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Abstract

For a graph G and a positive integer k, the graphical Stirling number S(G, k) is
the number of partitions of the vertex set of G into k non-empty independent sets.
Equivalently it is the number of proper colorings of G that use exactly k colors,
with two colorings identified if they differ only on the names of the colors. If G is
the empty graph on n vertices then S(G, k) reduces to S(n, k), the familiar Stirling
number of the second kind.

In this note we first consider Stirling numbers of forests. We show that if

(F
c(n)
n )n>0 is any sequence of forests with F

c(n)
n having n vertices and c(n) =

o(
√
n/ log n) components, and if X

c(n)
n is a random variable that takes value k

with probability proportional to S(F
c(n)
n , k) (that is, X

c(n)
n is the number of classes

in a uniformly chosen partition of F
c(n)
n into non-empty independent sets), then

X
c(n)
n is asymptotically normal, meaning that suitably normalized it tends in distri-

bution to the standard normal. This generalizes a seminal result of Harper on the
ordinary Stirling numbers. Along the way we give recurrences for calculating the
generating functions of the sequences (S(F c

n, k))k>0, show that these functions have
all real zeroes, and exhibit three different interlacing patterns between the zeroes of
pairs of consecutive generating functions.

We next consider Stirling numbers of cycles. We establish asymptotic normality
for the number of classes in a uniformly chosen partition of Cn (the cycle on n
vertices) into non-empty independent sets. We give a recurrence for calculating the
generating function of the sequence (S(Cn, k))k>0, and use this to give a direct proof
of a log-concavity result that had previously only been arrived at in a very indirect
way.
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1 Introduction

Let G = (V,E) be a (simple, finite, loopless) graph on n vertices. An independent set in
G is a subset of the vertices, no two of which are adjacent. For each integer k we set

S(G, k) = |{partitions of V into k non-empty independent sets}| .

We may interpret S(G, k) as the number of proper k-colorings of G that use all k colors,
with two colorings identified if they are identical up to the names of the colors. As far
as we can discover, this parameter was first explicitly considered by Tomescu [18]. When
G = En, the graph with no edges, S(G, k) is just the Stirling number of the second kind
S(n, k), the number of partitions of a set of size n into exactly k non-empty classes. It
is for this reason that in [8], Duncan and Peele refer to S(G, k) as a graphical Stirling
number. Motivated by the connection to colorings, Goldman, Joichi and White [11] refer
to the sequence (S(G, k))k>0 as the chromatic vector of G.

Recall that associated with each G there is a polynomial χG(x) of degree n, the chro-
matic polynomial of G, whose value at each positive integer x is the number of proper x-
colorings of G, that is, the number of functions f : V → {1, . . . , x} satisfying f(u) 6= f(v)
whenever uv ∈ E. The chromatic polynomial of G determines the sequence (S(G, k))k>0,
and vice-versa. On the one hand inclusion-exclusion gives

S(G, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
χG(k − i), (1)

while on the other hand
χG(x) =

∑
k>0

S(G, k)x(k)

where x(k) = x(x− 1) . . . (x− k + 1). Indeed, given a palette of x colors, for each k there
are S(G, k) ways to partition the vertex set into k non-empty color classes, and x(k) ways
to assign colors the classes.

Note that S(G, k) = 0 whenever k < χ(G) (where χ(G) is the chromatic number of
G, the least positive integer x for which χG(x) > 0) and also whenever k > n. Also,
S(G, k) is non-zero at k = χ(G) and takes value 1 at k = n. It follows that the generating
function of the sequence (S(G, k))k>0,

σ(G, x) =
∑
k>0

S(G, k)xk

is a monic polynomial of degree n, and has a zero with multiplicity χ(G) at 0. We refer
to σ(G, x) as the Stirling polynomial of G.
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The Stirling polynomial (arrived at via an alternate definition) was first considered by
Korfhage [13], who established some basic properties and calculated it explicitly for some
particular families of graphs (including forests). It was then extensively studied by Brenti
[2] and Brenti, Royle and Wagner [4], who established large classes of graphs (including
cycles) for which the Stirling polynomial has all real zeroes. Graphical Stirling numbers
(in various guises) for some particular families of graphs have also been considered by
Farrell and Whitehead [9], Duncan and Peele [8], Mohr and Porter [15], Goldman, Joichi
and White [11], and Munagi [16].

There are some important consequences of the generating function of a sequence
(ak)nk=0 of non-negative terms having all real zeroes. A theorem of Newton (see for example
[17, page 504]) implies that such a sequence satisfies the ultra log-concavity relation(

ak(
n
k

))2

>

(
ak−1(

n
k−1

))( ak+1(
n

k+1

))

for k = 1, . . . , n− 1, which in turn implies the usual log-concavity relation a2k > ak−1ak+1.
If the sequence has no internal zeros (i.e., no k with ak−1 6= 0, ak = 0 and ak+1 6= 0)
then log-concavity in turn implies that the sequence is unimodal, that is, that there is
0 6 k 6 n with a0 6 . . . 6 ak > . . . > an.

