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Abstract

A graph is crossing-critical if the removal of any of its edges decreases its cross-
ing number. This work is motivated by the following question: to what extent is
crossing-criticality a property that is inherent to the structure of a graph, and to
what extent can it be induced on a noncritical graph by multiplying (all or some of)
its edges? It is shown that if a nonplanar graph G is obtained by adding an edge
to a cubic polyhedral graph, and G is sufficiently connected, then G can be made
crossing-critical by a suitable multiplication of its edges.

1 Introduction

This work is motivated by the recent breakthrough constructions by DeVos, Mohar and
Šámal [3] and Dvořák and Mohar [4], which settled two important crossing numbers
questions. The graphs constructed in [3] and [4] use weighted (or “thick”) edges. A graph
with weighted edges can be naturally transformed into an ordinary graph by substituting
weighted edges by multiedges (recall that a multiedge is a set of edges with the same
pair of endvertices). If one wishes to avoid multigraphs, one can always substitute a
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weight t edge by a K2,t, but still the resulting graph is homeomorphic to a multigraph.
Sometimes (as in [3]) one can afford to substitute each weighted edge by a slightly richer
structure (such as a graph obtained from K2,t by joining the degree 2 vertices with a
path), but sometimes (as in [4]) one is concerned with criticality properties, and so no
such superfluous edges may be added. In any case, the use of weighted edges is crucial.

After trying unsuccessfully to come up with graphs with similar crossing number
properties as those presented in [3] and [4], while avoiding the use of weighted edges, we
were left with a wide open question: in the realm of crossing numbers, more specifically on
crossing-criticality issues, to what extent does it make a difference to allow (equivalently,
to forbid) weighted edges (or, for that matter, multiedges)?

1.1 Crossing-critical graphs and multiedges

Recall that the crossing number cr(G) of a graph G is the minimum number of pairwise
intersections of edges in a drawing of G in the plane. An edge e of G is crossing-critical if
cr(G− e) < cr(G). If all edges of G are crossing-critical, then G itself is crossing-critical.
A crossing-critical graph seems naturally more interesting than a graph with some not
crossing-critical edges, since a graph of the latter kind contains a proper subgraph that
has all the relevant information from the crossing numbers point of view.

Earlier constructions of infinite families of crossing-critical graphs made essential use
of multiedges [10]. On the other hand, constructions such the ones given by Kochol [7],
Hliněný [5], and Bokal [1] deal exclusively with simple graphs.

We ask to what extent crossing-criticality is an inherent structural property of a graph,
and to what extent crossing-criticality can be induced by multiplying the edges of a
(noncritical) graph. Let G,H be graphs. We say that G is obtained by multiplying edges
of H if H is a subgraph of G and, for every edge of G, there is an edge of H with the
same endvertices.

Question 1. When can a graph be made crossing-critical by multiplying edges? That is,
given a (noncritical) graph H, when does there exist a crossing-critical graph G that is
obtained by multiplying edges of H?

Our universe of interest is, of course, the set of nonplanar graphs, since a planar graph
obviously remains planar after multiplying any or all of its edges.

1.2 Main result

We show that a large, interesting family of nonplanar graphs satisfy the property in
Question 1. A nonplanar graph G is near-planar if it has an edge e such that G − e is
planar. Near-planar graphs constitute a natural family of nonplanar graphs. Any thought
to the effect that crossing number problems might become easy when restricted to near-
planar graphs is put definitely to rest by the recent proof by Cabello and Mohar that
CrossingNumber is NP-Hard for near-planar graphs [2].
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A graph G is internally 3-connected if G is simple and 2-connected, and for every
separation (G1, G2) of G of order two, either |E(G1)| 6 2 or |E(G2)| 6 2. Hence, in-
ternally 3-connected graphs are those that can be obtained from a 3-connected graph by
subdividing its edges, with the condition that no edge can be subdivided more than once.
We recall that a graph is polyhedral if it is planar and 3-connected [9].

Our main result is that any adequately connected, near-planar graph G obtained by
adding an edge to a cubic polyhedral graph, belongs to the class alluded to in Question 1.
Throughout this paper, if G is a graph with vertices u, v such that the edge uv is in G,
then G− uv is the graph that results by removing the edge uv from G, and G− {u, v} is
the graph that results by removing both u and v (as well as their incident edges) from G.

Theorem 2. Let G be a near-planar simple graph, with an edge uv such that G − uv is
a cubic polyhedral graph. Suppose that G − {u, v} is internally 3-connected. Then there
exists a crossing-critical graph that is obtained by multiplying edges of G.

