(1))
1

k!

(
n

b

)
6 E[fπ∗0 (π)] 6

1

k!

(
n

b

)
. (8)

For r ∈ [n] = {1, . . . , n}, let π[r] denote the restriction π : [r]→ [n]. Set

Xr = E
[
fπ∗0 (π)

∣∣∣π[r]] ,
so that Xn = fπ∗0 (π) is the variable we wish to estimate. Then, X0, X1, . . . , Xn is the
Doob martingale for the function fπ∗0 , to which we will apply Azuma’s inequality.

For that purpose, observe that for each 0 6 r 6 n− 1,

|Xr+1 −Xr| 6 k

(
n

b− 1

)
. (9)

To see this, note that the element r + 1 belongs to between zero and k
(
n
b−1

)
occurrences

(`1, . . . , `k) of π∗0 in π. Indeed, if `i = r + 1 belongs to block Li′ (see (4)), then all
of Li′ is determined by r + 1 = `i and q = q(π∗0). Thus, it remains to determine
L1, . . . , Li′−1, Li′+1, . . . , Lb, or equivalently, ˆ̀

1, . . . , ˆ̀
i′−1, ˆ̀

i′+1, . . . , ˆ̀
b, of which there are

at most
(
n
b−1

)
.

Applying Azuma’s inequality with t = (µ/2)X0 and using (8) and (9), we have

P
[
|Xn −X0| > t

]
6 2 exp

{
− t2

2
∑n−1

r=0 (Xr+1 −Xr)2

}
6 exp

{
−
µ2 1

k!2

(
n
b

)2
8nk2

(
n
b−1

)2 (1− o(1))

}

= exp

{
− µ2n

8k!2k2b2
(1− o(1))

}
6 exp

{
− µ2n

8k!2k4
(1− o(1))

}
6 exp

{
− µ2n

9k!2k4

}
(7)
= cn.

Thus, with probability 1− cn,

fπ∗0 (π) =
(

1± µ

2

)
E[fπ∗0 (π)]

(8)
=
(

1± µ

2

)
(1± o(1))

1

k!

(
n

b

)
= (1± µ)

1

k!

(
n

b

)
,

as desired.

2.2 The quasi-random proof

To present Lemma 6, we need a few concepts. For integers n > t > j > 1, define
Ij = [(j − 1)bn/tc + 1, jbn/tc] and R = [n] \

⋃t
j=1 Ij. We call [n] = I1 ∪ I2 ∪ · · · ∪ It ∪ R

the t-partition P t of [n]. Now, fix π ∈ Sn, and consider partitions P s = I1 ∪ · · · ∪ Is ∪Rs

and P t = E1 ∪ · · · ∪ Et ∪ Rt of [n], where n > t > s > q > 1. For a set X, we will write
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(X)m for the family of m-permutations of X, and we write (|X|)m for |(X)m|, when |X|
is finite. For i = (i1, . . . , iq) ∈ ([s])q and j ∈ [t], let

Eij(π) =
{

ˆ̀∈ Ej : ˆ̀+ q − 1 ∈ Ej and π(ˆ̀+m− 1) ∈ Iim for all m ∈ {1, . . . , q}
}
. (10)

For ζ > 0, and (i, j) ∈ ([s])q × [t], we say π ∈ Sn is (i, j, ζ, q)-typical (w.r.t. (P s,P t)) if

|Eij(π)| > (1− ζ)
1

(s)q
|Ej| = (1− ζ)

1

(s)q

⌊n
t

⌋
(11)

and say π ∈ Sn is (ζ, q)-typical (w.r.t. (P s,P t)) if it is (i, j, ζ, q)-typical for all (i, j) ∈
([s])q × [t].

Lemma 6. For all ζ > 0 and integers q > 1, there exists an integer s0 so that for all
integers s > s0, there exists an integer t0 so that for all integers t > t0, there exists c0 > 0
so that for all sufficiently large integers n, all but exp{−c0n}n! permutations π ∈ Sn are
(ζ, q)-typical w.r.t. (P s,P t).

Lemma 6 follows by a standard (albeit tedious) probablistic analysis, which we give in
Section 5.