Another consequence of real zeroes is that if X is a random variable supported on
{0, . . . , n} that takes value k with probability proportional to ak, then X may be realized
as the sum of n independent Bernoulli random variables, leading to the possibility of a
central limit theorem and asymptotic normality.

Definition 1. A sequence (Xn)n>c is said to be asymptotically normal if, for each x ∈ R,
we have

lim
n→∞

Pr

(
Xn − E(Xn)√

Var(Xn)
6 x

)
=

1√
2π

∫ x

−∞
e−x

2/2 dx,

with the convergence uniform in x.

In other words, a sequence is asymptotically normal if, suitably normalized, it tends
in distribution to the standard normal. Note that if ak counts the number of members
of size k of some family, then X (as discussed above) measures the size of a uniformly
selected member of the family.

A seminal result in this area is due to Harper [12]. He proved that for each n, the
generating function of the sequence (S(n, k))k>0 of the Stirling numbers of the second
kind has all real zeroes, and used this to prove that the sequence of random variables
(XStirling

n )n>0, where XStirling
n is the number of classes in a uniformly chosen partition of a

set of size n into non-empty classes, is asymptotically normal. The first aim of this note
is to obtain an analog of Harper’s result (and, as it turns out, a generalization) for the
Stirling numbers of forests. In what follows Bn =

∑n
k=0 S(n, k) is the nth Bell number,

and W (n) = log n − log log n + O(1) is the Lambert W function, the unique positive
solution to W (n)eW (n) = n.
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Theorem 2. Let (F
c(n)
n )n>0 be a sequence of forests, with F

c(n)
n having n vertices and

c(n) components. Let X
c(n)
n be the number of classes in a uniformly chosen partition of

the vertex set of F
c(n)
n into non-empty independent sets. There is a constant C > 0 such

that if c(n) < C
√
n/ log n for all sufficiently large n, then the sequence (X

c(n)
n )n>0 is

asymptotically normal, with

E(Xc(n)
n ) =

∑
i>0

(
c(n)−1

i

)
Bn−i∑

i>0

(
c(n)−1

i

)
Bn−1−i

(2)

=
n

W (n)
+O

(
1

log n

)
, (3)

and

Var(Xc(n)
n ) =

∑
i>0

(
c(n)−1

i

)
Bn+1−i∑

i>0

(
c(n)−1

i

)
Bn−1−i

−

( ∑
i>0

(
c(n)−1

i

)
Bn−i∑

i>0

(
c(n)−1

i

)
Bn−1−i

)2

− 1 (4)

=
n

W (n)(W (n) + 1)
+O

(
c(n)2

log n

)
. (5)

The bound on c(n) in Theorem 2 is needed to ensure that the error term in (5) is
smaller than the leading term. We believe that this condition is not necessary.

Conjecture 3. The sequence (X
c(n)
n )n>0 is asymptotically normal for all 1 6 c(n) 6 n.

The denominator of (2) turns out to be
∑

k>0 S(F
c(n)
n , k), the total number of partitions

of F
c(n)
n into non-empty independent sets. For general G, the quantity

∑
k>0 S(G, k) is

referred to in [8] as the Bell number of G. For G = En, the Bell number is just the
ordinary Bell number Bn.

We begin the proof of Theorem 2 by deriving an explicit expression for S(F c
n, k) in

terms of ordinary Stirling numbers. The same expression was obtain by Korfhage [13]
using induction; our direct derivation is based on the fact that the chromatic polynomial
of a forest depends only on how many vertices and components it has. This expression
allows us to obtain a number of recurrences for σ(F c

n, x), which allow us to establish
that σ(F c

n, x) has all real zeros for all n and c, (a result already implicit in [2]) and that
moreover the zeroes of the σ(F c

n, x)’s exhibit a number of nice interlacing patterns, none
of which have been previously observed.

Definition 4. Given two reals polynomials f and g, we say that f ≺ g if all of the
following conditions hold:

1. the zeroes of both f and g are all real and non-positive, and all negative zeroes of
both have multiplicity one;

2. the number of negative zeroes of g is either the same or one greater than the number
of negative zeroes of f ; and
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3. if x1, . . . , xm are the negative zeroes of g and y1, . . . , yn are the negative zeroes of f ,
both written in decreasing order, then

x1 > y1 > x2 > y2 > . . . .