We note that some connectivity assumption is needed in order to guarantee that a
nonplanar graph can be made crossing-critical by multiplying edges. To see this, consider
a graph G which is the union of two subgraphs G1, G2, where G1 is nonplanar and G2

is planar with at least one edge, and G1 and G2 have exactly one vertex in common.
Since crossing number is additive on the blocks of a graph, it is easy to see that G (more
specifically, the edges of G2) cannot be made crossing-critical by multiplying edges.

1.3 Reformulating Theorem 2 in terms of weighted graphs

We recall that a weighted graph is a pair (G,ω), where G is a graph and ω (the weight
assignment) is a map that assigns to each edge e of G a number ω(e), the weight of e. The
length of a path in a weighted graph is the sum of the weights of the edges in the path.
If u, v are vertices of G, then the distance dω(u, v) from u to v (under ω) is the length of
a minimum length (also called a shortest) uv-path. The weight assignment ω is positive
if ω(e) > 0 for every edge e of G, and it is integer if each ω(e) is an integer.

In the context of Theorem 2, let G be a simple graph which we seek to make crossing-
critical by multiplying (some or all of) its edges. With this in mind, let G be a multigraph
(that is, a graph with multiedges allowed) whose underlying simple graph is G. Now
consider the (positive integer) weight assignment ω on E(G) defined as follows: for each
edge uv of G, let ω(uv) be the number of edges in G whose endpoints are u and v (i.e.,
the multiplicity of uv).

If we extend the definition of crossing number to weighted graphs, with the condition
that a crossing between two edges contributes to the total crossing number by the product
of their weights, then, from the crossing number point of view, clearly (G,ω) captures all
the relevant information from G. In particular, cr(G) = cr(G,ω). Moreover, by extending
the definition of crossing-criticality to weighted graphs in the obvious way (which we now
proceed to do), it will follow that G is crossing-critical if and only if (G,ω) is crossing-
critical.

the electronic journal of combinatorics 20(1) (2013), #P61 3



To this end, let G be a graph and ω a positive integral weight assignment on G.
An edge e of (G,ω) is crossing-critical if cr(G,ωe) < cr(G,ω), where ωe is the weight
assignment defined by ωe(f) = ω(f) for f 6= e and ωe(e) = ω(e) − 1. As with ordinary
graphs, (G,ω) is crossing-critical if all its edges are crossing-critical.

Under this definition of crossing-criticality for weighted graphs, it is now obvious that
if we start with a multigraph G and derive its associated weighted graph (G,ω) as above,
then G is crossing-critical if and only if (G,ω) is crossing-critical.

In view of this equivalence (for crossing number purposes) between multigraphs and
weighted graphs, it follows that Theorem 2 is equivalent to the following:

Theorem 3 (Equivalent to Theorem 2). Let G be a near-planar simple graph, with an
edge uv such that G−uv is a cubic polyhedral graph. Suppose that G−{u, v} is internally
3-connected. Then there exists a positive integer weight assignment ω such that (G,ω) is
crossing-critical.

The next section is devoted to the proof of Theorem 3, and Section 3 contains some
concluding remarks and open questions.

2 Proof of Theorem 3

Throughout this proof, G is a graph that satisfies the hypotheses of Theorem 3. That is,
G is near-planar and simple, and has an edge uv such that G− uv is a cubic polyhedral
graph and Gu,v := G− {u, v} is internally 3-connected. We let u1, u2, and u3 be the
vertices of G (other than v) adjacent to u. Analogously, we let v1, v2, and v3 be the
vertices of G (other than u) adjacent to v.

To help comprehension, we break the proof into several subsections.

2.1 Basic observations and facts about G, Gu,v, and G− uv
We start with an observation that follows from the connectivity properties of G− uv and
Gu,v.

Remark 4. Both G − uv and Gu,v admit unique (up to homeomorphism) embeddings in
the plane. This allows us, for the rest of the proof, to regard these as graphs embedded
in the plane. Moreover, since Gu,v is a subgraph of G−uv, it follows that we may assume
that the restriction of the embedding of G−uv to Gu,v is precisely the embedding of Gu,v.

Proposition 5. u1, u2, u3, v1, v2, v3 are all distinct.

Proof. Since G is simple, it follows that u1, u2, and u3 are all distinct. Similarly, v1, v2,
and v3 are all distinct. Now suppose that ui = vj for some i, j ∈ {1, 2, 3}, and consider
an embedding of G− uv in the plane. It is easy to see that since ui = vj, and G− uv is
cubic, it follows that uv can be added to the embedding of G − uv without introducing
any crossings, resulting in an embedding of G. This contradicts the nonplanarity of G.
Thus ui 6= vj for all i, j ∈ {1, 2, 3}.
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Proposition 6. In Gu,v there is a unique face Fu (respectively, Fv) incident with u1, u2,
and u3 (respectively, v1, v2, and v3). Moreover, Fu 6= Fv.

