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Abstract

We show that for any Latin square L of order 2m, we can partition the rows
and columns of L into pairs so that at most (m + 3)/2 of the 2 × 2 subarrays in-
duced contain a repeated symbol. We conjecture that any Latin square of order 2m
(where m > 2, with exactly five transposition class exceptions of order 6) has such
a partition so that every 2× 2 subarray induced contains no repeated symbol. We
verify this conjecture by computer when m 6 4.

Keywords: Latin square, 2-partition, conjugate, isotopic, transposition class, dis-
crepancy, potential.
AMS subject classification: 05B15

1 Introduction

For each integer n, we define [n] to be the set of integers from 1 to n inclusive. If
S = {s1, s2, . . . , sn} is a set of size n, then a Latin square of order n (over S) is a n × n
array such that each element (or symbol) of S occurs precisely once in each row and
once in each column. If we label the rows and columns with sets R = {r1, r2, . . . , rn} and
C = {c1, c2, . . . , cn} respectively, we may think of a Latin square as a set of ordered triples
(ri, cj, sk), where symbol sk occurs at the intersection of row ri and column cj. We may
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define a binary operation ◦ on the sets R and C of a Latin square L such that ri ◦ cj = sk
if and only if (ri, cj, sk) ∈ L.

We say that a partition P of a set X is a k-partition if |P | = k for each P ∈ P .
Henceforth n is even and m = n/2. Let R = {R1, R2, . . . , Rm} and C = {C1, C2, . . . , Cm}
be 2-partitions of the sets R and C respectively. For each R′ ∈ R and C ′ ∈ C, we define
S(R′, C ′) to be the 2× 2 subarray of L induced by R′ and C ′; that is:

S(R′, C ′) := {(ri, cj, ri ◦ cj) | ri ∈ R′, cj ∈ C ′}.

We say that the pair of 2-partitions (R, C) is good if for each R′ ∈ R and C ′ ∈ C,
S(R′, C ′) contains no repeated symbols (i.e. four distinct symbols). Two Latin squares
are said to be in the same isotopy class if one can be obtained from the other by rear-
ranging rows, rearranging columns and/or rearranging symbols. Two Latin squares are
in the same transposition class if one can be obtained from the other by isotopy and/or
taking the transpose. It is clear that if a Latin square has a good pair of 2-partitions,
then so does every Latin square in that transposition class. If φ is any one of the six
permutations defined on the set {1, 2, 3}, then the (φ(1), φ(2), φ(3))-conjugate of a Latin
square L is formed by replacing each triple (t(1), t(2), t(3)) associated with L by the triple
(t(φ(1)), t(φ(2)), t(φ(3))). Latin squares which are related by conjugate and/or isotopy
are said to lie in the same main class. However not all conjugacies preserve 2-partitions,
for instance later in Table 1 we will see three squares of order 6 that have no good pair
of 2-partitions, even though some of their conjugates in Table 4 do. Thus transposition
class is the broadest class for the purposes of this paper.

We now present the following conjecture.

Conjecture 1 Let L be a Latin square of even order n, where n > 4. Then a good pair
of 2-partitions of the rows and columns of L exists, with five transposition class exceptions
(the five Latin squares of order 6 in Table 1).

The first, third, fourth and fifth squares in Table 1 are all symmetric (and are respec-
tively the third, fourth, fifth, and sixth squares in [2], p137). The second square is the
(2, 3, 1)-conjugate of the first square. For all these squares, we give a pair of 2-partitions
(R, C) with the smallest possible total number of repeated symbols in the induced 2× 2
squares. The number of such repeats is two for the second square, and one for the others.

The above conjecture is supported heuristically for small values of n.

Theorem 2 Let L be a Latin square of even order n, with 4 6 n 6 8. Then a good pair
of 2-partitions of the rows and columns of L exists, with five transposition class exceptions
(the five Latin squares of order 6 in Table 1).

Proof. We begin with n = 4 (see [2] for definitions). Representatives from the two
transposition classes of Latin squares of order 4 are given in Table 2. For these, set
R = {{r1, r2}, {r3, r4}} and C = {{c1, c3}, {c2, c4}}. Then the pair of 2-partitions (R, C)
is good.
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Table 1: Representatives for the five transposition classes of Latin squares of order 6 with
no good pair of 2-partitions.

