Non-classical hyperplanes of $D W(5, q)$

Bart De Bruyn
Department of Mathematics
Ghent University
Belgium
bdb@cage. ugent.be

Submitted: Jun 8, 2012; Accepted: Apr 18, 2013; Published: Apr 24, 2013
Mathematics Subject Classifications: 51A45, 51A50

Abstract

The hyperplanes of the symplectic dual polar space $D W(5, q)$ arising from embedding, the so-called classical hyperplanes of $D W(5, q)$, have been determined earlier in the literature. In the present paper, we classify non-classical hyperplanes of $D W(5, q)$. If q is even, then we prove that every such hyperplane is the extension of a non-classical ovoid of a quad of $D W(5, q)$. If q is odd, then we prove that every non-classical ovoid of $D W(5, q)$ is either a semi-singular hyperplane or the extension of a non-classical ovoid of a quad of $D W(5, q)$. If $D W(5, q), q$ odd, has a semi-singular hyperplane, then q is not a prime number.

Keywords: symplectic dual polar space, hyperplane, projective embedding

1 Introduction

The hyperplanes of the finite symplectic dual polar space $D W(5, q)$ that arise from some projective embedding, the so-called classical hyperplanes of $D W(5, q)$, have explicitly been determined earlier in the literature, see Cooperstein \& De Bruyn [5], De Bruyn [7] and Pralle [21]. In the present paper, we give a rather complete classification for the non-classical hyperplanes of $D W(5, q)$. There are two standard constructions for such hyperplanes.
(1) Suppose x is a point of $D W(5, q)$ and O is a set of points of $D W(5, q)$ at distance 3 from x such that every line at distance 2 from x has a unique point in common with O. Then $x^{\perp} \cup O$ is a non-classical hyperplane of $D W(5, q)$, the so-called semi-singular hyperplane with deepest point x.
(2) Suppose Q is a quad of $D W(5, q)$. Then the points and lines contained in Q define a generalized quadrangle \widetilde{Q} isomorphic to $Q(4, q)$. If O is a non-classical ovoid of \widetilde{Q}, then
the set of points of $D W(5, q)$ at distance at most 1 from O is a non-classical hyperplane of $D W(5, q)$, the so-called extension of O. Several classes of non-classical ovoids of $Q(4, q)$ are known, see Section 2.2 for a discussion.

The following is our main result.
Theorem 1. (1) If q is even, then every non-classical hyperplane of $D W(5, q)$ is the extension of a non-classical ovoid of a quad of $D W(5, q)$.
(2) If q is odd, then every non-classical hyperplane of $D W(5, q)$ is either a semisingular hyperplane or the extension of a non-classical ovoid of a quad of $D W(5, q)$.

Up to present, no semi-singular hyperplane of $D W(5, q)$ is known to exist. If a semisingular hyperplane of $D W(5, q)$ exists, then q must be odd (Theorem 19) and not a prime (Corollary 18).

The lines and quads through a given point x of $D W(5, q)$ define a projective plane isomorphic to $\operatorname{PG}(2, q)$ which we denote by $\operatorname{Res}(x)$. If H is a hyperplane of $D W(5, q)$ and x is a point of H, then $\Lambda_{H}(x)$ denotes the set of lines through x contained in H. We regard $\Lambda_{H}(x)$ as a set of points of $\operatorname{Res}(x)$. If $\Lambda_{H}(x)$ is the whole set of points of $\operatorname{Res}(x)$, then x is called deep with respect to H.

The dual polar space $D W(5, q)$ has a nice full projective embedding e in the projective space $\operatorname{PG}(13, q)$, which is called the Grassmann embedding of $D W(5, q)$, see e.g. Cooperstein [4, Proposition 5.1]. A hyperplane of $D W(5, q)$ whose image under e is contained in a hyperplane of of $\mathrm{PG}(13, q)$ is said to arise from e. For a proof of the following proposition, we refer to Pasini [16, Theorem 9.3] or Cardinali \& De Bruyn [3, Corollary 1.5].

