On Some Small Classical Ramsey Numbers

Geoffrey Exoo
Department of Mathematics and Computer Science
Indiana State University
Terre Haute, IN 47809
ge@cs.indstate.edu

Submitted: Feb 17, 2013; Accepted: Mar 13, 2013; Published: Mar 24, 2013

Mathematics Subject Classifications: 05C55,05D10

Abstract

This note is a report on a computer investigation of some small classical Ramsey numbers. We establish new lower bounds for the classical Ramsey numbers $R(3,11)$ and $R(4,8)$. In the first case, the bound is improved from 46 (a record that had stood for 46 years) to 47 ; and in the second case the bound is improved from 57 to 58.

The classical Ramsey number $R(s, t)$ is the smallest integer n such that in any twocoloring of the edges of K_{n} there is a monochromatic copy of K_{s} in the first color or a monochromatic copy of K_{t} in the second color. A comprehensive summary of the current state of the art can be found in the dynamic survey on Small Ramsey Numbers [10].

In this note we present constructions that improve the lower bounds for the Ramsey numbers $R(3,11)$ and $R(4,8)$, and then describe the the modification in our search algorithm that led to the improvement in the $R(3,11)$ bound. Listings for these colorings are given at the end of this paper, and can also be found at the authors web site [4].

$1 \quad \mathrm{R}(3,11)$

The best published bounds for $R(3,11)$ are $46 \leqslant R(3,11) \leqslant 50$. The lower bound of 46 was established 46 years ago [8], whereas the upper bound is very recent [7]. The graph that established the lower bound is the circle graph $45(1,3,5,12,19)$. In this note we present a graph which improves the lower bound by one.

Theorem 1. $R(3,11) \geqslant 47$.

Proof. The proof is given by the coloring of K_{46} which can be derived from Listing 1 at the end of the paper, wherein the adjacency list for the color one graph in a $(3,11)$-coloring of K_{46} is given.

In all, we found 143447 pairwise non-isomorphic (3,11)-colorings of K_{46}. Of these, 141829 have a trivial automorphism group, and 1618 have exactly one non-trivial automorphism. The number of edges in these graphs that are assigned color one ranges from 217 to 228 . Note that a 10-regular graph of order 46 has 230 edges. Adjacency matrices for several of these colorings can be found at the authors web site [4].

$2 \mathrm{R}(3,10)$

An effort was also made to improve the lower bound for $R(3,10)$. The current bounds in this case are $40 \leqslant R(3,10) \leqslant 42$. The lower bound was established in [1] and the upper bound was recently established in [7].

We were able to come tantilizingly close to a new lower bound, finding 810 pairwise non-isomorphic colorings of K_{40} with exactly one monochromatic triangle in color one and no monochromatic copies of K_{10} in color two.

In all we generated thousands of $(3,10)$-colorings of K_{39}. Using these colorings as a starting point, Jan Goedgebeur [6] has created a catalog of nearly $50000000(3,10)$ colorings of K_{39}.

$3 \quad \mathrm{R}(4,8)$

In [5], Fujita used the SAT solver miniSat to improve the lower bound on $R(4,8)$ from 56 to 57 . Using Fujita's graph as a starting point, we were able to improve the bound to 58 using the method outlined in [3].

Theorem 2. $R(4,8) \geqslant 58$.
Proof. The proof is given by the coloring of K_{57} which can be derived from listing 2, at the end of this note. This listing shows the adjacency list for the color one graph in a two coloring of K_{57}.

4 The Construction Algorithm

The method used to find our $R(3,11)$ colorings is similar to the method described in [3], with an important difference, which we now describe.

In general, the goal of the algorithm is to produce a (s, t)-coloring of K_{n}. One begins with a coloring obtained either randomly ${ }^{1}$ or from a known good coloring of a smaller

[^0]complete graph. Then each edge is examined, in random order, and counts are made of the number of K_{s} subgraphs in color one that would result if the edge were assigned color one, and of the number of K_{t} subgraphs that would result if the edge were assigned color two.

When dealing with diagonal Ramsey numbers (where $s=t$) one can simply compare the counts, choosing the better color most of the time, but choosing the other with a small probability (usually depending on the difference in the counts). This would be a typical implementation of simulated annealing [9].

For off-diagonal Ramsey numbers, there is additional issue. One needs to determine how much weight to assign to a K_{s} in color 1 as a opposed to a K_{t} in color 2. Empirical evidence suggests that the weights should be approximately inversely proportional to the $3 / 2$-power of the number of vertices in the complete subgraphs that one is trying to avoid. So in the case of $R(3,11)$, each monochromatic K_{3} in color one would count $(11 / 3)^{1.5} \approx 7$ times as much as a monochromatic K_{11} in color two. This is roughly the way subgraphs weights were assigned in [1], [2], and [3] to obtain new Ramsey bounds.