Proof. The existence of a face Fu in Gu,v incident with u1, u2, and u3 follows since G−uv
is planar. Since u1, u2, and u3 are all distinct, and G− uv is cubic, it follows that u1, u2,
and u3 all have degree 2 in Gu,v. The internal 3-connectivity of Gu,v implies that no two
uis can be adjacent to each other. This implies that there cannot be two distinct faces of
Gu,v incident with more than one ui, and, in particular, that Fu is unique. An identical
argument shows that Fv exists and is unique.

To see that Fu 6= Fv, it suffices to note that if Fu = Fv then the edge uv could be
added to the embedding of G − uv without introducing any crossings, resulting in an
embedding of G, contradicting its nonplanarity.

The previous three statements immediately imply the following.

Observation 7. To obtain the embedding of G−uv, we start with the embedding of Gu,v,
and then draw uu1, uu2, and uu3 (and, of course, u) inside Fu, and vv1, vv2, and vv3 (and,
of course, v) inside Fv.

2.2 Weight assignments on the dual G∗u,v of Gu,v

We shall make extensive use of weight assignments on the dual (embedded graph) G∗u,v of
Gu,v. We start by noting that G∗u,v is well-defined (and admits a unique plane embedding)
since Gu,v admits a unique plane embedding. As with G− uv and Gu,v, this allows us to
unambiguously regard G∗u,v as an embedded graph. We shall let F denote the set of all
faces in Gu,v (equivalently, the set of all vertices of G∗u,v).

A weight assignment λ on Gu,v naturally induces a weight assignment λ∗ on G∗u,v,
and vice versa: if e is an edge of Gu,v and e∗ is its dual edge in G∗u,v, then we simply

let λ∗(e∗) = λ(e). Trivially, a weight assignment λ on the whole graph G also naturally
induces a weight assignment λ∗ on G∗u,v: it suffices to consider the restriction λ of λ to
Gu,v, and from this we obtain λ∗ as we just described.

Definition 8. A weight assignment λ∗ on G∗u,v is balanced if each edge e∗ of G∗u,v belongs
to a shortest FuFv-path in (G∗u,v, λ

∗).

Now since for i = 1, 2, 3 the vertex ui has degree 2 in Gu,v, it follows that ui is
incident with exactly two faces in Gu,v, one of which is Fu; let Fui denote the other face.
Thus it makes sense to define the distance dλ∗(ui, F ) between ui and any face F ∈ F as
min{dλ∗(Fu, F ), dλ∗(Fui , F )}. We define Fvi and dλ∗(vi, F ) analogously, for i = 1, 2, 3.

We note that possibly Fui = Fv for some i ∈ {1, 2, 3}, or Fvj = Fu for some j ∈
{1, 2, 3}. On the other hand, we have the following.

Proposition 9. Fu1 , Fu2 and Fu3 are all distinct. Similarly, Fv1 , Fv2 and Fv3 are all
distinct.
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Proof. As observed in the proof of Proposition 6, the internal 3-connectivity ofGu,v implies
that no two uis can be adjacent to each other, and so there cannot be two distinct faces
of Gu,v incident with more than one ui. Since Fu is incident with u1, u2, and u3, it follows
that Fu1 , Fu2 , and Fu3 are all distinct. An identical argument shows that Fv1 , Fv2 and Fv3
are all distinct.

2.3 Strategy of the rest of the proof

Although the core of the proof of Theorem 3 is somewhat technical, the main ideas behind
it are not difficult to explain. Our aim in this subsection is to give an informal account
of the strategy behind the proof. This will also give us the opportunity to motivate
the introduction of five properties (namely (P1)–(P5) below) that a weight assignment
ω would need to satisfy (in our strategy) for (G,ω) to be crossing-critical. We will
finish this subsection by formally stating (i) that if ω satisfies (P1)–(P5), then (G,ω) is
indeed crossing-critical (Lemma 10); and (ii) the existence of an ω that satisfies (P1)–(P5)
(Lemma 11). Theorem 3 will obviously follow from these lemmas, which will be proved
in Subsections 2.4 and 2.5, respectively.

We seek a weight assignment ω such that in every optimal drawing of (G,ω), the
induced drawing of Gu,v is its unique (see Remark 4) embedding. Moreover, we wish to
adjust the weights of the edges so that if we start with Gu,v and then draw u inside Fu and
v inside Fv, and finally add uv following a shortest FuFv-path in (Gu,v

∗, ω∗), the resulting
drawing is optimal. Since such a drawing will have ω(uv) · dω∗(Fu, Fv) crossings, the aim
is to have cr(G,ω) = ω(uv) · dω∗(Fu, Fv).