Proposition 2. If H is a hyperplane of $D W(5, q)$ arising from the Grassmann embedding of $D W(5, q)$, then for every point x of $H, \Lambda_{H}(x)$ is one of the following sets of points of Res(x): (1) a point; (2) a line; (3) the union of two distinct lines; (4) a nonsingular conic; (5) the whole set of points of Res(x).

If $q \neq 2$, then the Grassmann embedding of $D W(5, q)$ is the so-called absolutely universal embedding of $D W(5, q)$ (Cooperstein [4, Theorem B], Kasikova \& Shult [12, Section 4.6], Ronan [22]), implying that the classical hyperplanes of $D W(5, q)$ are precisely those hyperplanes arising from the Grassmann embedding. Combining Theorem 1 with Proposition 2 , we easily find:

Corollary 3. If H is a hyperplane of $D W(5, q), q \neq 2$, then for every point x of H, $\Lambda_{H}(x)$ is one of the following sets of points of Res(x): (1) the empty set; (2) a point; (3) a line; (4) the union of two distinct lines; (5) a nonsingular conic; (6) the whole set of points of $\operatorname{Res}(x)$. If $\Lambda_{H}(x)$ is the empty set, then H is a semi-singular hyperplane whose deepest point lies at distance 3 from x. If H is not a semi-singular hyperplane, then case (1) cannot occur.

The conclusion of Corollary 3 is false for the dual polar space $D W(5,2)$. If x is a point of $D W(5,2)$, then for every set Y of points of $\operatorname{Res}(x) \cong \mathrm{PG}(2,2)$, there exists a hyperplane H through x such that $\Lambda_{H}(x)=Y$, see Pralle [21, Table 1].

If $n \geqslant 4$, then the symplectic dual polar space $D W(2 n-1, q)$ has many full subgeometries isomorphic to $D W(5, q)$. So, Corollary 3 reveals information on the local structure of any hyperplane of any symplectic dual polar space $D W(2 n-1, q)$, where $q \neq 2$ and $n \geqslant 4$.

Theorem 1 will be proved in Section 3. In Section 2, we give the basic definitions (including some of the notions already mentioned above) and basic properties which will play a role in the proof of Theorem 1.

2 Preliminaries

2.1 The dual polar space $D W(5, q)$

Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}$, I) be a point-line geometry with nonempty point-set \mathcal{P}, line set \mathcal{L} and incidence relation $\mathrm{I} \subseteq \mathcal{P} \times \mathcal{L}$. A set $H \subsetneq \mathcal{P}$ is called a hyperplane of \mathcal{S} if every line of \mathcal{S} has either one or all of its points in H. A full projective embedding of \mathcal{S} is an injective mapping e from \mathcal{P} to the point-set of a projective space Σ satisfying (i) $\langle e(\mathcal{P})\rangle_{\Sigma}=\Sigma$; (ii) $\{e(x) \mid(x, L) \in \mathrm{I}\}$ is a line of Σ for every line L of \mathcal{S}. If $e: \mathcal{S} \rightarrow \Sigma$ is a projective embedding of \mathcal{S} and Π is a hyperplane of Σ, then $e^{-1}(e(\mathcal{P}) \cap \Pi)$ is a hyperplane of \mathcal{S}. A hyperplane of \mathcal{S} is said to be classical if it is of the form $e^{-1}(e(\mathcal{P}) \cap \Pi)$, where e is some full projective embedding of \mathcal{S} into a projective space Σ and Π is some hyperplane of Σ.

Distances $\mathrm{d}(\cdot, \cdot)$ in \mathcal{S} will be measured in its collinearity graph. If x is a point of \mathcal{S} and $i \in \mathbb{N}$, then $\Gamma_{i}(x)$ denotes the set of points of \mathcal{S} at distance i from x. Similarly, if X is a nonempty set of points and $i \in \mathbb{N}$, then $\Gamma_{i}(X)$ denotes the set of all points at distance i from X, i.e. the set of all points y for which $\min \{\mathrm{d}(y, x) \mid x \in X\}=i$.

