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Abstract

Let Sn be the set of all permutations on [n] := {1, 2, . . . , n}. We denote by
κn the smallest cardinality of a subset A of Sn+1 that “covers” Sn, in the sense
that each π ∈ Sn may be found as an order-isomorphic subsequence of some π′ in
A. What are general upper bounds on κn? If we randomly select νn elements of
Sn+1, when does the probability that they cover Sn transition from 0 to 1? Can
we provide a fine-magnification analysis that provides the “probability of coverage”
when νn is around the level given by the phase transition? In this paper we answer
these questions and raise others.

1 Introduction

The problem discussed in this paper was posed by Prof. Robert Brignall during the Open
Problem Session at the International Permutation Patterns Conference held at California
State Polytechnic University in June 2011. The conference webpage may be found at
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http://www.calpoly.edu/∼math/PP2011/ .

Brignall asked, “If Sn denotes the set of all permutations on [n] := {1, 2, . . . , n}, what
can we say about κn, the smallest cardinality of a subset A of Sn+1 that “covers” Sn, in
the sense that each π ∈ Sn may be found as an order-isomorphic subsequence of some π′

in A.” Specifically, he asked about bounds, exact values, and asymptotics. Small values
are easy to calculate; e.g., it is easy to see that κ1 = 1, κ2 = 1, and the permutation set
{1342, 4213} reveals that κ3 = 2 – but the situation rapidly gets out of precise control.

In Section 2, we provide a trivial pigeonhole lower bound on κn and then use the
“method of alterations” [1] to derive an upper general bound on κn that contains a loga-
rithmic factor that often shows up when using such arguments in covering-type situations;
see, e.g. the general upper bound on the size of covering designs that was proved by Erdős
and Spencer in their early work [3]. We continue by showing that the second and subse-
quent coverings of the n-permutations are accomplished in linear log log time, in a result
that is reminiscent of the ones in [8] (covering designs) and [7] (t-covering arrays). Lastly,
in Section 2, we make comparisons to the development in Spencer [12] to produce evidence
that the asymptotic value of κn is (upto a O(1) or perhaps 1 + o(1) factor) the same as
that given by the lower bound; we conjecture that this is true.

In Section 3, we estimate the number of permutations π′ that can be jointly covered,
along with a fixed π, by some permutation ρ ∈ Sn+1, and then give a careful estimate of
how many ρ ∈ Sn+1 can jointly cover two fixed π, π′ ∈ Sn. Then, in Section 4, we use
these results to answer the question “If we randomly select νn elements of Sn+1, when
does the probability that they cover Sn transition from asymptotically 0 to asymptotically
1?” Our main result in this area, Theorem 7, is proved using the Janson exponential
inequality ([1]). The threshold in Theorem 7 contains a small gap, but the result is the
best possible. We prove this fact in Section 5, using the Stein-Chen method of Poisson
approximation. Specifically it is proved that when νn is “in the gap,” the number of
uncovered n-permutations X has a Poisson distribution with finite mean. In particular,
this implies P(X = 0) is a finite constant that is bounded away from zero and one.

2 Bounds

Our first preliminary result provides a formula for the number c(n, π) of permutations in
Sn+1 that cover a fixed π ∈ Sn.

Lemma 1. Let c(n, π) denote the number of permutations in Sn+1 that cover a fixed
π ∈ Sn. Then c(n, π) = c(n, π′) = n2 + 1 for each π, π′ ∈ Sn.

Proof. It is clear that any permutation pattern π ∈ Sn may be represented in
(
n+1
n

)
=

n + 1 ways, one for any choice of n numbers from {1, 2, . . . , n + 1}. Arrange these ways
lexicographically (for example if n = 3, we can represent the pattern 132 as 132, 142,
143, 243). Note that the rth and (r + 1)st lex-orderings of π differ in a single bit. Now,
given any representation of π, the (n + 1)st position may clearly be inserted in (n + 1)
ways to create an (n + 1)-covering permutation; however, for any 1 6 r 6 n, the list of
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covering (n + 1)-permutations for the rth and (r + 1)st lex-orderings have an overlap of
magnitude 2, corresponding to whether the (n + 1)st position is inserted before or after
the non-matching bit. Thus c(n, π) = c(n, π′) = (n+ 1)2 − 2n = n2 + 1, as asserted.