1 2 3 4 5 6
2 1 4 5 6 3
3 4 1 6 2 5
4 5 6 1 3 2
5 6 2 3 1 4
6 3 5 2 4 1
R : (r1, r4), (r2, r5), (r3, r6)
C : (c1, c6), (c2, c3), (c4, c5)

1 2 3 4 5 6
2 1 6 3 4 5
3 5 1 2 6 4
4 6 5 1 2 3
5 3 4 6 1 2
6 4 2 5 3 1
R : (r1, r4), (r2, r5), (r3, r6)
C : (c2, c3), (c4, c6), (c1, c5)

1 2 3 4 5 6
2 1 4 5 6 3
3 4 1 6 2 5
4 5 6 1 3 2
5 6 2 3 4 1
6 3 5 2 1 4
R : (r1, r6), (r2, r4), (r3, r5)
C : (c1, c2), (c4, c5), (c3, c6)

1 2 3 4 5 6
2 1 4 5 6 3
3 4 2 6 1 5
4 5 6 2 3 1
5 6 1 3 4 2
6 3 5 1 2 4
R : (r1, r6), (r2, r4), (r3, r5)
C : (c1, c2), (c4, c5), (c3, c6)

1 2 3 4 5 6
2 1 4 5 6 3
3 4 5 6 1 2
4 5 6 3 2 1
5 6 1 2 3 4
6 3 2 1 4 5
R : (r1, r5), (r2, r4), (r3, r6)
C : (c1, c6), (c2, c3), (c4, c5)

Table 2: Representatives for the two transposition classes of Latin squares of order 4.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

There are 1,676,267 isotopy classes of Latin squares of order 8 [2, 3]; a representative
for each of these classes is given at [3]. We ran a program which reads these squares in
batches of 100, 000 and can produce a good pair of 2-partitions for all squares in each
batch in about 3 minutes. A good pair of 2-partitions was found for all representatives;
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in fact, even if we add an extra restriction that rows 1 to 4 all lie in different pairs for
the 2-partitions, then for almost all squares of order 8, a good pair of 2-partitions can be
found. Table 3 gives one square with a good pair of 2-partitions, but none satisfying this
extra restriction.

Table 3: A Latin square of order 8 and a good pair of 2-partitions for it.

1 2 3 4 5 6 7 8
2 1 7 8 3 4 6 5
3 6 8 2 7 5 1 4
4 5 2 7 6 8 3 1
5 8 6 3 2 1 4 7
6 7 4 5 1 2 8 3
7 4 1 6 8 3 5 2
8 3 5 1 4 7 2 6
R : (r1, r4), (r2, r6), (r3, r8), (r5, r7)
C : (c1, c5), (c2, c4), (c3, c8), (c6, c7)

There are twelve main classes of Latin squares of order 6 [2]. In seven of these, each
square is isotopic to all its conjugates (and hence also to every other square in the same
main class). Within each of the other five main classes, there are three isotopic classes
and two transposition classes. Thus there is a total of 7 + (5 × 3) = 22 isotopic classes
of Latin squares of order 6 [2, 3] and 7 + (5 × 2) = 17 transposition classes. If S is
any square in one of these last five main classes that is isotopic to its transpose, then S,
together with its (2, 3, 1) and (3, 1, 2)-conjugates are representatives for the three isotopic
classes in the same main class as S. Also, S and its (2, 3, 1)-conjugate are representatives
for the two transposition classes in this main class.

For order 6, representatives for the twelve transposition classes not given in Table 1
(together with a pair of good 2-partitions for each one) are given in Tables 4 and 5. The
eight squares in Table 5 are all isotopic to their transposes; in fact, all except the fifth are
isotopic to all their conjugates [2]. The four squares in Table 4 are not isotopic to their
transposes; these squares are the (2,3,1)-conjugates of respectively, the third, fourth and
fifth squares in Table 1 and the fifth square in Table 5.