Let $W(5, q)$ be the polar space whose subspaces are the subspaces of $\operatorname{PG}(5, q)$ that are totally isotropic with respect to a given symplectic polarity of $\mathrm{PG}(5, q)$, and let $D W(5, q)$ denote the associated dual polar space. The points and lines of $D W(5, q)$ are the totally isotropic planes and lines of $\operatorname{PG}(5, q)$, with incidence being reverse containment. The dual polar space $D W(5, q)$ belongs to the class of near polygons introduced by Shult and Yanushka in [23]. This means that for every point x and every line L, there exists a unique point on L nearest to x. The maximal distance between two points of $D W(5, q)$ is equal to 3 . The dual polar space $D W(5, q)$ has $(q+1)\left(q^{2}+1\right)\left(q^{3}+1\right)$ points, $q+1$ points on each line and $q^{2}+q+1$ lines through each point.

If x and y are two points of $D W(5, q)$ at distance 2 from each other, then the smallest convex subspace $\langle x, y\rangle$ of $D W(5, q)$ containing x and y is called a quad. A quad Q of $D W(5, q)$ consists of all totally isotropic planes of $W(5, q)$ that contain a given point x_{Q} of $W(5, q)$. Any two lines L and M of $D W(5, q)$ that meet in a unique point are contained in a unique quad. We denote this quad by $\langle L, M\rangle$. Obviously, we have $\langle L, M\rangle=\langle x, y\rangle$ where x and y are arbitrary points of $L \backslash M$ and $M \backslash L$, respectively. The points and
lines of $D W(5, q)$ that are contained in a given quad Q define a point-line geometry \widetilde{Q} isomorphic to the generalized quadrangle $Q(4, q)$ of the points and lines of a nonsingular parabolic quadric of $\operatorname{PG}(4, q)$. If Q is a quad of $D W(5, q)$ and x is a point not contained in Q, then Q contains a unique point $\pi_{Q}(x)$ collinear with x and $\mathrm{d}(x, y)=1+\mathrm{d}\left(\pi_{Q}(x), y\right)$ for every point y of Q. If Q_{1} and Q_{2} are two distinct quads of $D W(5, q)$, then $Q_{1} \cap Q_{2}$ is either empty or a line of $D W(5, q)$. If $Q_{1} \cap Q_{2}=\emptyset$, then the map $Q_{1} \rightarrow Q_{2} ; x \mapsto \pi_{Q_{2}}(x)$ is an isomorphism between $\widetilde{Q_{1}}$ and $\widetilde{Q_{2}}$.

2.2 Hyperplanes of $Q(4, q)$

By Payne and Thas [18, 2.3.1], every hyperplane of the generalized quadrangle $Q(4, q)$ is either the perp x^{\perp} of a point x, a $(q+1) \times(q+1)$-subgrid or an ovoid. An ovoid of $Q(4, q)$ is classical if it is an elliptic quadric $Q^{-}(3, q) \subseteq Q(4, q)$. For many values of q, non-classical ovoids of $Q(4, q)$ do exist: (i) $q=p^{h}$ with p an odd prime and $h \geqslant 2$ [11]; (ii) $q=2^{2 h+1}$ with $h \geqslant 1$ [26]; (iii) $q=3^{2 h+1}$ with $h \geqslant 1$ [11]; (iv) $q=3^{h}$ with $h \geqslant 3$ [24]; (v) $q=3^{5}$ [19]. For several prime powers q, it is known that all ovoids of $Q(4, q)$ are classical:

Proposition 4. - $([2,15])$ Every ovoid of $Q(4,4)$ is classical.