To show that Lemma 6 implies Theorem 1, define auxiliary constants δ, ζ > 0 so that

δ =
µ

k!
and (1− 2ζ)k+2 > 1− δ. (12)

For q ∈ [k], let s0(q) be the constant guaranteed by Lemma 6. Fix an integer s so that

s > max {s0(1), . . . , s0(k)} and

(
s

k

)
>
sk

k!
(1− 2ζ). (13)

For q ∈ [k], let t0(q) be the constant guaranteed by Lemma 6. Fix an integer t with

t > max
{
t0(1), . . . , t0(k)

}
and so that for all b ∈ [k],

(
t

b

)
>
tb

b!
(1− 2ζ). (14)

For q ∈ {1, . . . , k}, let c0(q) > 0 be the constant guaranteed by Lemma 6. Define

c0 = min
{
c0(1), . . . , c0(k)

}
and c = exp {−c0/4} . (15)

In all that follows, let n be a sufficiently large integer.
Fix a permutation π0 ∈ Sk, and let π∗0 = πq

0 = (A1,−, . . . ,−, Ab) be given as in (3)
where q = (q1, . . . , qb). Apply Lemma 6 (cf. (13)–(15)) to conclude that all but(

exp
{
− c0(q1)n

}
+ · · ·+ exp

{
− c0(qb)n

})
n! 6 k exp{−c0n}n! 6 exp

{
−c0

2
n
}
n!

permutations π ∈ Sn are (ζ, qx)-typical w.r.t. (P s,P t) for all x ∈ [b]. For such a π ∈ Sn,
we show

fπq
0
(π) > (1− δ) 1

k!

(
n

b

)
(12)
> (1− µ)

1

k!

(
n

b

)
. (16)
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Indeed, fix indices 1 6 i1 < · · · < ik 6 s and 1 6 j1 < · · · < jb 6 t. For x ∈ [b], recall
the block

Ax =
(
aq1+···+qx−1+1, . . . , aq1+···+qx

)
=
(
π0(q1 + · · ·+ qx−1 + 1), . . . , π0(q1 + · · ·+ qx)

)
of πq

0 (cf. (3)). Consider the injection defined by, for each x ∈ [b],

jx 7−→ ix
def
=
(
ia
)
a∈Ax

=
(
iaq1+···+qx−1+1 , . . . , iaq1+···+qx

)
(17)

=
(
iπ0(q1+···+qx−1+1), . . . , iπ0(q1+···+qx)

)
. (18)

For each x ∈ [b], arbitrarily select ˆ̀
x ∈ Eixjx(π) (cf. (10)). We claim that the sequence

(L1, L2, . . . , Lb), where for each x ∈ [b], Lx =
(
ˆ̀
x, ˆ̀

x + 1, . . . , ˆ̀
x + qx − 1

)
, (19)

is exactly an occurrence in π of the generalized pattern πq
0 . The sequence (L1, . . . , Lb)

clearly satisfies (2), since each Lm is consecutive, and since (L1, L2, . . . , Lb) precisely
mimics the block structure of πq

0 = (A1,−, A2,−, . . . ,−, Ab) (cf. (3)). It remains to
check, therefore, that (L1, . . . , Lb) is an occurrence of the classical pattern π0 in π, i.e.,
that (L1, . . . , Lb) satisfies (1).

Indeed, rewrite the sequence (L1, . . . , Lb) as

(`1, . . . , `k) =
(
`1, . . . , `q1 , `q1+1, . . . , `q1+q2 , . . . . . . , `k−qb+1, . . . , `k

)
so that for x ∈ [b], Lx =

(
`q1+···+qx−1+1, . . . , `q1+···+qx

)
. (20)

Comparing (19) and (20), we see that a term of the sequence (L1, . . . , Lb) is determined
by a choice of indices 1 6 x 6 b and 1 6 w 6 qx, and written simultaneously as

ˆ̀
x + w − 1 = `q1+···+qx−1+w. (21)

(Such a term necessarily belongs to the block Lx.) Observe from (10) and (17) that

π(ˆ̀
x + w − 1) ∈ Ii(x,w), where i(x,w) = iπ0(q1+···+qx−1+w). (22)

Now, fix two terms (cf. (21)) of the sequence (L1, . . . , Lb):