Lemma 1 can now be used to prove

Theorem 2.

(n+ 1)!

n2

(
1− 2n+ 1

(n+ 1)2

)
6 κn 6

(n+ 1)!

n2 + 1

(
1 + log

(
n2 + 1

n+ 1

))
.

Proof. The lower bound is elementary. Each of the κn permutations in a covering, “takes
care,” with repetition, of

(
n+1
n

)
= n+1 n-permutations. Since we have a covering, clearly,

κn(n+ 1) > n!, or

κn >
n!

(n+ 1)
=

(n+ 1)!

n2

(
1− 2n+ 1

(n+ 1)2

)
� (n+ 1)!

n2
.

For the upper bound, we use the method of alterations [1] as follows: Choose a random
number Y of (n + 1)-permutations by “without replacement” sampling. The expected
number of uncovered n-permutations, by Lemma 1 and linearity of expectation, is

E(X) = n!

(
(n+1)!−n2−1

Y

)(
(n+1)!
Y

) .

We choose a realization with X = XY 6 E(X) and cover these with at most

n!

(
1− n2 + 1

(n+ 1)!

)Y
6 n! exp{−Y (n2 + 1)/(n+ 1)!}

additional (n+ 1)-permutations, yielding, for any initial size Y , a covering with at most

Y + n! exp{−Y (n2 + 1)/(n+ 1)!}

members. Minimizing over Y yields an initial choice of size

(n+ 1)!

(n2 + 1)
log

(
n2 + 1

n+ 1

)
,

and an upper bound of

κn 6
(n+ 1)!

(n2 + 1)

(
1 + log

(
n2 + 1

n+ 1

))
� log n

(n+ 1)!

n2
,

as claimed.
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We next ask how many more (n + 1)-permutations are required to cover the n per-
mutations multiple times. Here the situation is often nuanced, and leads to the question
as to whether the logarithmic factor, present in the upper bound for the first covering,
is extraneous. Typically, in other covering contexts, we find that the second and sub-
sequent coverings need an appropriately normalized log log n additional elements in the
cover; see, e.g. [8] for a covering design analogy, [7] for an occurrence of this phenomenon
in t-covering arrays, and [4], [9] for the log log behavior in the coupon collection problem.
We briefly describe the parallel in the context of covering designs: A collection A of sets
of size k of [n] is said to form a t-covering design if each t-set is contained in at least one
k-set in A. If m(n, k, t) denotes the smallest size of a t-covering design A then it is clear
that m(n, k, t) >

(
n
t

)
/
(
k
t

)
; Erdős and Spencer proved in [3] that for each n, k, t,

m(n, k, t) 6

(
n
t

)(
k
t

) (1 + log

(
k

t

))
;

it was shown furthermore in [8] that the minimum number m(n, k, t, λ) of k-sets needed
to cover each t-set λ times satisfied

m(n, k, t, λ) 6

(
n
t

)(
k
t

) (1 + log

(
k

t

)
+ (λ− 1) log log

(
k

t

)
+O(1)

)
,

n, k, t→∞. This was the log log result. Also, the Erdős-Hanani conjecture, namely that
for fixed k, t,

lim
n→∞

m(n, k, t)(
n
t

) =
1(
k
t

)
was proved by Rödl [11] and, later, by Spencer [12]. This showed that the logarithmic
factor in the Erdős-Spencer bound could be asymptotically dispensed with. Finally, see
[5] for a corresponding threshold result. It is these questions we seek to address, in our
context, in the rest of this section and the next.

Theorem 3. Let κn,λ denote the minimum number of (n + 1)-permutations needed to
cover each n-permutation λ > 2 times. Then,

κn,λ 6
(n+ 1)!

n2
(log n+ (λ− 1) log log n+O(1)) .