- $([13,14])$ Every ovoid of $Q(4,16)$ is classical.
- ([1]) Every ovoid of $Q(4, q), q$ prime, is classical.

A set \mathcal{G} of hyperplanes of $Q(4, q)$ is called a pencil of hyperplanes if every point of $Q(4, q)$ is contained in either 1 or all elements of \mathcal{G}. The following lemma is precisely Lemma 3.2 and Corollary 3.3 of De Bruyn [8].

Lemma 5. If G_{1} and G_{2} are two distinct classical hyperplanes of $Q(4, q)$, then through every point x of $Q(4, q)$ not contained in $G_{1} \cup G_{2}$, there exists a unique classical hyperplane G_{x} satisfying $G_{x} \cap G_{1}=G_{1} \cap G_{2}=G_{2} \cap G_{x}$. As a consequence, any two distinct classical hyperplanes of $Q(4, q)$ are contained in a unique pencil of classical hyperplanes of $Q(4, q)$.

2.3 Hyperplanes of $D W(5, q)$

Since $D W(5, q)$ is a near polygon, the set of points of $D W(5, q)$ at distance at most 2 from a given point x is a hyperplane of $D W(5, q)$, the so-called singular hyperplane with deepest point x. If O is a set of points of $D W(5, q)$ at distance 3 from a given point x such that every line at distance 2 from x has a unique point in common with O, then $x^{\perp} \cup O$ is a hyperplane of $D W(5, q)$, a so-called semi-singular hyperplane of $D W(5, q)$ with deepest point x. If Q is a quad of $D W(5, q)$ and G is a hyperplane of $\widetilde{Q} \cong Q(4, q)$, then $Q \cup\left\{x \in \Gamma_{1}(Q) \mid \pi_{Q}(x) \in G\right\}$ is a hyperplane of $D W(5, q)$, the so-called extension of G.

If H is a hyperplane of $D W(5, q)$ and Q is a quad, then either $Q \subseteq H$ or $Q \cap H$ is a hyperplane of $Q \cong Q(4, q)$. If $Q \subseteq H$, then Q is called a deep quad. If $Q \cap H=x^{\perp} \cap Q$ for some point $x \in Q$, then Q is called singular with respect to H and x is called the deep
point of Q. The quad Q is called ovoidal (respectively, subquadrangular) with respect to H if and only if $Q \cap H$ is an ovoid (respectively, a $(q+1) \times(q+1)$-subgrid) of Q. A hyperplane H of $D W(5, q)$ is called locally singular (locally subquadrangular, respectively locally ovoidal) if every non-deep quad of $D W(5, q)$ is singular (subquadrangular, respectively ovoidal) with respect to H. A hyperplane that is locally singular, locally ovoidal or locally subquadrangular is also called a uniform hyperplane. In the following proposition, we collect a number of known results which we will need to invoke later in the proof of the Main Theorem.

Proposition 6. (1) The dual polar space $D W(5, q), q \neq 2$, has no locally subquadrangular hyperplanes.
(2) The dual polar space $D W(5, q)$ has no locally ovoidal hyperplanes.
(3) Every nonuniform hyperplane of $D W(5, q)$ admits a singular quad.

Proposition 6(1) is due to Pasini \& Shpectorov [17]. Locally ovoidal hyperplanes of $D W(5, q)$ are just ovoids and cannot exist by Thomas [25, Theorem 3.2], see also Cooperstein and Pasini [6]. Proposition 6(3) is due to Pralle [20].
The classical hyperplanes of the dual polar space $D W(5, q)$ have already been classified in the literature. The dual polar space $D W(5, q), q \neq 2$, has six isomorphism classes of classical hyperplanes by Cooperstein \& De Bruyn [5] and De Bruyn [7]. This fact is not true if $q=2$. The dual polar space $D W(5,2)$ has twelve isomorphism classes of hyperplanes by Pralle [21], see also De Bruyn [7, Section 9]. Observe that all these hyperplanes are classical by Ronan [22, Corollary 2]. By De Bruyn [8], the classical hyperplanes of $D W(5, q)$ can be characterized as follows.