2 The problem with a particular approach

Before we prove our main result (Theorem 9), it is worth demonstrating why a particular
method for solving Conjecture 1 cannot work. As a first approach to the problem, one
might assume a fixed 2-partition of the rows, then try adjusting the 2-partition of the
columns. In this section we show that such an approach cannot solve Conjecture 1 directly.
In particular, the results in this section imply the following theorem.
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Table 4: Representatives and a good pair of 2-partitions for four transposition classes of
Latin squares of order 6.

1 2 3 4 5 6
2 1 6 3 4 5
3 5 1 2 6 4
4 6 5 1 2 3
6 3 4 5 1 2
5 4 2 6 3 1
R : (r1, r5), (r2, r6), (r3, r4)
C : (c1, c2), (c3, c5), (c4, c6)

1 2 3 4 5 6
2 1 6 3 4 5
5 3 1 2 6 4
6 4 5 1 2 3
3 6 4 5 1 2
4 5 2 6 3 1
R : (r1, r5), (r2, r4), (r3, r6)
C : (c1, c4), (c2, c3), (c5, c6)

1 2 3 4 5 6
2 1 6 3 4 5
5 6 1 2 3 4
6 5 4 1 2 3
3 4 5 6 1 2
4 3 2 5 6 1
R : (r1, r4), (r2, r5), (r3, r6)
C : (c1, c3), (c2, c6), (c4, c5)

1 2 3 6 5 4
2 1 5 3 4 6
3 4 1 5 6 2
4 3 6 1 2 5
5 6 2 4 1 3
6 5 4 2 3 1
R : (r1, r5), (r2, r4), (r3, r6)
C : (c1, c4), (c2, c6), (c3, c5)

Theorem 3 For each m > 3, there exist a Latin square of order 2m and a 2-partition R
of its rows such that for each 2-partition C of the columns, the pair (R, C) is bad.

We give a construction to show that such a Latin square, along with a 2-partition R of
the rows, exists for every even order 2m > 6. Without loss of generality, we may assume
that for R = {R1, . . . , Rm}, Ri = {2i − 1, 2i} for each i ∈ [m]. Theorem 3 is true if we
can construct a Latin square which contains the set of triples

{(1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)} ∪ {(2i− 1, 1, 2i− 1),
(2i, 1, 2i), (2i− 1, 2i− 1, 2i), (2i, 2i, 2i− 1) : 2 6 i 6 m}.

Below is an example of the triples as a partial Latin square of order 6 (m = 3).

1 2
2 1
3 4
4 3
5 6
6 5

Note that S(R1, {c1, c2}) contains symbols 1 and 2 twice. Furthermore, S(Ri, {c1, c2i})
contains symbol 2i − 1 twice and S(Ri, {c1, c2i−1}) contains symbol 2i twice for each i,
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Table 5: Representatives and a good pair of 2-partitions for eight transposition classes of
Latin squares of order 6.

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 3 4
6 5 2 1 4 3
R : (r1, r4), (r2, r5), (r3, r6)
C : (c1, c5), (c2, c6), (c3, c4)

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 4 3
6 5 2 1 3 4
R : (r1, r4), (r2, r5), (r3, r6)
C : (c1, c3), (c2, c4), (c5, c6)

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 2 4
4 6 2 5 1 3
5 3 6 1 4 2
6 4 5 2 3 1
R : (r1, r4), (r2, r5), (r3, r6)
C : (c1, c3), (c2, c5), (c4, c6)

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 2 4
4 6 2 5 1 3
5 3 6 2 4 1
6 4 5 1 3 2
R : (r1, r4), (r2, r5), (r3, r6)
C : (c1, c3), (c2, c5), (c4, c6)

1 2 3 4 5 6
2 1 6 5 3 4
3 4 1 2 6 5
6 5 2 1 4 3
5 3 4 6 1 2
4 6 5 3 2 1
R : (r1, r4), (r2, r5), (r3, r6)
C : (c1, c3), (c2, c4), (c5, c6)

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 6 5 1 2 3
5 3 6 2 1 4
6 4 2 5 3 1
R : (r1, r4), (r2, r5), (r3, r6)
C : (c1, c2), (c3, c4), (c5, c6)

1 2 3 4 5 6
2 1 4 5 6 3
3 4 2 6 1 5
4 6 5 2 3 1
5 3 6 1 2 4
6 5 1 3 4 2
R : (r1, r4), (r2, r5), (r3, r6)
C : (c1, c2), (c3, c4), (c5, c6)