Proof. We first choose an unspecified number Y of (n + 1)-permutations randomly and
with replacement. This might lead to replication with very small probability, but the
proof is far more streamlined - and can easily be adapted to the case where we choose
Y distinct permutations. The probability that any permutation is covered just j times;
0 6 j 6 λ− 1 is (

Y

j

)(
n2 + 1

(n+ 1)!

)j (
1− n2 + 1

(n+ 1)!

)Y−j
,
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so that the expected number of such permutations is

E(Xj) = n!

(
Y

j

)(
n2 + 1

(n+ 1)!

)j (
1− n2 + 1

(n+ 1)!

)Y−j
; 0 6 j 6 λ− 1.

We can cover each such permutation in any ad hoc way by choosing λ − j additional
(n + 1)-permutations, and so the number ZY of (n + 1)-permutations in this successful
λ-covering is

ZY = Y +
λ−1∑
j=0

(λ− j)Xj,

and thus

E(ZY ) = Y + n!
λ−1∑
j=0

(λ− j)
(
Y

j

)(
n2 + 1

(n+ 1)!

)j (
1− n2 + 1

(n+ 1)!

)Y−j
for any initial choice of Y permutations. Set

p =
n2 + 1

(n+ 1)!
; q = 1− p,

and, given Y Bernoulli trials with success probability p, denote the cumulative and point
binomial probabilities by B(Y, p, k) and b(Y, p, k) respectively, 0 6 k 6 Y . It is easy to
verify that for Y p > λ

E(ZY ) = Y + n!λB(Y, p, λ− 1)− n!Y pB(Y − 1, p, λ− 2)

= Y + n!λb(Y, p, λ− 1) + n! {λB(Y, p, λ− 2)− Y pB(Y − 1, p, λ− 2)}
6 Y + n!λb(Y, p, λ− 1) + n!λ{B(Y, p, λ− 2)−B(Y − 1, p, λ− 2)}

= Y + n!λb(Y, p, λ− 1) + n!λ
λ−2∑
j=0

(
Y − 1

j

)
pjqY−1−j

(
Y q

Y − j
− 1

)
6 Y + n!λb(Y, p, λ− 1)

6 Y + n!λ

(
Y p

q

)λ−1
e−pY

(λ− 1)!
. (1)

We do not attempt to optimize carefully in (1); rather we set

Y =
(n+ 1)!

n2 + 1
(log n+ (λ− 1) log log n)

and see that the second term T2 in (1) reduces as

T2 = n!λ

(
log n+ (λ− 1) log log n

q

)λ−1
exp{− log n− (λ− 1) log log n}

(λ− 1)!

=
(n+ 1)!

n2 + 1

λ

(λ− 1)!

1

(log n)λ−1

(
log n+ (λ− 1) log log n

q

)λ−1
(1 + o(1))

=
(n+ 1)!

n2 + 1

λ

(λ− 1)!
(1 + o(1)),
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so that (1) yields

E(ZY ) 6
(n+ 1)!

n2 + 1

(
log n+ (λ− 1) log log n+ (1 + o(1))

λ

(λ− 1)!

)
.

Finally, we choose a sample outcome for which |A| 6 E(ZY ) to complete the proof.

We now describe the hypergraph formulation of [10] that was used in [12] to prove the
Erdős-Hanani conjecture using a method that involved branching processes, dynamical
algorithms, hypergraph theory, and differential equations. In this formulation the vertices
of the hypergraph consisted of the ensemble of t-sets; for us they would be the class of
permutations in Sn. The edges in [12] were the collections of t-subsets of the k-sets, so that
the hypergraph was