Note that this is not the same as saying that the roots of f and g interlace in the
normal sense; we introduce the notation f ≺ g to deal with the fact that most of the
polynomials we will encounter have multiple zeroes at 0.

Theorem 5. Fix c > 1 and n > c. We have the following interlacing relations between
the zeroes of the σ(F c

n, x)’s:

1. σ(F c
c+1, x) ≺ σ(F c

c , x),

2. σ(F c
n, x) ≺ σ(F c

n+1, x) for all n > c+ 1,

3. σ(F c
n, x) ≺ σ(F c+1

n+1, x),

4. σ(F c
c+1, x) ≺ σ(F c+1

c+1 , x), and

5. σ(F c+1
n+1, x) ≺ σ(F c

n+1, x) for all n > c+ 1.

σ(F 1
1 , x)
↓ ↖

σ(F 1
2 , x) ← σ(F 2

2 , x)
↑ ↖ ↓ ↖

σ(F 1
3 , x) → σ(F 2

3 , x) ← σ(F 3
3 , x)

↑ ↖ ↑ ↖ ↓ ↖
σ(F 1

4 , x) → σ(F 2
4 , x) → σ(F 3

4 , x) ← σ(F 4
4 , x)

The interlacing patterns between the σ(F c
n, x)′s.

An arrow from P to Q (with P at the head) indicates that P ≺ Q.

We prove Theorem 5 in Section 2, where we also derive (2) and (4). Known asymptotic
estimates for Bell numbers, together with a general theory of asymptotic normality (which
we briefly discuss in Section 4), then allows us to complete the proof of Theorem 2. The
details are in Section 5.

The second aim of this note is to obtain an analog of Harper’s result for the Stirling
numbers of cycles.
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Theorem 6. Let Xcycle
n be the number of classes in a uniformly chosen partition of the

vertex set of the cycle Cn on n vertices into non-empty independent sets. The sequence
(Xcycle

n )n>0 is asymptotically normal, with

E(Xcycle
n ) =

∑
i>0(−1)iBn−i∑

i>0(−1)iBn−1−i
(6)

=
n

W (n)
+O

(
1

log n

)
and

Var(Xn) =

∑
i>0(−1)iBn+1−i∑
i>0(−1)iBn−1−i

−
( ∑

i>0(−1)iBn−i∑
i>0(−1)iBn−1−i

)2

− 1 (7)

=
n

W (n)(W (n) + 1)
+O

(
1

log n

)
.

In the course of the proof of Theorem 6 we will see that the Bell number of the cycle
Cn is

∑
i>0(−1)iBn−1−i (as previously observed in [8]). This expression also occurs in [7],

where it shown to be the number of partitions of a set of size n into non-empty classes
each of size at least 2. One of the main concerns of [7] is the quantity S?(n, k), the number
of such partitions with exactly k classes, and it is shown that the random variable taking
value k with probability proportional to S?(n, k) is asymptotically normal. We do not
see any connection, though, between this question and the question of graphical Stirling
numbers of cycles, other than the coincidence between the Bell number of Cn and the
total number of singleton-free partitions of [n].

As with Theorem 2, we begin by deriving a recurrence for σ(Cn, x). Ideally we would
like to use this recurrence to give a direct proof of the fact that for each n > 3, σ(Cn, x)
has all real zeroes. This was already established in [4] (after having been conjectured by
Brenti in [2]). The methods of [4] are circuitous, involving results of Wagner on partition
polynomials [19], a detailed study of an operator that converts the Stirling polynomial
into the chromatic polynomial, and facts about the locations in the complex plane of the
zeroes of the chromatic polynomial of Cn. Unfortunately, we cannot see a direct proof.
We can, however, use our recurrence for σ(Cn, x) to give a very direct proof of a strong
consequence of real zeroes, namely ultra log-concavity of the sequence of coefficients.

Theorem 7. For each n > 3 and k satisfying 1 6 k 6 n− 1, we have(
S(Cn, k)(

n
k

) )2

>

(
S(Cn, k − 1)(

n
k−1

) )(
S(Cn, k + 1)(

n
k+1

) )
.

Moreover for k > χ(Cn) the inequalities above are strict.

We prove this (together with (6) and (7)) in Section 3, while the remainder of the
proof of Theorem 6 is in Section 5.
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2 Forests

Let F c
n be a forest on n vertices with c components (throughout this section we will

assume that c > 1 and that n > c). It is known that σ(F c
n, x) has all real zeroes; this

follows from a general result of Brenti [2, Theorem 3.20], together with Harper’s result
[12] that σ(En, x) has all real roots. In this section we derive an explicit expression for
S(F c

n, k), which allows us to obtain a number of recurrence relations for σ(F c
n, x). These

recurrences allow us to give a direct proof that σ(F c
n, x) has all real zeroes, and moreover

allows us to observe patterns between the zeroes of the Stirling polynomials of different
forests (Theorem 5). Our explicit expression for S(F c

n, k) also allows us to compute the
mean and variance of Xc

n (the random variable defined in Theorem 2), a key step in the
proof of Theorem 2.