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 6 5 2 1 3
5 4 6 3 2 1
6 5 4 1 3 2
R : (r1, r4), (r2, r5), (r3, r6)
C : (c1, c6), (c2, c5), (c3, c4)

2 6 i 6 m. It follows that for each j ∈ [2m], column c1 cannot be paired with column
cj without creating an induced subarray with repeated symbols. Thus, if there is a Latin
square of order 2m containing the triples defined above, then (R, C) is bad for each 2-
partition C of columns.
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Lemma 4 If m > 3, then there exists a Latin square L of order 2m containing the above
partial Latin square.

Proof. Let L1(◦) be the Latin square of order m such that i ◦ j = i + j − 1 (mod m) for
each i, j ∈ [m]. Let L2(?) be an idempotent Latin square of order m (i.e. i ? i = i, for
each i ∈ [m]). These are known to exist for all orders m > 3 (see [2]).

Next, we create a Latin square of order 2m by positioning a 2 × 2 subarray at each
cell (i, j) ∈ [m]× [m] of an m×m grid. Firstly, for each cell (i, j) for which i ◦ j = i ? j
(this includes the case (i, j) = (1, 1)) we place the 2× 2 subarray

2(i ◦ j)− 1 2(i ◦ j)
2(i ◦ j) 2(i ◦ j)− 1

.

To determine what 2×2 array should be placed in each of the other cells, we first have
to construct for each y ∈ [m], a graph Gy whose vertices are the cells (i, j) ∈ [m] × [m]
such that i ◦ j = y or i ? j = y (but not both). Two distinct vertices (i1, j1) and (i2, j2)
in Gy are said to be adjacent if

1. i1 = i2 or j1 = j2, and

2. i1 ◦ j1 = i2 ? j2 = y or i1 ? j1 = i2 ◦ j2 = y.

With adjacency defined this way, observe that Gy is a union of vertex-disjoint cycles
of even length. Thus every vertex in Gy has two vertices adjacent to it.

For each y ∈ [m], y 6= 1, there is one cycle in Gy containing two cells in column 1. Let
cell (y, 1) be the first cell in this cycle; subsequent cells will be chosen so that they are
connected to the previous one. In the 2× 2 array placed in the first cell, place 2y − 1 in
the top left entry and 2y in the bottom left entry.

Let cell (y, y) be the second cell of this cycle. In the 2× 2 array placed in this second
cell (and every remaining cell of the cycle except the last) place 2y and 2y − 1 in two
vacant, diagonally opposite squares of the 2×2 subarray in that cell, so that 2y and 2y−1
are not in the same row or column of our 2m× 2m array L as they were in the previous
2× 2 subarray. In addition, for the 2× 2 subarray in the second cell of the cycle, 2y must
be in the top left entry, and 2y − 1 must be in the bottom right entry.

For the last cell of this cycle (this cell will appear in column 1) we place 2y and 2y− 1
in the two entries in the right hand column of the 2× 2 subarray in this cell. Again, this
should be done so that 2y and 2y− 1 are not in the same row of our 2m× 2m array L as
they were in the 2× 2 array placed in the previous cell.

Finally, for each y ∈ [m], consider each cycle in Gy not containing any cells (i, j) with
j = 1. If x is the length of such a cycle, then as mentioned earlier, x is always even; also,
we can partition the vertices of this cycle into two independent sets of size x/2 (i.e. no
two vertices (cells) in either set are adjacent). For each 2× 2 array placed in a cell of the
first set, we place 2y in two vacant, diagonally opposite entries of that 2 × 2 array. For
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each 2× 2 array placed in a cell of the other set, we place 2y− 1 in two vacant diagonally
opposite entries.

This completes the construction.

Below is an example of the previous lemma with m = 4:

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
L1(◦)

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4
L2(?)