ˆ̀
x + w − 1 = `q1+···+qx−1+w and ˆ̀

y + z − 1 = `q1+···+qy−1+z,

where 1 6 x, y 6 b, 1 6 w 6 qx and 1 6 z 6 qy. From (22), we conclude

π
(
`q1+···+qx−1+w

)
< π

(
`q1+···+qy−1+z

)
⇐⇒ max Ii(x,w) < min Ii(y,z)

⇐⇒ i(x,w) < i(y, z)
(22)⇐⇒ iπ0(q1+···+qx−1+w) < iπ0(q1+···+qy−1+z)

⇐⇒ π0(q1 + · · ·+ qx−1 + w) < π0(q1 + · · ·+ qy−1 + z),

as required by (1). (For the last step, recall the ordering 1 6 i1 < · · · < ik 6 s of the
fixed indices.)

the electronic journal of combinatorics 20(1) (2013), #P28 6



Now, the discussion above implies that

fπq
0
(π) >

∑∑{
b∏

x=1

∣∣Eixjx(π)
∣∣ : 1 6 i1 < · · · < ik 6 s, 1 6 j1 < · · · < jb 6 t

}
. (23)

Since π ∈ Sn is (ζ, q)-typical w.r.t. (P s,P t) for every q ∈ {q1, . . . , qb}, we have, for each
x ∈ [b], ∣∣Eixjx(π)

∣∣ > (1− ζ)
1

(s)qx

⌊n
t

⌋
> (1− 2ζ)

n

t(s)qx
> (1− 2ζ)

n

tsqx
.

Returning to (23),

fπq
0
(π)(

s
k

)(
t
b

) > (1− 2ζ)b
(n
t

)b b∏
x=1

1

sqx
= (1− 2ζ)b

(n
t

)b 1

sq1+···+qb

= (1− 2ζ)b
(n
t

)b 1

sk
> (1− 2ζ)k

(n
t

)b 1

sk
,

and so (16) follows from

fπq
0
(π) >

(
s

k

)(
t

b

)
(1− 2ζ)k

(n
t

)b 1

sk

(13), (14)

> (1− 2ζ)k+2 1

k!

(
nb

b!

)
(12)

> (1− δ) 1

k!

(
n

b

)
.

The corresponding upper bound fπq
0
(π) 6 (1 + µ) 1

k!

(
n
b

)
follows, in fact, from the lower

bound. Indeed, first conclude (16) for every permutation p ∈ Sk and p∗ = pq. Thus, all
but

k! exp
{
−c0

2
n
}
n! < exp

{
−c0

4
n
}
n!

(15)
= cn1n!

permutations π ∈ Sn satisfy, for every p ∈ Sk, fpq(π) > (1− δ) 1
k!

(
n
b

)
. Fix such a π ∈ Sn.

Observe that every 1 6 `1 < · · · < `k 6 n of the form in (19) and (20) defines a generalized
pattern pq of some p ∈ Sk. (Indeed, if π({`1, . . . , `k}) = {λ1, . . . , λk}, define p(i) = j if
and only if π(`i) = λj.) Thus,(

n

b

)
>
∑
p∈Sk

fpq(π) = fπq
0
(π) +

∑
π0 6=p∈Sk

fpq(π) > fπq
0
(π) + (k!− 1)(1− δ) 1

k!

(
n

b

)
=⇒ fπq

0
(π) 6

(
1

k!
+ δ − δ

k!

)(
n

b

)
6 (1 + δk!)

1

k!

(
n

b

)
(12)
= (1 + µ)

1

k!

(
n

b

)
.

3 Proof of Proposition 3

Fix k > 2, b > 1, and π0 = (a1, . . . , ak) ∈ Sk. Fix any sequence π∗0, as in (3), with b
blocks. If π∗0 has a block of length at least 3, then let 0 < c = c(π∗0) < 1 be the constant
guaranteed by Theorem 4, and set γ0 = c/2. Otherwise, set γ0 = 1/2. Fix 0 < γ < γ0,
and write g = b1/γc, where we note that γ < 1/2 implies g > 2. For a sufficiently large
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integer n which is divisible by g, we guarantee at least γnn! permutations π ∈ Sn with
fπ∗0 (π) < γnb.

Our proof is based on cases, depending on the structure of the sequence π∗0. Clearly,
we get the following case entirely for free on account of Theorem 4.