The chromatic polynomial of F c
n depends only on n and c, and not on F c

n itself (specif-
ically, if the components of F c

n have a1, . . . , ac vertices then

χF c
n
(x) =

c∏
i=1

(
x(x− 1)ai−1

)
= xc(x− 1)n−c),

and so S(F c
n, k) also depends only on n and c. This allows us to chose a convenient forest

to facilitate the calculation of S(F c
n, k). Let F c

n consist of a star on n − c − 1 vertices
together with c− 1 isolated vertices. We have

S(F c
n, k) =

∑
i>0

(
c− 1

i

)
S(n− 1− i, k − 1). (8)

Indeed, in a partition counted by S(F c
n, k), the vertex at the center of the star cannot be

in the same class as any of the leaves of the star, but there are no other restrictions. We
get a valid partition of the vertex set into k classes by first choosing an arbitrary subset
of size i (i ∈ {0, . . . , c−1}) of the isolated vertices to be in the same class as the center of
the star, and then choosing an arbitrary partition of the remaining n− 1− i vertices into
k− 1 classes. Note that for c = 1 (the case of trees), the right-hand side of (8) reduces to
S(n− 1, k − 1), a fact observed in [8].

By (8) we have

σ(F c
n, x) =

∑
k>0

xk
∑
i>0

(
c− 1

i

)
S(n− 1− i, k − 1)

= x
∑
i>0

(
c− 1

i

)
Sn−1−i(x)

where Sn(x) =
∑

k S(n, k)xk is the generating function of the ordinary Stirling numbers
of the second kind. This relation was first observed by Korfhage [13], where an inductive
proof was given.

It is well known that the polynomials Sn(x) satisfy the recurrence

Sn(x) = (x+ xD)Sn−1(x) (9)
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for n > 2 (where D is differentiation with respect to x), with the initial condition S1(x) =
x. It follows by linearity that the polynomials σ(F c

n, x) satisfy

σ(F c
n+1, x)

x
= (x+ xD)

(
σ(F c

n, x)

x

)
(10)

for all n > c. The initial condition for this recurrence is obtained by considering any
forest F c

c on c vertices with c components. There is only one such, the empty graph Ec

on c vertices, and so σ(F c
c , x) = Sc(x).

We are now in a position to establish that σ(F c
n, x) has all real zeroes, and moreover

that σ(F c
c+1, x) ≺ σ(F c

c , x) and σ(F c
n, x) ≺ σ(F c

n+1, x) for all n > c + 1 (items 1 and 2 of
Theorem 5). We begin with the first of these statements.

From [12] we know that σ(F c
c , x)/x is a polynomial of degree c − 1 which is positive

at 0 and whose roots r1, . . . , rc−1 are all real and satisfy 0 > r1 > . . . > rc−1. Since
χ(F c

c+1, x) = 2, we have that σ(F c
c+1, x) has a zero of multiplicity 2 at 0. We now consider

the sign of σ(F c
c+1, x) at x = ri for each i. By (10) we have

σ(F c
c+1, ri) = riσ(F c

c , ri) + r2iD

(
σ(F c

c , x)

x

)∣∣∣∣
x=ri

.

The first term on the right-hand side above is 0, and the second has the same sign as
that of the derivative of σ(F c

c , x)/x at x = ri. If follows that for odd i, σ(F c
c+1, ri) is

positive, while for even i it is negative. We conclude that σ(F c
c+1, x) has zeroes between

ri+1 and ri for each i ∈ {1, . . . , c − 2}. If c is odd then limx→−∞ σ(F c
c+1, x) = ∞ and

so, since σ(F c
c+1, rc−1) is negative, there is a zero of σ(F c

c+1, x) below rc−1, and the same
conclusion can be reached by similar reasoning if c is even. This accounts for c+ 1 zeroes
of σ(F c

c+1, x), and since it is a polynomial of degree c + 1 there are no more. It follows
that σ(F c

c+1, x) ≺ σ(F c
c , x).

For item 2 of Theorem 5 we prove two statements by a parallel induction on n. First,
for each n > c + 1, the polynomial σ(F c

n, x) has all real non-positive zeroes, has a zero
of multiplicity 2 at 0, and otherwise has distinct zeroes. Second, for n > c + 1, we
have σ(F c

n, x) ≺ σ(F c
n+1, x). The base case (n = c + 1) for the first statement has been

established in the previous paragraph. For each n > c + 1 we simultaneously establish
the second statement for n and the first for n+ 1 using an argument very similar to that
presented in the previous paragraph, the details of which we leave to the reader.