(
k
t

)
uniform. If analogously, we let edges be the set of n-permutations

covered by an (n+1)-permutation, then the hypergraph is no longer uniform. It is not too
hard to prove, however, that each (n+1)-permutation π covers n+1−sπ n-permutations,
where sπ is the number of successions in π, where a succession is defined as an episode
π(i + 1) = π(i) ± 1. Moreover, we know [6] that the number of successions in a random
permutation is approximately Poisson with parameter ∼ 2, so that it is reasonable to
assert that most hypergraph edges consist of n−O(1) vertices. This is the first deviation
from the Pippenger-Spencer model of [10], which we consider to be not too serious insofar
as the lack of uniformity of the hypergraph is concerned but rather serious due to the fact
that the uniformity level n − O(1) is not finite. Lemma 1 above shows that the degree
of each vertex is O(n2), and we will prove in Lemma 6 below that the codegree of two
vertices π and π′ is at most O(1), so that the codegree is an order of magnitude smaller
than the degree. This is good. The above problems with the hypergraph formulation
notwithstanding, we make the following conjecture:

Conjecture 4. For some constant A,

lim sup
n→∞

κn
(n+ 1)!/n2

= A,

and possibly A 6 2.

3 Covering Two Permutations

Lemma 5. For any π ∈ Sn, the set

Jπ := {π′ ∈ Sn : π and π′ can be jointly covered by ρ ∈ Sn+1}

has cardinality at most n3.

Proof. Fix π. For an (n+ 1)-permutation to be able to successfully cover another π′ ∈ Sn
(in addition to π), π must contain an (n − 1)-subpattern of π′. This subpattern may be
present in

(
n
n−1

)
= n possible positions of π, and can be represented, using the numbers

{1, 2, . . . , n}, in n ways. Finally, the nth letter of π′ can be inserted into this subpattern
in n ways. This proves the first part of the lemma.
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Before proving the next result on how many ρ ∈ Sn+1 can jointly cover two fixed
π, π′ ∈ Sn, we give some motivation and examples:

(i) First, note that in the covering (n + 1)-permutation ρ, the numbers 1 and n + 1
may only play the role of 1 and n respectively in either of the permutations π, π′, while
any other number t in ρ may play the role of either t or t − 1. Thus whenever one can
jointly embed π and π′ into some permutation ρ, there are some points of π and π′ which
match up by position and value, and all remaining points can match up by position but
be one off by value, or vice-versa. For example, if π = 126983745;π′ = 127938645, then
an alignment (σ, σ′) of π and π′ such as

σ : 1 2 6 9 8 3 7 ∅ 4 5

σ′ : 1 2 7 9 ∅ 3 8 6 4 5

ρ : 1 2 7 10 9 3 8 6 4 5,

allows for joint coverage by ρ as indicated (we call such an alignment “legal”), whereas a
“bad” alignment of the same two permutations would be, e.g.,

σ : 1 2 6 9 ∅ 8 3 7 4 5

σ′ : 1 2 7 9 3 8 ∅ 6 4 5,

since, starting with 10 representing the two 9’s and 9 representing the two 8’s, we find
that there is no position, in ρ, where the 8 can be placed.

(ii) Second, note that if the alignment (σ, σ′) is legal, then its components may be laid
atop each other, by simultaneous rearrangement, so that each is left-right non-decreasing;
and the covering (n + 1)-permutation is idn+1. If the alignment is not legal, then such
a rearrangement leads to sequences that are not both non-decreasing. For instance, the
legal example above can be rearranged as follows:

σ : 1 2 3 4 5 ∅ 6 7 8 9

σ′ : 1 2 3 4 5 6 7 8 ∅ 9

It is always possible as above to align any two co-coverable π and π′ in n − 1 spots
(using two ∅ symbols), because there exists a ρ which covers both π and π′, and deletion of
two symbols from ρ yields a (n−1)-subpattern shared by π, π′. The question is when this
process is non-unique. To facilitate understanding of this issue we indicate an alternative
way of identifying the (n− 1)-pattern that is shared by such π, π′, without the use of the
∅ symbols. Consider the following situations. In the first example,

π : 3 8 7 4 2 9 6 10 5 1

π′ : 3 4 8 5 2 9 7 10 6 1,

Example (i)

the “mismatch” (i.e., the pair of symbols that do not contribute to the common sub-
pattern) could be considered to be between the 8 (in π) and the 4 (in π′); in Example
(ii)
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π : 2 1 9 3 4 7 8 6 5