Case 0 (π∗0 has a block of length at least 3). Theorem 4 guarantees at least cnn! > γnn!
permutations π ∈ Sn with fπ∗0 (π) = 0 < γnb.

To handle all other cases, we require the following considerations. For 0 6 s 6 g − 1,
write Is = [s(n/g) + 1, (s + 1)(n/g)] and Rs = {m ∈ [n] : m ≡ s (mod g)}. Then
[n] = I0 ∪ · · · ∪ Ig−1 and [n] = R0 ∪ · · · ∪ Rg−1 are partitions of [n] into parts of common
size n/g. Consider the following four classes of permutations:

Sn,1 = {π ∈ Sn : π(Is) = Is, ∀ 0 6 s 6 g − 1} ,
Sn,2 = {π ∈ Sn : π(Is) = Ig−1−s, ∀ 0 6 s 6 g − 1} ,
Sn,3 = {π ∈ Sn : π(Rs) = Ig−s, ∀ 0 6 s 6 g − 1} (take Ig = I0),

Sn,4 = {π ∈ Sn : π(Rs) = Is−1, ∀ 0 6 s 6 g − 1} (take I−1 = Ig−1).

Clearly, |Sn,1| = |Sn,2| = |Sn,3| = |Sn,4| = ((n/g)!)g, where by Stirling’s formula,((
n

g

)
!

)g
>

1

2

(√
2π(n/g)

(
n

eg

)(n/g)
)g

>

√
γ

2
(2πγn)

g−1
2 × γn

√
2πn

(n
e

)n
> γnn!.

We mention, in advance, that in the following four cases below, Case i will be handled by
the family Sn,i, for 1 6 i 6 4. We also mention that Cases 1 and 2 are not always disjoint
from Case 0, nor are they always disjoint from each other. (It seemed easiest to preserve
generality in the cases.)

We now consider when π∗0 has b > 2 blocks. In particular, suppose ai = π0(i) and
aj = π0(j), 1 6 i < j 6 k, belong to blocks Ai′ and Aj′ , respectively, where Ai′ 6= Aj′ .

Case 1 (b > 2, ai > aj). Fix π ∈ Sn,1, and consider an occurence 1 6 `1 < · · · < `k 6 n
of the generalized pattern π∗0 in π. Consider the terms `i < `j. From (1), since π0(i) =
ai > aj = π0(j), we have π(`i) > π(`j). We therefore claim that, for some 1 6 s 6 g, we
have `i, `j ∈ Is. Indeed, if `i ∈ Isi and `j ∈ Isj for some si < sj, then π(`i) < π(`j) on
account of π ∈ Sn,1, a contradiction. We also recall from (3) and (4), that `i belongs to
block Li′ and `j belongs to block Lj′ (since ai belongs to block Ai′ and aj belongs to block

Aj′). Finally, recall from (4) that Li′ begins with ˆ̀
i′ and Lj′ begins with ˆ̀

j′ . Then, since

`i, `j ∈ Is, we have that ˆ̀
j′ ∈ Is and ˆ̀

i′ ∈ Is−1 ∪ Is. (If ˆ̀
i′ ∈ Is−1, it occurs very near the

right boundary.) Clearly, there are at most |Is| = n/g choices for ˆ̀
j′ . It is easy to check

that there are fewer than n/g choices for ˆ̀
i′ . Clearly, there are at most nb−2 choices for

any remaining ˆ̀
1, . . . , ˆ̀

b in (4). Thus, fπ∗0 (π) < nb−2
∑g

s=1(n/g)2 6 γnb.

Case 2 (b > 2, ai < aj). Fix π ∈ Sn,2. All details of Case 1 are repeated identically
save the following: Now, π(`i) < π(`j), which similarly implies that `i, `j ∈ Is for some
1 6 s 6 g. Indeed, `i ∈ Isi and `j ∈ Isj for some si < sj would imply π(`i) > π(`j), on
account of π ∈ Sn,2.
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The only cases in the proof of Proposition 3 not covered by Cases 1 and 2 involve
generalized patterns π∗0 with b = 1 block. (These are relatively rare, since there are only
k! such, while there are 2k−1k! generalized patterns of [k].) If k > 3 and b = 1, then π∗0
has (is) a block of length at least 3, which is included in Case 0. If k = 2 and b = 1, then
π∗0 = 12 or π∗0 = 21, where these cases are entirely symmetric.