The recurrence (10) relates the Stirling polynomials of forests with differing numbers
of vertices on the same number of components. There is also a recurrence relating the
Stirling polynomials forests on the same number of vertices with different numbers of
components, namely

σ(F c+1
n+1, x) = σ(F c

n+1, x) + σ(F c
n, x). (11)

To see this, note that

S(F c
n, k) =

∑
i>0

(
c− 1

i

)
S(n− 1− i, k − 1) =

∑
i>0

(
c− 1

i− 1

)
S(n− i, k − 1)
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and so, using Pascal’s identity,

S(F c
n+1, k) + S(F c

n, k) =
∑
i>0

((
c− 1

i− 1

)
+

(
c− 1

i

))
S(n− i, k − 1)

=
∑
i>0

(
c

i

)
S(n− i, k − 1)

= S(F c+1
n+1, k).

Using (11) together with items 1 and 2 of Theorem 5, we can easily establish items 3, 4
and 5 of the theorem. We begin by considering (11) when n = c. If r1 > r2 . . . > rc−1 are
the negative zeroes of σ(F c

c , x) and s1 > s2 > . . . > sc−1 the negative zeroes of σ(F c
c+1, x),

we know that
0 > r1 > s1 > . . . > rc−1 > sc−1,

and from (11) we get that σ(F c+1
c+1 , x) is positive at x = ri and x = si for all odd i, and

negative at x = ri and x = si for all even i. Since σ(F c+1
c+1 , x) has a zero of multiplicity 1 at 0

and has positive derivative at 0, it follows that σ(F c+1
c+1 , x) must have a zero between r1 and

0, as well as between ri+1 and si for i ∈ {1, . . . , c−2}. By considering limx→−∞ σ(F c+1
c+1 , x)

we also find that there is a zero below sc−1. This accounts for all c + 1 zeroes, and we
conclude that σ(F c

c+1, x) ≺ σ(F c+1
c+1 , x) and σ(F c

c , x) ≺ σ(F c+1
c+1 , x). The verification of all

the remaining statements in Theorem 5 is very similar, and we leave the details to the
reader.

We now derive expressions for the mean and variance of Xc
n, the number of classes

in a uniformly chosen partition of F c
n into non-empty independent sets, in terms of Bell

numbers. We begin by noting that

E(Xc
n) =

∑
k>0 kS(F c

n, k)∑
k>0 S(F c

n, k)
. (12)

Using (8) we see that the denominator of (12) is
∑

i>0

(
c−1
i

)
Bn−1−i (this is the Bell number

of F c
n, the total number of partitions into non-empty independent sets). Using the recur-

rence S(n+ 1, k) = kS(n, k) +S(n, k− 1) (valid for (n, k) 6= (0, 0), with initial conditions
S(0, 0) = 1 and S(n, 0) = S(0, k) = 0 for n, k > 0), we get

kS(n− 1− i, k − 1) = S(n− i, k − 1)− S(n− 1− i, k − 2) + S(n− 1− i, k − 1),

and so, again using (8), the numerator of (12) is
∑

i>0

(
c−1
i

)
Bn−i. This gives (2).

The basic recurrence for the Stirling numbers also gives

k2S(n− 1− i, k − 1) = S(n+ 1− i, k − 1)− 2S(n− i, k − 2)

+ 2S(n− i, k − 1) + S(n− 1− i, k − 3)

− 3S(n− 1− i, k − 2) + S(n− 1− i, k − 1).
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From this it follows that∑
i>0

(
c− 1

i

)∑
k>0

k2S(n− 1− i, k − 1) =
∑
i>0

(
c− 1

i

)
(Bn+1−i −Bn−1−i)

and so

E((Xc
n)2) =

∑
i>0

(
c−1
i

)
(Bn+1−i −Bn−1−i)∑

i>0

(
c−1
i

)
Bn−1−i

,

from which (4) easily follows.

3 Cycles

We begin this section by deriving a recurrence for S(Cn, k) that will allow us to compute
the mean and variance of the number of colors in a randomly chosen coloring of the cycle,
and which will also be the key to Theorem 7.

Let Pn be the path on n vertices. The graphical Stirling numbers S(Cn, k) satisfy the
recurrence

S(Cn, k) = S(n− 1, k − 1)− S(Cn−1, k) = S(Pn, k)− S(Cn−1, k) (13)

valid for all n > 4 and all k, with initial conditions S(C3, 3) = 1 and S(C3, k) = 0 for k 6= 3.
To see this recurrence, note that as a special case of (10) we have S(n−1, k−1) = S(Pn, k).
Among the partitions of Pn into k non-empty independent sets, those in which the first
and last vertices of Pn fall into different classes are in one-to-one correspondence with
partitions of the vertex set of Cn into k non-empty independent sets (so there are S(Cn, k)
such). The remaining partitions (in which the first and last vertices of Pn fall into the
same class) are in one-to-one correspondence with partitions of the vertex set of Cn−1 into
k non-empty independent sets (so there are S(Cn−1, k) such).