To ensure that in every optimal drawing of (G,ω) the induced drawing of Gu,v is an
embedding, we need to discourage crossings among edges in Gu,v in every optimal drawing
of (G,ω). This is achieved by assigning large weights to the edges of Gu,v, as captured by
the following property:

(P1) For every pair of edges e, e′ of Gu,v, ω(e)ω(e′) > ω(uv) · dω∗(Fu, Fv).

Now in order to guarantee that the described way of drawing G (adding uv as ex-
plained) will be best possible, we need to make sure that if we place u (respectively, v)
in a face other than Fu (respectively, Fv), and then add uv in the most economical way,
then the resulting drawing will not have fewer than ω(uv) ·dω∗(Fu, Fv) crossings. In order
to achieve this, we need to make the weights of the edges uu1, uu2, uu3, vv1, vv2, vv3 large
enough, so that if we place u (respectively, v) in a face other than Fu (respectively, Fv),
we introduce a large enough number of crossings with the edges incident with u. This is
captured by the next property:

(P2) For each x ∈ {u, v} and each F ∈ F ,

ω(xx1) · dω∗(x1, F ) + ω(xx2) · dω∗(x2, F ) + ω(xx3) · dω∗(x3, F ) > ω(uv) · dω∗(Fx, F )
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The conditions explained so far are quite easy to accomplish: it suffices to make the
weights of all the edges other than uv very large compared to ω(uv). The difficulty lies
on the fine-tuning of these weights in order to guarantee the criticality of every edge.

The criticality of the edges of G− {u, v} is forced by asking ω∗ to be balanced:

(P3) The dual weight assignment ω∗ on G∗u,v induced by ω is balanced.

Indeed, this balancedness guarantees that if we choose any edge e ∈ Gu,v, then we can
draw u on Fu and v on Fv, and then add uv in a most economical way so that uv crosses
e; since e gets crossed in an optimal drawing of G, then e is obviously critical.

The criticality of the edges uu1, uu2, uu3, vv1, vv2, vv3 is a little bit harder to achieve.
Consider an edge uui (the situation is identical for an edge vvj). Our strategy to ensure
the criticality of uui is to ask that there exist a face Ui ∈ F not incident with ui, such
that we can place u in Ui and join it to u1, u2 and u3 with a cost (in crossings) equal to
the cost of reaching Ui from Fu (with a weight w(uv)). The upshot is that, since ui is not
incident with Ui, we find an alternative way to join u and v by placing u in the face Ui,
and in this alternative way uui gets crossed, thus guaranteeing its criticality. This gets
captured by the following property:

(P4) For each (x,X) ∈ {(u, U), (v, V )} and each i = 1, 2, 3, there is a face Xi ∈ F such
that dω∗(xi, Xi) > 0 and

ω(xx1) ·dω∗(x1, Xi)+ω(xx2) ·dω∗(x2, Xi)+ω(xx3) ·dω∗(x3, Xi) = ω(uv) ·dω∗(Fx, Xi).

Now the caveat in this attempt to make uui critical is that since u gets drawn outside
Fu, we may introduce crossings involving one edge in {uu1, uu2, uu3} and one edge in
{vv1, vv2, vv3}; if such crossings get introduced, then the resulting drawing is not optimal.
With the aim of fixing this, we identify a property to ensure that any such crossings, if
introduced, are negligible compared to the weight of any edge in Gu,v:

(P5) For all i, j ∈ {1, 2, 3}, ω(uui) · ω(vvj) < (1/9) min{ ω(e) | e ∈ E(Gu,v)}.

Throughout this informal discussion, we have identified the properties that we want
to be satisfied by ω. Getting back to the formal setting, our task is then to establish the
following two statements:

Lemma 10. Suppose that ω is a positive integer weight assignment on G satisfying (P1)–
(P5). Then (G,ω) is crossing-critical.

Lemma 11. There exists a positive integer weight assignment ω on G that satisfies (P1)–
(P5).

The proofs of these statements, whose combination obviously finishes the proof of
Theorem 3, are given in Subsections 2.4 and 2.5, respectively.
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2.4 Proof of Lemma 10

Throughout the proof, for brevity we let t := ω(uv).
To help comprehension, we break the proof into several steps.

(A) cr(G,ω) 6 t · dω∗(Fu, Fv).