1 2 7 4 3 6 5 8
2 1 3 8 5 4 7 6
3 5 4 6 7 8 1 2
4 6 5 3 8 7 2 1
5 7 8 1 6 2 3 4
6 8 1 7 2 5 4 3
7 4 6 2 1 3 8 5
8 3 2 5 4 1 6 7

3 Proving the main result

If a pair of 2-partitions (R, C) for a Latin square is not good, then we say it is bad.
Informally, in what follows we wish to take any even order Latin square and find a 2-
partition with minimum “badness”. A 2× 2 subarray may of course contain two pairs of
repeated symbols. It is helpful then to call the existence of a pair of repeated symbols
within an induced subarray a discrepancy. Thus an induced subarray may have either 0,
1 or 2 discrepancies. We define ∆(R, C) to be the total number of discrepancies in all of
the induced subarrays. We will focus on minimizing the function ∆.

For each pair of rows R′ ∈ R, we define ∆(R′) (or ∆C(R
′) when ambiguity may arise)

to be the number of discrepancies within the rows of R′. We define ∆(C ′) similarly for
each C ′ ∈ C. Observe that

∆(R, C) =
m∑
i=1

∆(Ri) =
m∑
i=1

∆(Ci).

Our general approach is to reduce ∆ by making minimal adjustments to the setsR or C,
respectively. Formally, suppose that C is a 2-partition with Ci = {c1, c2} and Cj = {c3, c4}.
Then there are precisely two options for changing C by altering {Ci, Cj} but keeping
each other pair in C fixed. We can substitute {Ci, Cj} with either {{c1, c3}, {c2, c4}} or
{{c1, c4}, {c2, c3}}. We call such a substitution a trade on Ci and Cj. We define a trade
between two elements of R in the same way.

Each trade may destroy certain discrepancies but create others. Thus we introduce
the idea of a discrepancy being potentially created by a trade. Suppose there exists a
symbol s ∈ S, a pair of rows R ∈ R and distinct pairs of columns C,C ′ ∈ C such that s
occurs in the subarrays S(R,C) and S(R,C ′). We say that the 4-tuple (s, R,C,C ′) is a
potential (or column potential). (We may define row potentials similarly in the transpose.)

It is important to note that a potential leads to a discrepancy via precisely one of the
two available trades. It is thus useful to label the two choices of trade as types 1 and 2
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for convenience, in some arbitrary way. We define d+(Ci ↔ Cj, t) and d−(Ci ↔ Cj, t) to
be the number of discrepancies created and destroyed (respectively) after a trade of type
t ∈ {1, 2} between pairs of columns Ci and Cj. If d+(Ci ↔ Cj, t) < d−(Ci ↔ Cj, t), then
∆(R, C ′) < ∆(R, C), where C ′ is the new column partition after the trade. This is our
chief strategy in reducing ∆. In some cases, our trades will initially increase the number
of discrepancies; however, we will always ensure that overall, a reduction in the number
of discrepancies results.

Before we begin our proofs, the following observations are also useful. Suppose that
(s, R,C,C ′) and (s′, R′, C, C ′) are distinct potentials. Then it is possible that either s = s′

or R = R′; but we cannot have (s, R) = (s′, R′). Indeed, a potential (s, R,C,C ′) is com-
pletely identified by the pair (s, R), since s occurs once in each of the induced subarrays
S(R,C) and S(R,C ′). Also if s ∈ S and C ∈ C are fixed, then if there is no discrepancy
involving both s and C, there are two column potentials of the form (s, R′, C, C ′) with
R′ ∈ R and C ′ ∈ C. Since any symbol and pair of columns are both involved in either
one discrepancy or two column potentials, the following lemma is immediate.

Lemma 5 The total number of column potentials (s, R′, C, C ′) involving a given pair of
columns C ∈ C is equal to 4m− 2∆(C).

Lemma 6 Let (R, C) be a pair of 2-partitions of the rows and columns of a Latin square
L. Suppose that C1 and C2 are distinct elements of C and that ∆(C1) = k and ∆(C2) = l,
for integers k, l > 0. If either (k > 2 and l > 1) or k > 3, then there exists a 2-partition
C ′ (obtained by a single trade including C1) such that ∆(R, C ′) 6 ∆(R, C)− k + 1.

Proof. Suppose first that k > 2 and l > 1. We wish to make a trade on C1 and Cj, j 6= 1,
of type t ∈ {1, 2} so that

d−(C1 ↔ Cj, t)− d+(C1 ↔ Cj, t) > k − 2.