π′ : 2 1 9 3 7 4 8 6 5,

Example (ii)

the mismatch could be viewed as being between the two 7s or between the two 4s; and
finally in the last example

π : 1 2 6 9 8 3 7 4 5

π′ : 1 2 7 9 3 8 6 4 5,

Example (iii)
the 8 in π and the 6 in π′ are mismatched. The point is that the mismatched pair might be
atop each other, or arbitrarily far apart. Example (iii) contains the same permutations as
the ones introduced earlier; utilizing the notion of common subpatterns and mismatches,
we have the matching pairs consisting of

(1, 1), (2, 2), (6, 7), (9, 9), (3, 3), (7, 8), (4, 4), (5, 5).

The skipped symbols, 8 in π and 6 in π′, provide the mismatch – and the corresponding
covering (n+ 1)-permutation can be constructed from the above matching by introducing
the ∅ symbols to appear below or above the mismatched numbers exactly as before.
Thus, the two ways of representing co-coverable permutations, using either the ∅ symbols
or mismatches, are equivalent, and we will use one or the other as appropriate.

Lemma 6. For any π, π′ ∈ Sn, the cardinality of

Cπ,π′ := {ρ ∈ Sn+1 : ρ covers both π and π′}

is at most 4.

Proof. We shall be proving that for any two co-coverable permutations π, π′, there are at
most two legal insertions of the ∅ symbols, for each of which there can be at most two
covering permutations, thus giving a total of four possibilities.

Given a mismatch in which the two numbers are the same, say a, they may be repre-
sented by either a or a+ 1 in the covering (n+ 1)-permutation. This gives two coverings
depending on where a is placed. But the common mismatched number may be chosen in
up to two ways, as in Example (ii), for a total of 4 covering permutations; this maximal
possibility exists if and only if π′ is obtained from π by a single swap of adjacent elements.
If the two mismatched numbers a, b are different, the case where these are “atop” each
other (as in Example (i)) yields two covering permutations, since the ∅ symbols may be
inserted in the two alternate forms

a

∅
∅
b

or
∅
b

a

∅
,
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which lead to different covering ρs. If the mismatched numbers are farther apart and
different, then it is clear that there is only one covering permutation.

In what follows, we will denote the positions of potential mismatches by (α, β), (γ, δ),
and set

a = πα, b = π′β; c = πγ, d = π′δ.

We now need to show that all possibilities have been covered, in other words, that there
do not exist two sets of matching pairs with mismatched pairs at positions (α, β) and at
(γ, δ), where c, d are not obtained from a, b by the processes described in the previous
paragraph, and where c, d yield genuinely different covering permutations. First observe
that alternative choices of c and d do exist. For instance, in Example (i), c and d may be
taken to be 7 and 4; or 7 and 3; or 8 and 3, but these do not yield ρs that are different
from the ∅

4
8
∅ alignment.

We proceed by contradiction, and by considering all possible ways in which the mis-
matched pairs (a, b) and (c, d) can interact. Assume without loss of generality that
π′pi > πmi

for all i, where pi and mi are the positions of the ith match. This forces
a > b. Moreover, if a = b then the π − π′ match is between identical elements.

CASE 1: Mismatches a and b are atop each other; mismatches c and d are also atop each
other; c and d are to the right of a and b respectively.

Since a and b are atop each other, we must have π−1(i) = π′−1(i) for each i 6 b−1; i >
a+1; π−1(i) 6= π′−1(i) for each b 6 i 6 a (assuming without loss of generality that a 6= b).
Similarly, i and i are matched for each i 6 d − 1; i > c + 1 and not for other is. This
forces [b, a] ∩ [d, c] = ∅, and thus π = π′, a contradiction.

CASE 2: a and b are atop each other; c and d are to the right of a and b respectively (and
not atop each other).