Start with the (unique) embedding of G− uv, and draw uv following a shortest FuFv-
path in (G∗u,v, ω

∗). Then the sum of the weights of the edges crossed by uv equals the
total weight of the shortest FuFv-path, that is, dω∗(Fu, Fv) (here we use the elementary,
easy to check fact that crossings between adjacent edges can always be avoided; in this
case, we may draw uv so that it crosses no edge adjacent to u or v). Since ω(uv) = t, it
follows that such a drawing of (G,ω) has exactly t · dω∗(Fu, Fv) crossings.

(B) cr(G,ω) = t · dω∗(Fu, Fv).

Consider a crossing-minimal drawing D of (G,ω). An immediate consequence of (P1)
and (A) is that the drawing of Gu,v induced by D is an embedding (that is, no two edges
of Gu,v cross each other in D).

Now let F ′ (respectively, F ′′) denote the face of Gu,v in which u (respectively, v) is
drawn in D. Clearly, for i = 1, 2, 3 the edge uui contributes at least ω(uui) · dω∗(ui, F

′)
crossings. Analogously, for i = 1, 2, 3 the edge vvi contributes at least ω(vvi) · dω∗(vi, F

′′)
crossings. Thus it follows from (P2) that the edges in {uu1, uu2, uu3, vv1, vv2, vv3} con-
tribute at least t · dω∗(Fu, F

′) + t · dω∗(Fv, F
′′) = t · (dω∗(Fu, F

′) + dω∗(Fv, F
′′)) crossings.

On the other hand, since the ends u, v of uv are in faces F ′ and F ′′, it follows that
edge uv contributes at least t · dω∗(F ′, F ′′) crossings. We conclude that D has at least
t ·

(
dω∗(Fu, F

′) + dω∗(Fv, F
′′) + dω∗(F ′, F ′′)

)
crossings. Elementary triangle inequality ar-

guments show that dω∗(Fu, F
′) + dω∗(Fv, F

′′) + dω∗(F ′, F ′′) > dω∗(Fu, Fv), and so D has
at least t · dω∗(Fu, Fv) crossings. Thus cr(G,ω) > t · dω∗(Fu, Fv). The reverse inequality is
given in (A), and so (B) follows.

(C) Crossing-criticality of the edges in Gu,v and of the edge uv.

Let e be any edge in Gu,v. We proceed similarly as in (A). Start with the (unique)
embedding of G − uv, and draw uv following a shortest FuFv-path in (G∗u,v, ω

∗) that
includes e∗ (the existence of such a path is guaranteed by the balancedness of ω∗). This
yields a drawing of (G,ω) with exactly t · dω∗(Fu, Fv) crossings, in which e and uv cross
each other. Since cr(G,ω) = t · dω∗(Fu, Fv), it follows that e and uv are both crossed in
a crossing-minimal drawing of (G,ω). Therefore both e and uv are crossing-critical in
(G,ω).

(D) Crossing-criticality of the edges uu1, uu2, uu3, vv1, vv2, and vv3.

We prove the criticality of uu1; the proof of the criticality of the other edges is totally
analogous.
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Consider the (unique) embedding of Gu,v. Put u in face U1 (see property (P4)) and v
in face Fv. Then draw uuj, for j = 1, 2, 3, adding ω(uuj) · dω∗(uj, U1) crossings with the
edges in Gu,v. Since crossings between adjacent edges can always be avoided, it follows
that uu1, uu2, uu3 get drawn by adding ω(uu1) ·dω∗(u1, U1)+ω(uu2) ·dω∗(u2, U1)+ω(uu3) ·
dω∗(u3, U1) = t · dω∗(Fu, U1) crossings (using (P4)). Finally we draw vv1, vv2, vv3 in face
Fv. Now this last step may add crossings, but only of the edges vv1, vv2, vv3 with the edges
uu1, uu2, uu3. In view of (P5), the last step added fewer than 9 · (1/9) min{ ω(e) | e ∈
E(Gu,v)} = min{ ω(e) | e ∈ E(Gu,v)} crossings. We finally draw uv; since u is in face U1

and v is in face Fv, it follows that uv can be drawn by adding t · dω∗(U1, Fv) crossings.
The described drawing D of G has then fewer than t · dω∗(Fu, U1) + t · dω∗(U1, Fv) +

min{ ω(e) | e ∈ E(Gu,v)} = t · dω∗(Fu, Fv) + min{ ω(e) | e ∈ E(Gu,v)} = cr(G,ω) +
min{ ω(e) | e ∈ E(Gu,v)} crossings, where for the first equality we used the balancedness
of ω∗, and for the second equality we used (B). Thus cr(D) < cr(G,ω) + min{ ω(e) | e ∈
E(Gu,v)}.