For the sake of contradiction, suppose that no such trade exists. Then for each such trade,

d−(C1 ↔ Cj, t)− d+(C1 ↔ Cj, t) 6 k − 2. (1)

Suppose first that j = 2. Let t ∈ {1, 2}. From two assumptions of the lemma (∆(C1) =
k and ∆(C2) > 1), we have d−(C1 ↔ C2, t) > k + 1. Hence from (1), d+(C1 ↔ C2, t) > 3
for each t ∈ {1, 2}. Since there are two choices for t, there must exist at least six pairwise
distinct potentials involving C1 and C2.

Next consider the case j > 2. Let t ∈ {1, 2}. Then d−(Ci ↔ Cj, t) > k; thus (1)
yields: d+(C1 ↔ Cj, t) > 2. Since there are two choices for t, there must exist at least
four pairwise distinct potentials involving C1 and Cj. Thus in total there are at least
6 + 4(m − 2) pairwise distinct (column) potentials involving C1. Applying Lemma 5,
6 + 4(m− 2) 6 4m− 2k, which contradicts k > 2.

Now suppose that k > 3. By similar reasoning to the above, for each j > 2 and
t ∈ {1, 2}, d+(C1 ↔ Cj, t) > 2. Therefore, there are at least 4(m − 1) pairwise distinct
(column) potentials involving the pair of columns C1. Applying Lemma 5, 4(m − 1) 6
4m− 2k, which contradicts k > 3.
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Using Lemma 6 and its transpose analogue repeatedly, we have the following corollary
to Lemma 6.

Corollary 7 Let L be a Latin square of order 2m. Suppose there exists a pair of 2-
partitions (R, C) of L such that ∆(R, C) = β. Then there is a pair of 2-partitions (R′, C ′)
of L such that ∆(R′, C ′) 6 β and either:

1. ∆(R),∆(C) ∈ {0, 1} for each R ∈ R′ and C ∈ C ′; or

2. ∆(R′, C ′) = 2.

Proof. If there are elements Ci, Cj ∈ C such that ∆(Ci) > 2 and ∆(Cj) > 1, then
by Lemma 6 there is a 2-partition of the columns of L reducing the current number of
discrepancies in L. Similarly, the function ∆ is reduced if there are elements Ri, Rj ∈ R
where ∆(Ri) > 2 and ∆(Rj) > 1. Furthermore, if there are no such i, j, but there exists
i such that ∆(Ci) > 3 (or ∆(Ri) > 3), then ∆ is reduced. Thus repeatedly invoking
Lemma 6 and its transpose analogue continues to lower ∆ until there is a pair of 2-
partitions (R′, C ′) satisfying the conditions of this lemma.

Lemma 8 Let (R, C) be a pair of 2-partitions of the rows and columns of a Latin square L.
Let R = {R1, R2, . . . , Rm} and let ∆(Ri) = ki for each i ∈ [m]. Suppose furthermore that
α is an integer in [m] such that either (α > 2, kα = 2 and kt > 1 for some t ∈ [m], t 6= α)
or kα > 3. Then there exists a 2-partition R′ such that ∆(R′, C) 6 ∆(R, C)−

∑α
i=1(ki−1).

Proof. Our proof is by induction. By Lemma 6, the lemma is true when α = 1. So we
will assume that the lemma is true for α = 1, 2, . . . , l−1 where l 6 2, and that the lemma
has to be established for α = l.

In the initial part of our proof (Stages 1 and 2 below) we produce another 2-partition
R∗ = {R∗1, R∗2, . . . , R∗m} satisfying a few conditions. Setting k∗i = ∆(R∗i , C) for each
i ∈ [m], three of these conditions are k∗l > 2,

∑l
i=1 k

∗
i 6

∑l
i=1 ki, and R∗i = Ri for i > l.

Note that this third condition implies

∆(R, C)−
l∑

i=1

(ki − 1) =
m∑
i=1

ki −
l∑

i=1

(ki − 1) (2)

= l +
m∑

i=l+1

ki = l +
m∑

i=l+1

k∗i = ∆(R∗, C)−
l∑

i=1

(k∗i − 1). (3)

Initially, set R∗ = R.