Proposition 7. The classical hyperplanes of $D W(5, q)$ are precisely those hyperplanes H of $D W(5, q)$ that satisfy the following property: if Q is an ovoidal quad, then $Q \cap H$ is a classical ovoid of Q.

2.4 Hyperbolic sets of quads of $D W(5, q)$

As in Section 2.1, let $W(5, q)$ be the polar space associated with a symplectic polarity of $\operatorname{PG}(5, q)$. If L is a hyperbolic line of $\operatorname{PG}(5, q)$ (i.e. a line of $\operatorname{PG}(5, q)$ that is not a line of $W(5, q))$, then the set of the $q+1$ (mutually disjoint) quads of $D W(5, q)$ corresponding to the points of L satisfy the property that every line that meets at least two of its members meets each of its members in a unique point. Any set of $q+1$ quads that is obtained in this way will be called a hyperbolic set of quads of $D W(5, q)$. Every two disjoint quads Q_{1} and Q_{2} of $D W(5, q)$ are contained in a unique hyperbolic set of quads of $D W(5, q)$. We will denote this hyperbolic set of quads by $\mathcal{H}\left(Q_{1}, Q_{2}\right)$. Considering all the lines meeting Q_{1} and Q_{2}, we easily see that the following holds.

Lemma 8. Let $\left\{Q_{1}, Q_{2}, \ldots, Q_{q+1}\right\}$ be a hyperbolic set of quads of $D W(5, q)$ and let H be a hyperplane of $D W(5, q)$ such that $H \cap Q_{1}$ and $\pi_{Q_{1}}\left(H \cap Q_{2}\right)$ are distinct hyperplanes of $\widetilde{Q_{1}}$. Then $\left\{\pi_{Q_{1}}\left(H \cap Q_{i}\right) \mid 1 \leqslant i \leqslant q+1\right\}$ is a pencil of hyperplanes of $\widetilde{Q_{1}}$.

3 Proof of Theorem 1

Throughout this section, we suppose that H is an arbitrary hyperplane of $D W(5, q)$. In De Bruyn [9], we classified for every field \mathbb{K} of size at least three the hyperplanes of $D W(5, \mathbb{K})$ containing a quad. The main theorem of [9] implies the following:
Proposition 9. Every non-classical hyperplane of $D W(5, q), q \neq 2$, containing a quad is the extension of a non-classical ovoid of a quad.

We have already mentioned above that every hyperplane of $D W(5,2)$ is classical by Ronan [22, Corollary 2]. Since we are interested in the classification of all non-classical hyperplanes of $D W(5, q)$, we may by the above assume that the following holds:

Assumption: We have $q \geqslant 3$ and the hyperplane H does not contain quads.
We denote by v the total number of points of H and by l the total number of lines of $D W(5, q)$ contained in H. In Section 3.1, we prove that there are only three possible values for v, namely $q^{5}+q^{3}+q^{2}+q+1, q^{5}+q^{4}+q^{3}+q^{2}+2 q+1$ or $q^{5}+q^{4}+q^{3}+q^{2}+q+1$. In Section 3.2, we prove that if $v=q^{5}+q^{3}+q^{2}+q+1$, then H is a semi-singular hyperplane. We also prove there that semi-singular hyperplanes cannot exist if q is even. In [10] (see also Corollary 18), the nonexistence of semi-singular hyperplanes was already shown for prime values of q. In Section 3.3, we prove that the case $v=q^{5}+q^{4}+q^{3}+q^{2}+2 q+1$ cannot occur and in Section 3.4, we prove that H must be classical if $v=q^{5}+q^{4}+q^{3}+q^{2}+q+1$. All these results together imply that Theorem 1 must hold.