In D, one weight unit of uu1 contributes dω∗(u1, U1) crossings, and so uu1 contributes
ω(uu1) · dω∗(u1, U1) crossings; note that (P4) implies that ω(uu1) · dω∗(u1, U1) > 0. Since
obviously dω∗(u1, U1) > min{ω(e) | e ∈ E(Gu,v)}, it follows that one weight unit of uu1
contributes at least min{ω(e) | e ∈ E(Gu,v)} crossings. Thus, if we decrease the weight
of uu1 by 1, then we obtain a drawing of G − uu1 with fewer than cr(G,ω) crossings.
Therefore uu1 is critical in (G,ω), as claimed.

2.5 Proof of Lemma 11

An important ingredient in the proof of Lemma 11 is the following, somewhat curious
statement for which we could not find any reference in the literature.

Proposition 12. Let G be a 2-connected loopless graph, and let u, v be distinct vertices
of G. Then there is a positive integer weight assignment µ such that every edge of (G, µ)
belongs to a shortest uv-path.

Proof. We make use of st-numberings [8]. We recall that if H is a graph with vertex set
V and st is an edge of H, then an st-numbering of H is a bijection g : V → {1, 2, . . . , |V |}
such that g(s) = 1, g(t) = |V |, and for every v ∈ V \ {s, t} there are edges xv and vy
such that g(x) < g(v) < g(y). It is known that if s, t is any pair of adjacent vertices in a
2-connected graph, then there is an st-numbering of H.

Now let G, u, v be as in the statement of the proposition, and let n := |V (G)|. It is
easy to see that if u and v are not adjacent and the proposition holds for G+ uv, then it
also holds for G. Thus we may assume that u and v are adjacent. Let g be a uv-numbering
on G, and let µ be the weight assignment defined as follows: for each edge xy of G, let
µ(xy) = |g(x) − g(y)|. It is straightforward to check that a µ-shortest uv-path in (G, µ)
has length n− 1, and that every edge in G belongs to a µ-shortest uv-path.
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Proof of Lemma 11. We start with a balanced positive integer weight assignment µ∗ on
G∗u,v. The existence of such a µ∗ is guaranteed by Proposition 12, which applies since the
connectivity assumption on Gu,v implies that G∗u,v is also 3-connected. Let µ denote the
(also positive integer) weight assignment naturally induced on Gu,v.

For each face F ∈ F \{Fu}, we let HF,u denote the halfspace defined by dµ∗(u1, F )x1+
dµ∗(u2, F )x2 + dµ∗(u3, F )x3 > dµ∗(Fu, F ), and let ∆F,u denote its supporting plane. Let
Pu denote the polyhedron defined by the (intersection of the) set of halfspaces {HF,u |F ∈
F \ {Fu}} and the nonnegative octant {(x1, x2, x3) | x1 > 0, x2 > 0, x3 > 0}. It is clear
that if x1, x2, and x3 are all large enough then (x1, x2, x3) is in Pu, and so Pu is not empty.

Claim I. There is a strictly positive rational point (x1, x2, x3) in Pu that belongs to (not
necessarily distinct) supporting planes ∆U1,u, ∆U2,u, ∆U3,u, such that for i = 1, 2, 3 we
have dµ∗(ui, Ui) > 0.

Proof. Suppose first that there is an F ∈ F \ {Fu, Fu1 , Fu2 , Fu3} such that a facet of Pu
is in ∆F,u. Since F ∈ F \ {Fu, Fu1 , Fu2 , Fu3}, then dµ∗(ui, F ) > 0 for i = 1, 2, 3. Thus
the plane ∆F,u intersects each of the coordinate axes in a positive coordinate, and so
it follows that ∆F,u (more specifically, the facet of Pu contained in ∆F,u) has a positive
rational point (x1, x2, x3) that satisfies the claim, with U1 = U2 = U3 = F .

Suppose finally that there is no such F ∈ F \ {Fu, Fu1 , Fu2 , Fu3}. Since for i, j ∈
{1, 2, 3} we have dµ∗(ui, Fuj) > 0, where equality holds if and only if i = j, it follows
that for each i ∈ {1, 2, 3} the plane ∆Fui ,u

is parallel to the i-th coordinate axis, and
intersects each of the other two axes in strictly positive points. It then follows from
elementary convex geometry arguments that there exists a strictly positive rational point
(x1, x2, x3) contained in ∆Fu1 ,u

∩∆Fu2 ,u
∩∆Fu3 ,u

. Since no facet of Pu is in ∆F,u for any
F ∈ F \ {Fu, Fu1 , Fu2 , Fu3}, it follows that (x1, x2, x3) is in Pu.