Stage 1. We recall that l > 2. From the conditions of the lemma (or the manner in
which R∗ is recreated in Stage 2) either (k∗l > 2 and k∗t > 1 for some t 6= l) or k∗l > 3.
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Therefore, by Lemma 6, we can create a new row partition R′′ from R∗ by performing a
trade on {R∗l , R∗x} (for some x 6= l), so that

∆(R′′, C) 6 ∆(R∗, C)− (k∗l − 1). (4)

Let R′′ = {R′′1, R′′2, . . . , R′′m}. Here, we let R′′l and R′′x be the row pairs created from
R∗l and R∗x respectively after performing the trade, and let R′′i = R∗i for each i 6∈ {l, x}.
Let k′′i = ∆(R′′i ) for each i ∈ [m]. It follows that

∆(R′′, C)− k′′x − k′′l = ∆(R∗, C)− k∗x − k∗l . (5)

The cases x > l and x < l have to be considered separately. If x < l, move on to Stage
2; if x > l, move on to Stage 3.

Stage 2: x < l.
In this case, provided either (k′′i > 2, k′′j > 1) for some i, j 6 l, or k′′i > 3 for some

i 6 l, we re-order the row pairs R′′i for i 6 l so that k′′l > 2. Now set R∗ = R′′ and go
back to the start of Stage 1, repeating the process in that stage with this new R∗. Note
that k∗l > 2 for this new R∗, and, if k∗l = 2, then k∗j > 1 for some j < l.

Eventually one of two things will happen: Either the required trade to obtain R′′ from
R∗ in Stage 1 will have x > l (in which case we move on to Stage 3) or, by reasoning similar
to that in Corollary 7, we will reach a 2-partition R′′ (here in Stage 2) such that either
[1] k′′i ∈ {0, 1} for all i ∈ [l] or [2]

∑l
i=1 k

′′
i = 2. For l > 2, if either of these conditions on

R′′ holds, the total number of discrepancies in R1, R2, . . . , Rl will have been reduced by
at least

∑l
i=1(ki− 1), when going from R to R′′, while R′′i = Ri for l+ 1 6 i 6 m. Hence

in the statement of the lemma we can take R′ = R′′.

Stage 3: x > l.
Here, R∗ and R′′ are 2-partitions obtained after going through Stage 1 and obtaining

x > l. Note that since R′′ was obtained from R∗ by means of a trade between R∗l and
R∗x for some x > l, {R∗1, R∗2, . . . R∗l−1} ⊂ R

′′
. So by applying our inductive hypothesis

(Lemma 8 with α = l− 1) to R′′, unless k∗1 6 2 and l = 2 (dealt with below; here neither
l − 1 > 2 nor k∗l−1 > 3) there exists a 2-partition R′ of the rows such that

∆(R′, C) 6 ∆(R′′, C)−
l−1∑
i=1

(k∗i − 1).

Combining this with (4), ∆(R′, C) 6 ∆(R∗, C)−
∑l

i=1(k
∗
i − 1) = ∆(R, C)−

∑l
i=1(ki − 1)

as required.
So suppose l = 2, and k∗1 6 2. If k∗1 6 1, then k∗1 − 1 6 0, and so ∆(R′′, C) 6

∆(R′′, C)−
∑l−1

i=1(k
∗
i −1). Combining this with (4) as above, gives ∆(R′′, C) 6 ∆(R∗, C)−∑l

i=1(k
∗
i − 1) = ∆(R, C)−

∑l
i=1(ki − 1) as required.

Finally, suppose l = 2 and k∗1 = 2. Here, from (4), we already have ∆(R′′, C) 6
∆(R∗, C)− (k∗l −1). If either k′′2 > 1 or k′′x > 1, then (since k′′1 = k∗1 = 2), we now have two
discrepancies in one pair of rows and at least one in another; thus we may apply Lemma
6 to further reduce the number of discrepancies by 1, as needed. Otherwise k′′2 = k′′x = 0.
By (5) and the fact that k∗x > 0,
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∆(R′′, C) = ∆(R′′, C)− k′′2 − k′′x = ∆(R∗, C)− k∗2 − k∗x
= ∆(R∗, C)− (k∗1 − 1)− (k∗2 − 1) + (k∗1 − 2− k∗x)
6 ∆(R∗, C)− (k∗1 − 1)− (k∗2 − 1)

= ∆(R, C)− (k1 − 1)− (k2 − 1),

as required.