3.1 The possible values of v

The following lemma is an immediate consequence of Proposition 6.
Lemma 10. The hyperplane admits singular quads.
Lemma 11. We have $l=\frac{v \cdot\left(q^{2}+q+1\right)-\left(q^{2}+1\right)\left(q^{3}+1\right)\left(q^{2}+q+1\right)}{q}$.
Proof. We count the number of lines not contained in H. There are $(q+1)\left(q^{2}+1\right)\left(q^{3}+\right.$ 1) $-v$ points outside H and each of these points is contained in $q^{2}+q+1$ lines which contain a unique point of H. Hence, the total number of lines not contained in H is equal to $\frac{\left((q+1)\left(q^{2}+1\right)\left(q^{3}+1\right)-v\right)\left(q^{2}+q+1\right)}{q}$. Since the total number of lines of $D W(5, q)$ equals $\left(q^{2}+\right.$ 1) $\left(q^{3}+1\right)\left(q^{2}+q+1\right)$, we have $l=\left(q^{2}+1\right)\left(q^{3}+1\right)\left(q^{2}+q+1\right)-\frac{\left((q+1)\left(q^{2}+1\right)\left(q^{3}+1\right)-v\right)\left(q^{2}+q+1\right)}{q}=$ $\frac{v \cdot\left(q^{2}+q+1\right)-\left(q^{2}+1\right)\left(q^{3}+1\right)\left(q^{2}+q+1\right)}{q}$.
Lemma 12. If Q is a singular quad with deep point x, then one of the following cases occurs:
(1) $x^{\perp} \cap H=x^{\perp} \cap Q$;
(2) there exists a line L through x not contained in Q such that $x^{\perp} \cap H=\left(x^{\perp} \cap Q\right) \cup L$;
(3) there exists a quad R through x distinct from Q such that $x^{\perp} \cap H=\left(x^{\perp} \cap Q\right) \cup$ $\left(x^{\perp} \cap R\right)$;
(4) $x^{\perp} \subseteq H$.

Proof. Since $x^{\perp} \cap Q \subseteq x^{\perp} \cap H,\left|\Lambda_{H}(x)\right| \geqslant q+1$. If $\left|\Lambda_{H}(x)\right| \in\{q+1, q+2\}$, then either case (1) or (2) of the lemma occurs. Suppose therefore that $\left|\Lambda_{H}(x)\right| \geqslant q+3$ and let L_{1} and L_{2} be two distinct lines through x that are contained in H, but not in Q. Put $R:=\left\langle L_{1}, L_{2}\right\rangle$. Since $L_{1} \subseteq R \cap H, L_{2} \subseteq R \cap H$ and $R \cap Q \subseteq R \cap H, R$ is singular with deep point x and hence every line of R through x is contained in H. So, $\left|\Lambda_{H}(x)\right| \geqslant 2 q+1$.

If $\left|\Lambda_{H}(x)\right|=2 q+1$, then obviously case (3) of the lemma occurs. Suppose therefore that $\left|\Lambda_{H}(x)\right| \geqslant 2 q+2$. Then there exists a line $L_{3} \subseteq H$ through x not contained in $Q \cup R$. If Q^{\prime} is a quad through L_{3} distinct from $\left\langle L_{3}, Q \cap R\right\rangle$, then since $Q^{\prime} \cap Q \subseteq H, Q^{\prime} \cap R \subseteq H$ and $L_{3} \subseteq H, Q^{\prime}$ is singular with deep point x and hence every line of Q^{\prime} through x is contained in H. It follows that all lines of $D W(5, q)$ through x are contained in H, except maybe for the $q-1$ lines through x contained in $\left\langle L_{3}, Q \cap R\right\rangle$ and distinct from L_{3} and $Q \cap R$. Let L^{\prime} be one of these $q-1$ lines and let $Q^{\prime \prime}$ be a quad through L^{\prime} distinct from $\left\langle L_{3}, Q \cap R\right\rangle$. Since $q \geqslant 3$ lines of $Q^{\prime \prime}$ through x are contained in $H, Q^{\prime \prime}$ is singular with deep point x and hence also L^{\prime} is contained in H. So, $x^{\perp} \subseteq H$ and case (4) of the lemma occurs.