Case 3 (π∗0 = 12). Fix π ∈ Sn,3, and consider an occurence 1 6 ` < ` + 1 6 n of the
generalized pattern 12 in π. From (1), we have that π(`) < π(` + 1). As such, π ∈ Sn,3
implies that ` ≡ 0 (mod g). Consequently, we have only n/g 6 γn choices for `.

Case 4 (π∗0 = 21). Fix π ∈ Sn,4. An occurence 1 6 ` < ` + 1 6 n of 21 in π results in
π(`) > π(`+1). Since π ∈ Sn,4, it must be that ` ≡ 0 (mod g), resulting in only n/g 6 γn
choices for `.

4 Proof of Theorem 5

Consider the following concept, which has a clear resemblance to patterns. For π ∈ Sn,
call a pair 1 < i < j < n a stretching pair if π(i) < i < j < π(j). We shall use stretching
pairs to prove Theorem 5, although stretching pairs are interesting in their own right, as
we discuss in Section 4.2.

4.1 Stretching pairs and Theorem 5

We establish a few initial considerations. First, let Cn+1 ⊂ Sn+1 denote the set of (n+ 1)-
cycles of Sn+1, and write each π ∈ Cn+1 in cyclic notation: π = (n + 1 a1 . . . an), i.e.,
π(ai) = ai+1 for 0 6 i 6 n and a0 = an+1 = n + 1. Consider the bijection φ : Cn+1 → Sn
given by, for each π = (n+ 1 a1 . . . an) ∈ Cn+1,

p = φ(π) = (a1, . . . , an), that is, p(i) = ai for each 1 6 i 6 n. (24)

We prove that

π ∈ Cn+1 admits a stretching pair 1 6 π(i) < i < j < π(j) 6= n+ 1

if and only if p = φ(π) admits 21–34 or 34–21 as a generalized pattern. (25)

Before we prove (25), we note that 21–34 is not the same as 12–34, which Theorem 5
considers. However, Elizalde proved (see Proposition 5.3 from [8]) that

αn(12–34) = αn(21–34), (26)

and so we shall be able to use (25).

Proof of (25). Suppose first that p = f(π) = (a1, . . . , an) ∈ Sn admits 21–34 or 34–21 as
a generalized pattern. If ak, ak+1, a`, a`+1 is a copy of 21–34, where 1 < k + 1 < ` < n,
then ak+1 < ak < a` < a`+1, and so π(i) = ak+1 < ak = i < j = a` < a`+1 = π(j) 6 n is a
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stretching pair of π. If ak, ak+1, a`, a`+1 is a copy of 34–21, then a`+1 < a` < ak < ak+1, and
so π(i) = a`+1 < a` = i < j = ak < ak+1 = π(j) 6 n is a stretching pair of π. Assume now
that π = (n+ 1 a1 . . . an) ∈ Cn+1 admits a stretching pair 1 6 π(i) < i < j < π(j) 6 n.
If π = (n+ 1 a1 . . . i π(i) . . . j π(j) . . . an), then for some 1 < k+ 1 < ` < n, p = f(π)
has i = ak, π(i) = ak+1, j = a` and π(j) = a`+1, where ak+1 < ak < a` < a`+1 gives a copy
of 21–34. If π = (n+ 1 a1 . . . j π(j) . . . i π(i) . . . an), then for some 1 < k+ 1 < ` < n,
p = f(π) has j = ak, π(j) = ak+1, i = a` and π(i) = a`+1, where a`+1 < a` < ak < ak+1

gives a copy of 34–21.

Now, define S ′n+1 to be the family of π ∈ Sn+1 satisfying (n + 1)/2 < π(i) 6 n + 1
if, and only if, 1 6 i 6 (n + 1)/2. Clearly, S ′n+1 admits no stretching pairs. Set C ′n+1 =
Cn+1 ∩ S ′n+1, and observe that C ′n+1 6= ∅ if, and only if, n is odd. As such, if n is both
odd and sufficiently large, Stirling’s formula implies

∣∣C ′n+1

∣∣ =
2

n+ 1

((
n+ 1

2

)
!

)2

>

(
1

2
− o(1)

)n
n!.