Analogously, for each face F ∈ F \ {Fv}, we let HF,v denote the halfspace defined by
dµ∗(v1, F )y1 +dµ∗(v2, F )y2 +dµ∗(v3, F )y3 > dµ∗(Fv, F ), and let ∆F,v denote its supporting
plane. Similarly, let Pv denote the polyhedron defined by the (intersection of the) set of
halfspaces {HF,v |F ∈ F \ {Fv}} and the nonnegative octant {(y1, y2, y3) | y1 > 0, y2 >
0, y3 > 0}.

The proof of the following statement is totally analogous to the proof of Claim I:

Claim II. There is a strictly positive rational point (y1, y2, y3) in Pv that belongs to (not
necessarily distinct) supporting planes ∆V1,v, ∆V2,v, ∆V3,v, such that for i = 1, 2, 3 we have
dµ∗(vi, Vi) > 0.

Let (p1/q1, p2/q2, p3/q3) be a point as in Claim I, and let (a1/b1, a2/b2, a3/b3) be a
point as in Claim II, where all pis, qis, ais, and bis are integers. Let M := q1q2q3b1b2b3,
and let r1 := p1q2q3b1b2b3, r2 := p2q1q3b1b2b3, r3 := p3q1q2b1b2b3, s1 := a1b2b3q1q2q3, s2 :=
a2b1b3q1q2q3, and s3 := a3b1b2q1q2q3.

Then (r1, r2, r3) is a positive integer solution to the set of inequalities {dµ∗(u1, F )r1 +
dµ∗(u2, F )r2 + dµ∗(u3, F )r3 >M · dµ∗(Fu, F ) : F ∈ F \ {Fu}}, and for each i = 1, 2, 3, we
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have dµ∗(u1, Ui)r1 + dµ∗(u2, Ui)r2 + dµ∗(u3, Ui)r3 = M · dµ∗(Fu, Ui).
Similarly, (s1, s2, s3) is a positive integer solution to the set of inequalities {dµ∗(v1, F )s1+

dµ∗(v2, F )s2 + dµ∗(v3, F )s3 > M · dµ∗(Fv, F ) : F ∈ F \ {Fv}}, and for each i = 1, 2, 3, we
have dµ∗(v1, Vi)s1 + dµ∗(v2, Vi)s2 + dµ∗(v3, Vi)s3 = M · dµ∗(Fv, Vi).

Finally, let c be any integer greater than M · dµ∗(Fu, Fv)/(min{µ(e) | e ∈ E(Gu,v)})2
and also greater than 9risj/min{µ(e) | e ∈ E(Gu,v)}, for all i, j ∈ {1, 2, 3}.

Define the weight assignment ω on G as follows:

• ω(uv) = M ;

• ω(uui) = ri and ω(vvi) = si for i = 1, 2, 3;

• ω(e) = c · µ(e), for all edges e in Gu,v.

We finish the proof by showing that ω (and its induced weight assignment ω∗ on G∗u,v)
satisfies (P1)–(P5).

To see that ω∗ satisfies (P3), it suffices to note that ω∗ inherits the balancedness (when
restricted to G∗u,v) from µ∗.

Now let e, e′ be edges of Gu,v. Then ω(e)ω(e′) = c2 · µ(e)µ(e′) > c2 · (min{µ(f) | f ∈
E(Gu,v) })2 > c ·M ·dµ∗(Fu, Fv) = ω(uv)(c ·dµ∗(Fu, Fv)) = ω(uv) ·dω∗(Fu, Fv). This proves
(P1).

Recall that (r1, r2, r3) is a positive integer solution to the set of inequalities {dµ∗(u1, F )r1
+dµ∗(u2, F )r2 + dµ∗(u3, F )r3 > M · dµ∗(Fu, F ) : F ∈ F \ {Fu}}, and for each i = 1, 2, 3,
we have dµ∗(u1, Ui)r1 +dµ∗(u2, Ui)r2 +dµ∗(u3, Ui)r3 = M ·dµ∗(Fu, Ui). Noting that for any
faces F, F ′ ∈ F \ {Fu}, dω∗(F, F ′) = c · dµ∗(F, F ′), and using the definition of ω (and its
induced ω∗), we immediately obtain (P2) (when x = u) and (P4) (when (x,X) = (u, U)).
The proof of (P2) for the case x = v and the proof of (P4) for the case (x,X) = (v, V )
are totally analogous.