Lemma 13. If Q is a singular quad with deep point x, then $\left|\Gamma_{3}(x) \cap H\right|=q^{5}$.
Proof. Every point of $\Gamma_{3}(x) \cap H$ is collinear with a unique point of $\Gamma_{2}(x) \cap Q$. Conversely, every point u of $\Gamma_{2}(x) \cap Q$ is collinear with precisely q^{2} points of $\Gamma_{3}(x) \cap H$. (One on each line through u not contained in Q.) Hence, $\left|\Gamma_{3}(x) \cap H\right|=\left|\Gamma_{2}(x) \cap Q\right| \cdot q^{2}=q^{5}$.

Lemma 14. Suppose Q is a singular quad with deep point x.

- If case (1) of Lemma 12 occurs, then $v=q^{5}+q^{4}+q^{3}+q^{2}+q+1$ and $l=$ $q^{5}+q^{4}+q^{3}+q^{2}+q+1$.
- If case (2) of Lemma 12 occurs, then $v=q^{5}+q^{4}+q^{3}+q^{2}+2 q+1$ and $l=$ $\left(q^{2}+q+1\right)\left(q^{3}+2\right)$.
- If case (3) of Lemma 12 occurs, then $v=q^{5}+q^{4}+q^{3}+q^{2}+q+1$ and $l=$ $q^{5}+q^{4}+q^{3}+q^{2}+q+1$.
- If case (4) of Lemma 12 occurs, then $v=q^{5}+q^{3}+q^{2}+q+1$ and $l=q^{2}+q+1$.

Proof. Suppose case (1) of Lemma 12 occurs. Then x is contained in 1 singular quad that has x as deep point (namely Q) and $q^{2}+q$ singular quads that do not have x as deep point. In this case, $\left|\Gamma_{0}(x) \cap H\right|=1,\left|\Gamma_{1}(x) \cap H\right|=q^{2}+q,\left|\Gamma_{2}(x) \cap H\right|=1 \cdot 0+\left(q^{2}+q\right) \cdot q^{2}$ and $\left|\Gamma_{3}(x) \cap H\right|=q^{5}$. Hence, $v=1+\left(q^{2}+q\right)+\left(q^{2}+q\right) \cdot q^{2}+q^{5}=q^{5}+q^{4}+q^{3}+q^{2}+q+1$.

Suppose case (2) of Lemma 12 occurs. Then x is contained in 1 singular quad with deep point equal to $x, q+1$ subquadrangular quads and $q^{2}-1$ singular quads with deep point different from x. In this case, $\left|\Gamma_{0}(x) \cap H\right|=1,\left|\Gamma_{1}(x) \cap H\right|=(q+2) q=q^{2}+2 q$, $\left|\Gamma_{2}(x) \cap H\right|=1 \cdot 0+(q+1) \cdot q^{2}+\left(q^{2}-1\right) \cdot q^{2}=q^{4}+q^{3}$ and $\left|\Gamma_{3}(x) \cap H\right|=q^{5}$. Hence, $v=1+\left(q^{2}+2 q\right)+\left(q^{4}+q^{3}\right)+q^{5}=q^{5}+q^{4}+q^{3}+q^{2}+2 q+1$.