It then follows from (25) that φ(C ′n+1) avoids 21–34 and 34–21, and so

αn(12–34)
(26)
= αn(21–34) > |An(21–34) ∩ An(34–21)|

>
∣∣φ(C ′n+1)

∣∣ = |C ′n+1| >
(

1

2
− o(1)

)n
n!,

which proves Theorem 5.

4.2 A corollary of Theorem 1 for stretching pairs

Stretching pairs are motivated by considerations in dynamical systems. Namely, the oc-
currence of a stretching pair within a periodic orbit of a continuous interval map implies
what is called ‘turbulence’ (see [3, 12] for details). These considerations are closely re-
lated to the celebrated theorem of Sharkovsky [14]. From this point of view, the second
author [12] considered which n-cycles π ∈ Cn admit stretching pairs, and proved that all
but o(n−1)! of them do. Theorem 1 allows us to sharpen this result in the following way.

Corollary 7. For all δ > 0, there exists 0 < c < 1 so that for all sufficiently large integers
n, all but cn(n− 1)! cyclic permutations π ∈ Cn admit 1

12

(
n
2

)
(1± δ) stretching pairs.

Proof of Corollary 7. Let δ > 0 be given. Set k = 4 and µ = δ/2, and let 0 < c1 < 1 be the
constant guaranteed by Theorem 1. Define c to be any constant satisfying c1 < c < 1, and
let n be sufficiently large. For an n-cycle π ∈ Cn, write σ(π) for the number of stretching
pairs of π, and write σ′(π) for the number of stretching pairs 1 6 π(i) < i < j < π(j) 6= n.
Note that σ′(π) 6 σ(π) 6 σ′(π)+n, since if 1 6 π(i) < i < j < π(j) = n, then j = π−1(n)
is fixed and there are at most j − 1 6 n choices for i. Note, moreover, that it follows
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from (25) that, for p = φ(π) ∈ Sn−1, σ′(π) = f21–34(p)+f34–21(p). Theorem 1 ensures that
all but 2cn−11 (n− 1)! < cn(n− 1)! permutations p ∈ Sn−1 satisfy

f21-34(p) = (1± µ)
1

4!

(
n− 1

2

)
and f34-21(p) = (1± µ)

1

4!

(
n− 1

2

)
.

For each such permutation p ∈ Sn−1, the corresponding n-cycle π = φ−1(p) ∈ Cn satisfies

σ(π) = (1± µ)
1

4!

(
n− 1

2

)
+ (1± µ)

1

4!

(
n− 1

2

)
± n (27)

= (1± µ± o(1))
1

12

(
n

2

)
= (1± δ) 1

12

(
n

2

)
, (28)

which proves Corollary 7.

5 Proof of Lemma 6

Fix ζ > 0 and integer q > 1. Define auxiliary constant

ζ0 = ζ/4. (29)

Define s0 = s0(q, ζ0) to be the least integer s for which

(s)q > (1− 2ζ0)s
q. (30)

Let s > s0 be given. Define
t0 =

⌈
4q8qs2qζ−20

⌉
. (31)

Let integer t > t0 be given. Define

c0 =
ζ20

3qt2q+3sq
. (32)

Let n be a sufficiently large integer, and fix (i0, j0) ∈ ([s])q × [t]. We prove

all but exp{−2c0n}n! permutations π ∈ Sn are (i0, j0, ζ, q)-typical w.r.t. (P s,P t). (33)

Applying (33) to all (i, j) ∈ ([s])q × [t] and noting sqt exp{−2c0n} < exp{−c0n} yields
Lemma 6.

We now outline our approach for proving (33) (and reduce the ˆ̀ notation in (10) to
`). Define equivalence relation ∼ on Ej0 : ` ∼ `′ ⇐⇒ q | (` − `′). Thus, for an integer
0 6 r < q, we may write

E
(r)
j0

=
{
` ∈ Ej0 : ` ∼ (j0 − 1)

⌊n
t

⌋
+ 1 + r

}
so that Ej = E

(0)
j ∪· · ·∪E

(q−1)
j (34)

is a partition. A key observation for later in the proof (cf. Claim 8) will be that

[`, `+ 1− q] ∩ [`′, `′ + q − 1] = ∅ whenever ` 6= `′ ∈ E(r)
j . (35)
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For some final notation, we shall write, for a permutation π ∈ Sn,

E
(r)
i0j0

(π) = Ei0j0(π) ∩ E(r)
j0

so that Ei0j0(π) = E
(0)
i0j0

(π) ∪ · · · ∪ E(q−1)
i0j0

(π) (36)

is a partition. We shall prove that, for a fixed 0 6 r < q,

all but exp{−3c0n}n! permutations π ∈ Sn satisfy that
∣∣∣E(r)

i0j0
(π)
∣∣∣ > (1− ζ)

1

q(s)q
|Ej0| .