From (13) we get the polynomial recurrences

σ(Cn, x) = xSn−1(x)− σ(Cn−1, x) (14)

= σ(Pn, x)− σ(Cn−1, x)

for n > 4, with initial condition σ(C3, x) = x3. Iterating (14) we find that

σ(Cn, x) = x
n−1∑
i=1

(−1)i+1Sn−i(x)

=
∑
k>0

xk
∑
i>0

(−1)iS(n− 1− i, k − 1)

a formula that is valid for all n > 2 if we interpret C2 to be a single edge. Recalling (9),
we also have the recurrence

σ(Cn, x) = x

(
(x+ xD)

(
σ(Cn−1, x)

x

))
+ (−1)nx2
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for n > 3, with initial condition σ(C2, x) = x2.
From here we see no way of obtaining a direct proof that σ(Cn, x) has all real zeroes, the

problem being that although the operator x(x+xD)(1/x), when applied to a polynomial,
preserves the property of having real zeroes, we cannot say the same with the addition
of the (−1)nx2 term. However, we do easily obtain a slightly weaker statement, the
log-concavity of the sequence (S(Cn, k)/

(
n
k

)
)nk=0 (Theorem 7). Our strategy is to show

that the x(x + xD)(1/x) operator preserves ultra log-concavity, and then to deal with
the (−1)nx2 term by observing that it only impacts a bounded number of the ultra log-
concavity relations, which can be dealt with by hand using our knowledge of the chromatic
polynomial of the cycle.

Let P (x) =
∑n

k=2 akx
k satisfy n > 3 and ak > 0 for each 3 6 k 6 n. We begin by

observing that if P (x) is ultra log-concave then so too is Q(x) = x(x + xD)(1/x)P (x),
and that moreover for each k > 3 (or k > 2 if a2 > 0) the ultra log-concavity inequalities
for Q(x) are all strict. To see this, note that we have

Q(x) = a2x
2 +

(
n∑

k=3

(ak−1 + (k − 1)ak)xk

)
+ anx

n+1.

To show ultra log-concavity of Q(x) with strict inequalities for k > 3 (or k > 2 in the
case a2 > 0), we need to establish the three relations(

a2 + 2a3(
n+1
3

) )2

>

(
a2(
n+1
2

))(a3 + 3a4(
n+1
4

) )
, (15)

(
an−1 + (n− 1)an(

n+1
n

) )2

>

(
an(
n+1
n+1

))(an−2 + (n− 2)an−1(
n+1
n−1

) )
, (16)

and, for k = 4, . . . , n− 1,(
ak−1 + (k − 1)ak(

n+1
k

) )2

>

(
ak−2 + (k − 2)ak−1(

n+1
k−1

) )(
ak + kak+1(

n+1
k+1

) )
. (17)

After some algebra, (15) is seen to be implied by (although not equivalent to) a23/(n −
1) > a2a4/(n − 2), which for n > 3 easily follows from

(
a3/
(
n
3

))2
>
(
a2/
(
n
2

)) (
a4/
(
n
4

))
, a

consequence of the ultra log-concavity of P (x). Similarly (16) is implied by a2n−1/(n+1) >

2an−2an/n, a consequence of
(
an−1/

(
n

n−1

))2
>
(
an−2/

(
n

n−2

)) (
an/
(
n
n

))
. This leaves (17),

which certainly holds if each of(
ak−1(
n+1
k

))2

>

(
ak−2(
n+1
k−1

))( ak(
n+1
k+1

)) , (18)

(k − 1)2

(
ak(
n+1
k

))2

> k(k − 2)

(
ak−1(
n+1
k−1

))( ak+1(
n+1
k+1

)) , (19)
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and

2(k − 1)

(
ak−1(
n+1
k

))( ak(
n+1
k

))− (k − 2)

(
ak−1(
n+1
k−1

))( ak(
n+1
k+1

)) > k

(
ak−2(
n+1
k−1

))( ak+1(
n+1
k+1

)) (20)

hold. From
(
ak−1/

(
n

k−1

))2
>
(
ak−2/

(
n

k−2

)) (
ak/
(
n
k

))
we get (18) (after some algebra it

reduces to k2 > k2 − 1), and from
(
ak/
(
n
k

))2
>
(
ak−1/

(
n

k−1

)) (
ak+1/

(
n

k+1

))
we get (19) (it

reduces to (k − 1)2(n − k + 1)2 > ((k − 1)2 − 1)((n − k + 1)2 − 1)). Finally (20) follows
(after some algebra) for all k in the given range (and more generally for n > k − 2) from
another consequence of the ultra log-concavity of P (x), namely

(
ak−1/

(
n

k−1

)) (
ak/
(
n
k

))
>(

ak−2/
(

n
k−2

)) (
ak+1/

(
n

k+1

))
.