Theorem 9 For any Latin square of order 2m with m > 2, there exists k ∈ [m] and a
pair of 2-partitions (R, C) such that either ∆(R, C) = 2 or (k 6 (m + 3)/2, ∆(R, C) = k
and for each a ∈ [k], ∆(Ra) = ∆(Ca) = 1 and S(Ra, Ca) contains a discrepancy).

Proof. Assume that all conditions of the lemma hold, except that we have k > (m+ 3)/2.
We will show (by contradiction, supposing the opposite) that it is possible to create
2-partitions of the rows and columns which decrease ∆. By then repeatedly applying
Lemma 6 (if necessary), the theorem holds. We focus on the potentials within column
pairs C1 ∪ C2 ∪ . . . ∪ Ck.

Suppose first that there exist {i, j} ⊂ [k] and t ∈ {1, 2} such that there is at most
one potential of type t of the form (s, Rl, Ci, Cj) with l > k, and that for any potential of
type t of the form (s, Rl, Ci, Cj), we have l 6∈ {i, j}.

Let C ′ be the 2-partition of the columns after making a trade of type t on {Ci, Cj} for
such i, j, t as described above. From the conditions of the theorem, d−(Ci ↔ Cj, t) = 2.
Let d+(Ci ↔ Cj, t) = β. Then, ∆(R, C ′) = ∆(R, C) + β − 2. Thus if β 6 1 we are
done. Otherwise, if we let C ′i, C

′
j be the two new pairs of columns after the trade, then

at most one of the β new discrepancies created is not of the form (s, Rz, C
′
i, C

′
j) with

z ∈ [k], z /∈ {i, j}. Thus at most one new discrepancy is not in a pair of rows containing
a discrepancy that existed both before and after the trade. In this case, reorder the row
pairs (Ry : y 6 k) by interchanging Ri with Rk−1, Rj with Rk and Rk−2 with Rx for
some other x ∈ [k − 2] such that ∆(Rx, C ′) > 2. We can now apply Lemma 8 (with
α = k − 2) to produce another 2-partition of the rows and columns with at least β − 1
fewer discrepancies. Overall we have reduced the number of discrepancies by at least
β − 1 > 1, so we are done.

Otherwise, for each {i, j} ⊂ [k] and each t ∈ {1, 2}, we must have either:

1. at least one potential of type t of the form (s, Rz, Ci, Cj) with z ∈ {i, j}, or

2. at least two potentials of type t of the form (s, Rz, Ci, Cj), with z > k.

We consider these potentials to be of variety 1 and 2, respectively. Let vx be the total
number of occurrences of variety vx, for each x ∈ [2]. We proceed to obtain some inequal-
ities involving these parameters. Each occurrence of variety 1 uses at least one symbol
from a subarray S(Rz, Cz) with z ∈ [k]; moreover each such subarray S(Rz, Cz) already
contains a discrepancy; thus 2k > v1. Next, there are 4(m − k)k cells within both the
first 2k columns and the final 2(m− k) rows; thus 4(m− k)k > 4v2, i.e. (m− k)k > v2.
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Finally, there are k(k−1) choices for i, j and type t, so we must have k(k−1) 6 v1+v2.
But combining the above two inequalities for v1, v2, gives v1 + v2 6 2k + (m − k)k.
Therefore, k(k − 1) 6 2k + (m − k)k, or equivalently, 2k2 6 (m + 3)k. It follows that
k 6 (m+ 3)/2, a contradiction.

4 Motivation

The original motivation for studying this problem is related to the study of defining sets
and trades in Latin squares. If a subarray of a Latin square contains no repeated symbols,
it is not hard to see that the complement of the subarray within the Latin square has a
unique completion. Equivalently, if a subarray has no repeated symbols then it contains
no Latin trades. See [1] for relevant definitions and a survey of these concepts. Thus the
existence of subarrays without repeated symbols may have implications for the study of
defining sets and Latin trades in Latin squares.

However, independent of possible application, the problem studied in this paper seems
to be a natural enough theoretical question in its own right.
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