(37)
Note that (37) implies (33) since then all but q exp{−3c0n}n! < exp{−2c0n}n! many
π ∈ Sn satisfy

|Ei0j0(π)| (36)=

q−1∑
r=0

∣∣∣E(r)
i0j0

(π)
∣∣∣ > (1− ζ)

1

(s)q
|Ej0| .

To prove (37), let π ∈ Sn be chosen uniformly at random. Then, Y = Y
(r)
i0j0

= |E(r)
i0j0

(π)|
is a random variable whose mean we evaluate. To that end, recall from (10) that for an
element ` ∈ Ej0 to be an element of Ei0j0(π), we require that ` 6 j0bn/tc − q + 1, where
we will write nt = bn/tc and ns = bn/sc. As such, delete the last q − 1 elements from
Ej0 , and write

Ẽj0
def
=
[
(j0 − 1)nt + 1, j0nt − q + 1

]
, Ẽ

(r)
j0

= E
(r)
j0
∩ Ẽj0 ,

and nt,q
def
=
∣∣∣Ẽ(r)

j0

∣∣∣ =

⌊
nt − q + 1

q

⌋
=

⌊
nt + 1

q

⌋
− 1. (38)

Now, for ` ∈ Ẽ(r)
j0

, define indicator random variable Y` by (cf. i0 = (i1, . . . , iq))

Y` =

{
1 if π(`+m− 1) ∈ Iim ∀ m ∈ [q],
0 otherwise,

=⇒ Y =
∑{

Y` : ` ∈ Ẽ(r)
j0

}
so that E[Y`] =

(n− q)!
∏q

m=1 |Iim|
n!

=
nqs

(n)q
=⇒ E[Y ] =

|Ẽ(r)
j0
|
∏q

m=1 |Iim|
(n)q

=
nqsnt,q
(n)q

.

(39)
Following the method of Bernstein for the Chernoff inequality (cf. [10]), for u = log(1 −
ζ0) = loge(1− ζ0), the Markov inequality implies

P[Y 6 E[Y ](1− ζ0)] = P
[
euY > exp {uE[Y ](1− ζ0)}

]
6 exp {−uE[Y ](1− ζ0)}E

[
euY
] (39)

= exp

{
−un

q
snt,q
(n)q

(1− ζ0)
}
E
[
euY
]
. (40)

While we do not have mutual independence among the Y`’s, we will prove the following.

Claim 8.

E
[
euY
]

= E

 ∏
`∈Ẽ(r)

j0

euY`

 6

(
1 + q

(4s)q

t

)nt,q ∏
`∈Ẽ(r)

j0

E
[
euY`

]
(39)
=

((
1 + q

(4s)q

t

)(
1 +

nqs
(n)q

(eu − 1)

))nt,q

6 exp

{
nt,q

(
q

(4s)q

t
+

nqs
(n)q

(eu − 1)

)}
.
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We shall defer the proof of Claim 8 in order first to finish the proof of (37).
Applying Claim 8 to (40), together with the Taylor series bound −u(1− ζ0)+eu−1 6

−ζ20/2,

P[Y 6 E[Y ](1− ζ0)] 6 exp

{
nt,q

(
q

(4s)q

t
+

nqs
(n)q

(
− u(1− ζ0) + eu − 1

))}
6 exp

{
nt,q

(
q

(4s)q

t
− ζ20n

q
s

2(n)q

)}
6 exp

{
nt,q

(
q

(4s)q

t
− ζ20

2

(ns
n

)q)}
6 exp

{
nt,q

(
q

(4s)q

t
− ζ20

2q+1sq

)}
(since ns = bn/sc > n/(2s))

(31)

6 exp

{
nt,q

(
− ζ20

2q+2sq

)}
6 exp

{
−
(

ζ20
qt2q+3sq

)
n

}
(32)
= exp {−3c0n} .