We now prove Theorem 7 by induction on n. The base case n = 3 is trivial. If
n > 3 is odd, then (by the inductive hypothesis and the observation of the previous
paragraphs), x(x + xD)(σ(Cn−1, x)/x) is ultra log-concave with strict inequalities for
k > 2, and, since Cn−1 is connected and bipartite, the coefficient of x2 is 1. It easily
follows that σ(Cn, x) = x(x + xD)(σ(Cn−1, x)/x) − x2 is ultra log-concave with strict
inequalities for k > 3. For even n > 3, x(x+ xD)(σ(Cn−1, x)/x) is also ultra log-concave
with strict inequalities for k > 3, but, since Cn−1 is not bipartite, the coefficient of x2 is
0. To conclude ultra log-concavity of σ(Cn, x) = x(x+xD)(σ(Cn−1, x)/x)+x2 with strict
inequalities for k > 3 we also need to show that(

S(Cn, 3)(
n
3

) )2

>
S(Cn, 4)(

n
4

)(
n
2

) . (21)

Using χCn(x) = (−1)n(x− 1) + (x− 1)n and (1) we get

S(Cn, 3) =
χCn(3)− 3χCn(2)

3!
=

2n − (−1)n − 3

6

and

S(Cn, 4) =
χCn(4)− 4χCn(3) + 6χCn(2)

4!
=

3n − 4 · 2n + (−1)n + 6

24

from which (21) follows for n > 4.

Our recurrence for S(Cn, k) also allows us to compute the expectation and variance of
Xcycle

n , the number of classes in a uniformly chosen partition of the vertex set of Cn into
non-empty independent sets. Iterating (13) we get

S(Cn, k) =
∑
i>0

(−1)iS(n− 1− i, k − 1) (22)

and so

E(Xcycle
n ) =

∑
i>0(−1)i

∑
k>0 kS(n− 1− i, k − 1)∑

i>0(−1)i
∑

k>0 S(n− 1− i, k − 1)
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and

E((Xcycle
n )2) =

∑
i>0(−1)i

∑
k>0 k

2S(n− 1− i, k − 1)∑
i>0(−1)i

∑
k>0 S(n− 1− i, k − 1)

.

Calculations similar to those made in Section 2 to verify (2) and (4) can now be made, and
easily yield (6) and (7). We also note that using (22) we can calculate the Bell number of
Cn (the number of partitions into non-empty independent sets) to be

∑
i>0(−1)iBn−1−i,

as mentioned in the introduction.

4 Asymptotic normality

The connection between real zeros and asymptotic normality was first made by Lévy
[14], and rediscovered by Harper [12], who was considering the specific problem of the
Stirling numbers of the second kind. It has since been presented in a more general form
by numerous authors, including Bender [3], Canfield [5] and Godsil [10]. The following
general result is from [3].

Theorem 8. Let (Cn)n>0 be a sequence of sets, and let each Cn come with a partition
Cn = ∪nk=0Ckn. Set |Cn| = cn and |Ckn| = ckn. Suppose that for each n the polynomial
Pn(x) =

∑n
k=0 c

k
nx

k has all real zeroes. Let Xn be the upper index of a uniformly chosen
element ω of Cn (that is, Xn(ω) = k if and only if ω ∈ Ckn). If Var(Xn)→∞ as n→∞
then (Xn)n>0 is asymptotically normal. Moreover, we have the local limit theorem

lim
n→∞

sup
x∈R

∣∣∣∣√Var(Xn) Pr
(
Xn =

[
E(Xn) + x

√
Var(Xn)

])
− 1√

2π
e−x

2/2

∣∣∣∣ = 0.

The advantage of a local limit theorem is that it provides quantitative information
about the ckn’s that asymptotical normality does not; see for example [3], [5] or [7] for
details.