Assume that d is to the right of c. c and d are initially matched to elements below
and above it respectively. When the mismatched pair becomes (c, d), all matches between
c and d are “tilted to the right”, e.g., the number below the c is now matched to the
number to the right of c. Since c > d, and since i ∈ π′ may only be matched with either i
or i− 1 in π, we see that the sequences of integers between γ and δ are identical in π and
π′, and consist of a monotone decreasing block of consecutive integers. It follows that all
integers lower than d in π are matched to themselves in π′, as are all integers higher than
c. This forces both π and π′ to be the same permutation of the identity, a contradiction.

CASE 3: α, β, γ, δ are in increasing order from left to right.
We proceed as in Case 2, except that there are now two monotone blocks – between

a and b; and between c and d.

CASE 4: The positions appear in the order α, γ, β, δ or one of its variants.
Assume that the match corresponding to the (a, b) mismatch has oblique lines that go

from bottom left to top right. We see that the oblique matching lines corresponding to the
(c, d)-mismatch start between α and β but continue beyond β. If, however, γ > α+ 1, or
δ > β+1, we see that there are again one or two monotone blocks, forcing a contradiction.
Thus α = γ and β = δ, which reduces us to one mismatch. We thus need to consider
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when α = β = γ or α = β = δ, as in Example (i), with the (7,4) or (8,3) mismatches. In
this case, either α has to be compatible with both β, δ; or β has to be compatible with
both α, γ. The same covering permutations thus result with both sets of mismatches.

CASE 5: The positions appear in the order γ, α, β, δ or one of its variants.
Here a contradiction arises if γ 6 α − 2 or δ > β + 2. Assume, therefore, that

γ = α − 1; δ = β + 1; α and β could be arbitrarily far apart, but the point is that the
a − b mismatch could be rewired to become a c − b or a − d or even a c − d mismatch,
as illustrated in Example (i), with the 7-3 mismatch. The fact that α and β could be
arbitrarily far apart is illustrated by the example below:

π : 5 6 9 10 11 12 4 7 8 1 2 3

π′ : 6 9 10 11 12 3 5 7 8 1 2 4,

Example (iv)
where the (6,3) mismatch can be rewired to become a (5,3) mismatch without changing
the covering permutation. If γ = α− 1; δ = β + 1; a c− d rewiring may lead to up to two
entirely new ρs, as in Example (ii).

This completes the proof of Lemma 5.

4 Thresholds

Theorem 7. Consider the probability model in which each π ∈ Sn+1 is independently
picked with probability p. Let the resulting random collection of permutations be denoted
by A. Then,

lim
n→∞

P(A is a cover of Sn) =

{
0 if p 6 logn

n
(1 + o∗(1))

1 if p > logn
n

(1 + o(1)).

Proof. We use the Janson inequalities, see [1]. By the lower Janson inequality, we have,
with X denoting as before the number of uncovered π ∈ Sn,

P(X = 0) >
n!∏
i=1

P(permutation i is covered)

>
n!∏
i=1

1− (1− p)n2

>
n!∏
i=1

exp{−(1− p)n2

/(1− (1− p)n2

)}

= exp{−n!(1− p)n2

/(1− (1− p)n2

)} → 1
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if E(X)→ 0, or, using Stirling’s formula, if C
√
n
(
n
e

)n
e−n

2p → 0, i.e., if

p =
log n

n
− 1

n
+

log n

2n2
+
ω(n)

n2
=

log n

n
(1 + o(1)),

where ω(n) → ∞ is arbitrary. This proves the second part of the result. To prove the
first part, we invoke the upper Janson inequality to give

P(X = 0) 6 exp{−λ+ ∆} (2)

where λ = E(X) and

∆ =
∑
i

∑
j∼i

P(i and j are both uncovered),

and i ∼ j if permutations i and j can be covered by the same (n+ 1)-permutation. Since,
by Lemmas 5 and 6, for any i there are at most n3 permutations j that can be jointly
covered with i, and for any i, j there are at most 4 co-covering (n + 1)-permutations, it
follows that

∆ = n!n3(1− p)2n2+2−4,

so that (2) yields

P(X = 0) 6 exp{−n!(1− p)n2+1 + n!n3(1− p)2n2−2} → 0

if n!(1− p)n2 →∞, i.e., if

p =
log n− 1 + 1

2
logn
n
− ω(n)

n

n
=

log n

n
(1 + o∗(1)), (3)

where ω(n)→∞ is arbitrary. This completes the proof of Theorem 7.