(The last inequality above follows from nt,q = b(nt+1)/qc−1 > n/(2tq).) In other words,
with probability 1− exp{−3c0n}, the randomly chosen permutation π ∈ Sn satisfies

Y =
∣∣∣E(r)

i0j0
(π)
∣∣∣ > E[Y ](1− ζ0)

(39)
=

nqsnt,q
(n)q

(1− ζ0)
(38)
= (1− ζ0)(1− o(1))

1

qsq

⌊n
t

⌋
(30)

> (1− 2ζ0)
2 1

q(s)q

⌊n
t

⌋
> (1− 4ζ0)

1

q(s)q

⌊n
t

⌋
(29)
= (1− ζ)

1

q(s)q

⌊n
t

⌋
.

5.1 Proof of Claim 8

Write Ẽ
(r)
j0

as `1 < · · · < `nt,q (cf. (38)) so that

E

 ∏
`∈Ẽ(r)

j0

euY`

 =
∑

(y1,...,ynt,q )∈{0,1}
nt,q

P

[
nt,q∧
i=1

Y`i = yi

]
nt,q∏
i=1

euyi . (41)

Fix (y1, . . . , ynt,q) ∈ {0, 1}nt,q so that

P

[
nt,q∧
i=1

Y`i = yi

]
= P

[
Y`nt,q

= ynt,q

∣∣∣ nt,q−1∧
j=1

Y`j = yj

]
· P

[
nt,q−1∧
j=1

Y`j = yj

]
.

We claim that

P

[
Y`nt,q

= ynt,q

∣∣∣ nt,q−1∧
j=1

Y`j = yj

]
= P

[
Y`nt,q

= ynt,q

](
1± q (4s)q

t

)
. (42)

If so, iteratively applying (42) to (41) yields Claim 8.
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To see (42), recall the observation in (35). Thus,

P

[
Y`nt,q

= 1
∣∣∣ nt,q−1∧

j=1

Y`j = yj

]
6

(n− qnt,q)!
∏q

m=1 |Iim |
(n− q(nt,q − 1))!

=
nqs

(n− qnt,q + q)q
, and

P

[
Y`nt,q

= 1
∣∣∣ nt,q−1∧

j=1

Y`j = yj

]
>

(n− qnt,q)!
∏q

m=1(|Iim| − q(nt,q − 1))

(n− q(nt,q − 1))!

=
(ns − qnt,q + q)q

(n− qnt,q + q)q
.

For the upper bound, we use (39) (and qnt,q 6 nt (cf. (38)) to infer

nqs
(n− qnt,q + q)q

= P
[
Y`nt,q

= 1
]
· (n)q

(n− qnt,q + q)q
6 P

[
Y`nt,q

= 1
]( n

n− nt

)q
6 P

[
Y`nt,q

= 1
](

1− 1

t

)−q
6 P

[
Y`nt,q

= 1
](

1 +
2

t

)q
6 P

[
Y`nt,q

= 1
](

1 + q
4q

t

)
.

For the lower bound, we similarly infer

(ns − qnt,q + q)q

(n− qnt,q + q)q
>

(ns − qnt,q)q

(n)q
= P

[
Y`nt,q

= 1
](ns − qnt,q

ns

)q
> P

[
Y`nt,q

= 1
](ns − nt

ns

)q
> P

[
Y`nt,q

= 1
] (

1− 2
s

t

)q
> P

[
Y`nt,q

= 1
](

1− q (4s)q

t

)
.

This proves (42) when yn,t = 1. Otherwise, (using P[Y`nt,q
= 1] 6 1/2 6 P[Y`nt,q

= 0]) we
have

P

[
Y`nt,q

= 0
∣∣∣ nt,q−1∧

j=1

Y`j = yj

]
= 1− P

[
Y`nt,q

= 1
∣∣∣ nt,q−1∧

j=1

Y`j = yj

]

= P
[
Y`nt,q

= 0
](

1± q (4s)q

t

)
,

where we used P[Y`nt,q
= 1] 6 1/2 6 P[Y`nt,q

= 0].
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