For completeness we provide a short proof of the asymptotic normality part of Theorem
8 that gives explicit information about the rate of convergence. The probability generating
function of Xn is Φn(x) = Pn(x)/Pn(1). Since Φn(x) has all real zeroes and all non-
negative coefficients, we may factor it as

Φn(x) =
n∏

i=1

(
λi

1 + λi
+

x

1 + λi

)
with each λi non-negative. It follows that we may write

Xn =
n∑

i=0

X(i)
n

where the X
(i)
n ’s are independent, and each X

(i)
n takes value 0 with probability λi/(1 +λi)

and value 1 with probability 1/(1 + λi), and so

Xn − E(Xn) =
n∑

i=1

Yi
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where the Yi’s are a collection of independent, mean 0 random variables, with specifically
Yi taking value −1/(1 + λi) with probability λi/(1 + λi) and value λi/(1 + λi) with
probability 1/(1 + λi). Since Yi only takes values between −1 and 1, we have E(|Yi|3) 6
E(Y 2

i ).
The Berry-Esseen theorem [1] now says that there is an absolute constant C > 0 such

that for all x ∈ R we have∣∣∣∣∣Pr

( ∑n
i=1 Yi√

Var (
∑n

i=1 Yi)
6 x

)
− 1√

2π

∫ x

−∞
e−x

2/2 dx

∣∣∣∣∣ 6 C√
Var(Xn)

,

from which asymptotic normality follows.

5 Proofs of Theorems 2 and 6

We begin by establishing (3) and (5). We need two preliminary estimates involving Bell
numbers. The first is due to Canfield and Harper [6]. We have

Bn−1

Bn

=
W (n)

n

(
1 +O

(
1

n

))
=
W (n)

n
+O

(
log n

n2

)
(23)

(where recall W (n) = log n − log log n + O(1) is the Lambert W function, the unique
positive solution to W (n)eW (n) = n). The second is due to Harper [12]. We have

Bn+2

Bn

−
(
Bn+1

Bn

)2

=
n

W (n)(W (n) + 1)
+O

(
1

log2 n

)
.

(Harper gives an error term of o(1); see for example [7] for the more refined error.)
We need a slight strengthening of (23). For k = o(n), (23) gives

Bn−k−1

Bn−k
=
W (n− k)

n− k
+O

(
log(n− k)

(n− k)2

)
=
W (n)

n
+O

(
k log n

n2

)
, (24)

with the same bound for Bn+k−1/Bn+k. Here we have used the mean value theorem to
estimate W (n)−W (n−k), noting that W ′(x) = W (x)/(x(1+W (x))). A similar argument
gives

Bn+1

Bn−1
−
(

Bn

Bn−1

)2

=
n

W (n)(W (n) + 1)
+O

(
1

log2 n

)
. (25)

From (24) we get that for m ∈ {n− 1, n, n+ 1} we have∑
i>0

(
c− 1

i

)
Bm−i = Bm

(
1 +

W (n)

n
+O

(
c log n

n2

))c

= Bm

(
1 +

W (n)

n

)(
1 +O

(
c2 log n

n2

))
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(the second equality valid for c = o(n/
√

log n)).
It now immediately follows that E(Xc

n) = (n/W (n))(1 + O(1/n)) (recall that we are
in the range c = O(

√
n/ log n)). It also follows that∑c−1

i=0

(
c−1
i

)
Bn+1−i∑c−1

i=0

(
c−1
i

)
Bn−1−i

−

( ∑c−1
i=0

(
c−1
i

)
Bn−i∑c−1

i=0

(
c−1
i

)
Bn−1−i

)2

=
Bn+1

Bn−1
−
(

Bn

Bn−1

)2

+O

(
c2

log n

)
=

n

W (n)(W (n) + 1)
+O

(
c2

log n

)
(here using (24) and (25)). As long as c < C

√
n/ log n for some sufficiently small C > 0,

we have Var(Xn) = ω(1), and so we complete the proof of Theorem 2 by appealing to
Theorem 8.

We now turn to Theorem 6. For each k ∈ {−1, 0, 1} we use (24) to obtain∑
i>0

(−1)iBn+k−i = Bn+k

(
1− Bn+k−1

Bn+k

+
Bn+k−2Bn+k−1

Bn+k−1Bn+k

+

Bn+k−3Bn+k−2Bn+k−1

Bn+k−2Bn+k−1Bn+k

+O

(
nBn+k−4

Bn+k

))
= Bn+k

(
1− W (n)

n
+
W (n)2

n2
− W (n)3

n3

)(
1 +O

(
log n

n2

))
.

Using (6) and (7) this gives

E(Xcycle
n ) =

Bn

Bn−1

(
1 +O

(
log n

n2

))
=

n

W (n)
+O

(
1

log n

)
and

Var(Xcycle
n ) =

Bn+1

Bn−1
−
(

Bn

Bn−1

)2

+O

(
1

log n

)
=

n

W (n)(W (n) + 1)
+O

(
1

log n

)
,

the last equality from (25). Since Var(Xcycle
n ) = ω(1), we complete the proof of Theorem

6 by appealing to Theorem 8.
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