Finally, we recall that we defined c so that c > 9risj/min{µ(e) | e ∈ E(Gu,v)} for all
i, j ∈ {1, 2, 3}. By the definition of ω, this is equivalent to c ·min{µ(e) | e ∈ E(Gu,v)} >
9ω(uui)ω(vvj), that is, min{ω(e) | e ∈ E(Gu,v)} > 9ω(uui)ω(vvj), which is in turn obvi-
ously equivalent to (P5).

3 Concluding remarks and open questions

Let G be the class of graphs that can be made crossing-critical by a suitable multiplication
of edges. In this work we have proved that a large family of graphs is contained in G (note
that the cubic condition is only used around vertices u, v, u1, u2, u3, v1, v2 and v3; other
vertices can have arbitrary degrees). Which other graphs belong to G? Is there any hope
of fully characterizing G?

It is not difficult to prove that we can restrict our attention to simple graphs: if G is
a graph with multiedges and G is a maximal simple graph contained in G, then G is in G
if and only if G is in G.
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One reason (but not necessarily the only one) for a graph G not to belong to G, is the
existence of an edge e of G with the following property: if D is a drawing of G in which e
is crossed, then there is a drawing D′ in which e is not crossed, and such that every two
edges that cross each other in D′ also cross each other in D. It is immediately seen that
such a graph is not in G. As Jesús Leaños has pointed out, the easiest such instance is the
graph K+

3,3 obtained by adding to K3,3 an edge (between vertices in the same chromatic
class).

Following Širáň [11, 12], an edge e in a graph G is a Kuratowski edge if there is a
subgraph H of G that contains e and is homeomorphic to a Kuratowski graph (that
is, K3,3 or K5). It is trivial to see that the added edge in Leaños’s example is not a
Kuratowski edge of K+

3,3. This observation naturally gives rise to the following.

Conjecture 13. If G is a graph all whose edges are Kuratowski edges, then G can be
made crossing-critical by a suitable multiplication of its edges.

We remark that the converse of this statement is not true: Širáň [11] gave examples
of graphs that contain crossing-critical edges that are not Kuratowski edges.

The only positive result we have in this direction is that Kuratowski edges can be
made individually crossing-critical:

Proposition 14. If e is a Kuratowski edge of a graph G, then e can be made crossing-
critical by a suitable multiplication of the edges of G.

Proof. Let H be a subgraph of G, homeomorphic to a Kuratowski graph, such that e is
in H. Let f be another edge of H such that there is a drawing DH of H with exactly one
crossing, which involves e and f . Extend DH to a drawing D of G. Let p be the number
of crossings in D. If p = 1 then e is already critical in G, so there is nothing to prove.
Thus we may assume that p > 2. Add p2− 1 parallel edges to each of e and f , add p4− 1
parallel edges to all edges in H \ {e, f}, and do not add any parallel edge to the other
edges of G. Let G′ denote the resulting graph.

We claim that cr(G′) 6 p5. To see this, consider the drawing D′ of G′ naturally
induced by D. It is easy to check that each crossing from D yields at most p4 crossings in
D′ (here we use that e and f are the only edges in H that cross each other in D). Thus
D′ has at most p · p4 = p5 crossings, and so cr(G′) 6 p5, as claimed.

On the other hand, it is clear that a drawing of G′ in which e and f do not cross each
other has at least p6 crossings. Since p6 > p5 > cr(G′), it follows that no such drawing
can be optimal. Therefore e and f cross each other in every optimal drawing of G′. This
immediately implies that e is critical in G′.

The immediate next step towards Conjecture 13 seems already difficult enough so as
to prompt us to state it:

Conjecture 15. Suppose that e, f are Kuratowski edges of a graph G. Then there exists
a graph H, obtained by multiplying edges of G, such that both e and f are crossing-critical
in H.
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The proof technique of Proposition 14 cannot be applied to settle this conjecture.
Indeed, if we were to apply the same ideas, in order to make e critical we would assign a
weight to the other edges of G, and to make f critical we would also assign a weight to
the other edges of G; the problem is that these edge assignments could (in principle) be
irreconcilably different.

Finally, let us remark that the proof technique of Theorem 2 can be applied to other
similar families of near-planar graphs. For instance, the vertices sufficiently far from u
and v need not have degree 3. Moreover, neither u nor v needs to have degree 3; this
requirement may be substituted by asking that there exist 3 vertices adjacent to u that
are incident with faces distinct from each other and distinct from Fu (respectively, Fv).
Actually, this last property is essential in our proof, and is the reason to require internal
3-connectivity instead of the weaker condition that G − {u, v} is the subdivision of a
3-connected graph and G− uv is subcubic.
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[5] P. Hliněný. New infinite families of almost-planar crossing-critical graphs. Elec-
tron. J. Combin., 15(1): Research Paper 102, 12 pp, 2008.
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