As with all randomized search methods, the essential problem here is how to avoid getting stuck in local minima. Typically this is done by occasionally picking the edge that produces the largest (weighted) subgraph count, instead of the smallest. In the algorithm that produced the $(3,11)$-coloring presented here, we added a second method. The relative weights of the two types of monochromatic subgraphs were changed at regular intervals. In this particular case, the weight of a monochromatic K_{11} in color two was fixed at 1, while the weight of a monochromatic K_{3} in color one was allowed to vary from 1 to 13 . Within this range the K_{3} weight was determined by a piecewise linear sawtooth function of time, except that when a new best coloring was achieved (measured by an unweighted subgraph count), the K_{3} weight returned to the minimum value (1).

5 Adjacency Lists

```
1 2 5 8 11 26 28 32 37 41
0 4 15 19 22 29 31 33 40 44
0 7 13 21 30 31 38 40 44
12 13 21 22 23 24 28 34 39 41
1 7 111 21 26 30 32 37 38 41
0}131316 21 31 34 36 38 45
7 8 111 13 15 23 25 28 41
2 4 6 12 22 24 27 29 33 34
0}66121218 24 27 30 38 39 40
12}1313141417 23 24 30 33 36 37
17}191920 21 23 24 32 33 34 35
04 6 12 22 31 35 40 42 44
3 7 8 9 11 15 19 20 25 45
2 3 5 6 9 19 20 26 32 35
9 19 21 22 26 32 34 38 45
1 6 12 26 32 34 35 37 42
```

```
5}177191922 32 33 40 41 43 44
9 10 16 26 28 29 31 39
8 26 28 29 31 33 37 44
1}10101213131416 16 30 36 37 42
10 12 13 224041424344
2 3 4 5 10 14 27 29 43
1 3 7 111 14 16 20 30 36 37
3 6 9 10 26 27 29 38 43 45
3 7 8 9 10 25 42 43 44 45
6 12 24 26 27 29 30 33 37 38
0 4 13 14 15 17 18 23 25 36
7 8 21 23 25 28 31 354244
0}30617181827 36 38 43 45
1 7 17 18 21 23 25 32 35 42
2 4 8 9 19 22 25 34 35 45
1 2 5 11117 18 27 32 41 43
0}4410101314151516 29 31 36
1779 10 16 18 25 39 42
3 5 7 10 14 15 30 40 43 44
10}11113151527 29 30 38 41 43
5 9 19 22 26 28 32 39 40 41
04 9 15 18 19 22 25 39 40
245 8 14 23 25 28 35
3 8 17 33 36 37 43 44 45
1 2 8 111 16 20 34 36 37 45
0 3 4 6 16 20 31 35 36
11 15 19 20 24 27 29 33
16}202123 24 24 31 34 35 39,
1}221111618 18 20 24 27 34 39
5}121214 23 24 28 30 39 40
```