5 Poisson Approximation in the “Gap”

The proof of Theorem 7 reveals that E(X) undergoes a rapid transition when p is around
the level given by (3). In fact, if

p =
log n− 1 + 1

2
logn
n
− K

n

n
,K ∈ R,

then for large n, E(X) ∼
√

2πe−K and P(X = 0) ∼ exp{−
√

2πe−K}. Much more is true,
however, as we shall show next: The entire probability distribution L(X) of X can be
approximated, in the total variation sense, by that of a Poisson random variable with
mean λ = E(X) in a range of ps that allows for large means. This result can be thought
of as being a probabilistic counterpart to Theorem 7, and is proved using the Stein-Chen
method of Poisson approximation [2]:
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Theorem 8. Consider the model in which each π ∈ Sn+1 is independently chosen with
probability p, thus creating a random ensemble A of (n+ 1)-permutations. Then
dTV(L(X),Po(λ)) → 0 if p > logn

n2 (1 + ε), where Po(λ) denotes the Poisson distribution
with parameter λ, ε > 0 is arbitrary, and the total variation distance dTV is defined by

dTV(L(Y ),L(Z)) = sup
A⊆Z+

|P(Y ∈ A)− P(Z ∈ A)|.

Proof. As before, we set X =
∑n!

j=1 Ij, with Ij = 1 if the jth n-permutation is uncovered

by permutations in A (Ij = 0 otherwise), and let λ = E(X) = n!(1−p)n2+1. Consider the
following coupling, for each j: If Ij = 1, we “do nothing,” setting Ji = Jji = Ii, 1 6 i 6 n!.
If, on the other hand, the jth permutation is covered by one or more (n+1)-permutations
in A, we “deselect” these permutations, setting Ji = 1 if the ith permutation is uncovered
after this change is made; Ji = 0 otherwise. Now it is clear that Ji > Ii for i 6= j, since
there is no way that an uncovered permutation can magically get covered after a few
(n+ 1)-permutations are deselected. Also, setting N = n!, we have for each j,

L(J1, J2, . . . , JN) = L(I1, . . . , IN |Ij = 1).

Corollary 2.C.4 in [2] thus applies, telling us that

dTV(L(X),Po(λ)) 6
1− e−λ

λ

(
V(X)− λ+ 2

∑
j

P2(Ij = 1)

)
, (4)

Bounding 1− e−λ by one, (4) yields

dTV(L(X),Po(λ)) 6
V(X)

λ
− 1 + 2(1− p)n2+1. (5)

The last term in (5), namely (1− p)n2+1 can easily be verified to tend to zero as long as
p� 1/n2, so we turn to a computation of V(X):

V(X) =
∑
j

{
E(Ij)− E2(Ij)

}
+
∑
i∼j

{E(IiIj)− E(Ii)E(Ij)},

so that

V(X)

λ
− 1 6

∑
i∼j{E(IiIj)− E(Ii)E(Ij)}

λ

6 n3
(

(1− p)n2−3 − (1− p)n2+1
)

= n3(1− p)n2+1{(1− p)−4 − 1}
6 5pn3 exp{−n2p} → 0

provided that p > A logn
n2 , with A > 1.
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6 Open Problems

Proving the best possible result along the lines of Conjecture 4 would clearly be a most
desirable outcome of this work. Can, e.g. we write “lim” instead of “lim sup”? Is A =
1? Secondly, can the bound in Lemma 5 be improved? (Note, however, that such an
improvement would provide only marginal improvements in Theorems 7 and 8.) Finally,
extending the results of this paper to encompass coverings of n permutations by (n+ k)-
permutations would lead to several interesting questions and new techniques; for example,
Theorem 2 can readily be generalized for k > 2. Also, the maximum degree of the
dependency graph induced by the indicator random variables {Ii} is low even for k > 2,
so that these variables are almost independent, and one may even envision tight results
as k →∞.
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