Listing 1. The Color 1 Graph in a $(3,11)$-coloring of K_{46}.

```
2 3 5 6 6 10 11 12 19 22 23 25 26 36 37 42 43 45 46 50 56
3 4 6 7 11 12 13 19 23 24 25 26 27 37 38 43 44 46 47 50 53
0 4 5 7 8 12 13 14 24 25 27 28 38 39 44 45 47 53 56
```



```
1 2 6 7 9 10 14 15 16 26 27 29 30 40 41 42 46 47 51 54
0 2 3 7 8 10 11 16 17 27 28 30 31 41 42 43 47 54 55
0 1 3 4 8 9 11 12 17 18 28 29 31 32 42 43 44 53 55
1 2 4 5 9 10 12 13 18 29 30 32 33 43 44 45 52 53 54
2 3 5 6 6 10 111 13 14 20 30 31 33 34 44 45 46 50 52 54 56
3 4 6 6 7 11 12 13 14 15 20 21 31 32 34 35 45 46 47 50 53
0 4 5 7 8 12 13 15 16 21 22 32 33 35 36 46 47 49 53
0}11546889131416 17 22 23 33 34 36 37 47 49 50 55
```



```
1 2 7 8 9 10 11 15 16 18 24 25 35 36 38 39 48 49 51 52
2 3 4 8 9 11 12 16 17 19 20 25 26 36 37 39 40 49 52
344 9 10 12 13 17 18 19 20 21 26 27 37 38 40 41 51 52 53
4 5 10 111 12 13 14 18 21 22 27 28 38 39 41 42 52 53 56
5}6611121214151519 20 22 23 27 28 29 39 40 42 43 48 52
6 7 12 13 15 16 19 20 21 23 24 28 29 30 40 41 43 44 48
0}11141415 17 18 28 29 31 32 37 45 48 49 51 53 54 56
8 9 14 15 17 18 22 23 25 26 30 31 32 42 43 45 46 48 50
9}101015 16 18 23 24 26 27 31 32 33 43 44 46 47 50 52 56
0}10101116 17 20 24 25 27 28 32 33 34 44 45 47 52 55 56
```



```
1}221212131818 21 22 26 27 29 30 34 35 36 46 47 49 52 53 54
```



```
0}1134414151520 21 23 24 28 29 31 32 37 38 49 50 55,
1 2 4 4 5 15 16 17 21 22 24 25 29 30 32 33 38 39 50 54
2
3 4 6 7 7 17 18 19 23 24 26 27 31 32 34 35 40 41 51 52
4 5 7 8 18 20 24 25 27 28 32 33 35 366 41 42 49 51 52
5}6688919 20 21 25 26 28 29 33 34 36 37 42 43 49 52
6 7 9 10 19 20 21 22 26 27 29 30 34 35 37 38 43 44 49 56
7}
8 9 11 12 22 23 24 28 29 31 32 36 37 39 40 45 46 49 51
9}10101213 13 23 24 25 29 30 32 33 37 38 40 41 46 47 51 53
0}101011131314 24 25 30 31 33 34 38 39 40 41 42 47 54 56
0}11111 12 14 15 19 25 26 31 32 34 35 39 40 42 43 48
1}22121213151516 26 27 32 33 35 36 40 41 43 44 48 56
2 3 13 14 16 17 27 28 33 34 36 37 41 42 43 44 45 49 50 56
3 4 14 15 17 18 28 29 34 35 36 37 38 42 43 45 46 48 50 53
3}445151516 18 29 30 35 36 38 39 43 44 46 47 48 49 52 54
0 4 5 6 16 17 20 30 31 36 37 39 40 44 45 47 50 52 54
```



```
1 2 6 7 8 18 21 22 32 33 38 39 41 42 46 47 51 52 54
0}2234748941920 22 23 33 34 39 40 42 43 47 52 54 55,
0 1 3 4 8 9 10 20 21 23 24 34 35 40 41 43 44 51 55
1 2 4 5 9 10 11 21 22 24 25 35 36 41 42 44 45 49 51 56
3}12121317 18 19 20 33 37 38 40 41 49 50 54 55 56
10}11141314 19 24 25 26 30 31 32 33 34 39 41 47 48 50 51 53 55
0 1 8 9 11 12 20 21 26 27 28 39 40 42 43 48 49 51 53 54 56
4 12 13 15 19 29 30 34 35 43 44 46 47 49 50 54 55 56
7}8813141451616 17 21 22 24 25 29 30 31 41 42 44 45 5
1 2 6 7 9 10 15 16 19 23 24 35 40 49 50 52 54 55 56
4 5 7 8 19 24 25 27 28 36 41 42 44 45 48 50 51 53 55
3 5 6 111 12 22 23 25 26 45 46 48 49 51 53 54 56
0}22816191921 22 32 36 38 39 47 48 50 51 53 55
```

Listing 2. The Color 1 Graph in a (4, 8)-coloring of K_{57}.

References

[1] G. Exoo, On Two Classical Ramsey Numbers of the Form $R(3, n)$, SIAM J. Discrete Math, 2 (1989) 488-490.
[2] G. Exoo, Announcement: On the Ramsey Numbers $R(4,6), R(5,6)$, and $R(3,12)$, Ars Combinatoria, 35 (1993) 85.
[3] G. Exoo, On the Ramsey Number $R(4,6)$, Electronic Journal of Combinatorics, Electron. J. Comb. 19 \#P66, 2012.
[4] G. Exoo, Ramsey Numbers, http://ginger.indstate.edu/ge/RAMSEY
[5] H. Fujita, A new lower bound for the Ramsey number R(4,8), arXiv 1212.1328 (2012).
[6] J. Goedgebeur, Personal communication.
[7] J. Goedgebeur and S.P. Radziszowski, New computational upper bounds for Ramsey numbers $\mathrm{R}(3, \mathrm{k})$. arXiv 1210.5826 (2012), submitted.
[8] J.G. Kalbfleisch, Chromatic Graphs and Ramseys Theorem, Ph.D. Thesis, University of Waterloo, January 1966.
[9] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by Simulated Annealing, Science 220 (1983) 671-680.
[10] S. P. Radziszowski, Small Ramsey Numbers, Electron. J. Combin., Dynamic Survey \#DS1, 2011. (http://www.combinatorics.org/Surveys)

[^0]: ${ }^{1}$ To be more precise, we might replace random by pseudo-random.