Suppose case (3) of Lemma 12 occurs. Then x is contained in 2 singular quads with deep point $x, q-1$ singular quads with deep point different from x and q^{2} subquadrangular
quads. In this case, $\left|\Gamma_{0}(x) \cap H\right|=1,\left|\Gamma_{1}(x) \cap H\right|=(2 q+1) q=2 q^{2}+q,\left|\Gamma_{2}(x) \cap H\right|=$ $2 \cdot 0+(q-1) \cdot q^{2}+q^{2} \cdot q^{2}=q^{4}+q^{3}-q^{2}$ and $\left|\Gamma_{3}(x) \cap H\right|=q^{5}$. Hence, $v=1+\left(2 q^{2}+q\right)+$ $\left(q^{4}+q^{3}-q^{2}\right)+q^{5}=q^{5}+q^{4}+q^{3}+q^{2}+q+1$.

Suppose case (4) of Lemma 12 occurs. Then x is contained in $q^{2}+q+1$ singular quads that have x as deep point. Hence, $v=\left|\Gamma_{0}(x) \cap H\right|+\left|\Gamma_{1}(x) \cap H\right|+\left|\Gamma_{2}(x) \cap H\right|+\left|\Gamma_{3}(x) \cap H\right|=$ $1+q\left(q^{2}+q+1\right)+0+q^{5}=q^{5}+q^{3}+q^{2}+q+1$.

In each of the four cases, the value of l can be derived from Lemma 11.
By Lemmas 10, 12 and 14, we have:
Corollary 15. $v \in\left\{q^{5}+q^{3}+q^{2}+q+1, q^{5}+q^{4}+q^{3}+q^{2}+q+1, q^{5}+q^{4}+q^{3}+q^{2}+2 q+1\right\}$.

We see that if case (2) of Lemma 12 occurs for one singular quad Q, then case (2) occurs for all singular quads Q. A similar remark holds applies to case (4) of Lemma 12.

3.2 The case $v=q^{5}+q^{3}+q^{2}+q+1$

Let Q^{*} denote a singular quad and x^{*} its deep point.
Lemma 16. If $v=q^{5}+q^{3}+q^{2}+q+1$, then H is a semi-singular hyperplane of $D W(5, q)$ with deepest point x^{*}.

Proof. If $v=q^{5}+q^{3}+q^{2}+q+1$, then case (4) of Lemma 12 occurs for the pair $\left(Q^{*}, x^{*}\right)$. So, we have that $x^{* \perp} \subseteq H$ and $\Gamma_{2}\left(x^{*}\right) \cap H=\emptyset$ (no deep quad through x^{*}). Since $\Gamma_{2}\left(x^{*}\right) \cap H=\emptyset$, every line at distance 2 from x^{*} contains a unique point of $\Gamma_{3}\left(x^{*}\right) \cap H$. It follows that H is a semi-singular hyperplane of $D W(5, q)$ with deepest point x^{*}.
The following proposition was proved in De Bruyn and Vandecasteele [10, Corollary 6.3].
Proposition 17. If q is a prime power such that every ovoid of $Q(4, q)$ is classical, then $D W(5, q)$ does not have semi-singular hyperplanes.

By Propositions 4 and 17, we have
Corollary 18. If q is prime, then $D W(5, q)$ has no semi-singular hyperplanes.

We will now use hyperbolic sets of quads of $D W(5, q)$ to prove the nonexistence of semisingular hyperplanes of $D W(5, q), q$ even.

Theorem 19. The dual polar space $D W(5, q), q$ even, has no semi-singular hyperplanes.
Proof. Suppose H is a semi-singular hyperplane of $D W(5, q), q$ even, and as before let x^{*} denote the deepest point of H. Let Q be a quad through x^{*}, let G be a $(q+1) \times(q+1)$ subgrid of \widetilde{Q} not containing x^{*}, let L_{1} and L_{2} be two disjoint lines of G and let Q_{i}, $i \in\{1,2\}$, be a quad through L_{i} distinct from Q. Then Q_{1} and Q_{2} are disjoint. Put
$\mathcal{H}=\mathcal{H}\left(Q_{1}, Q_{2}\right)$. Every $Q_{3} \in \mathcal{H}$ intersects Q in a line of G and hence $x^{*} \notin Q_{3}$. It follows that every $Q_{3} \in \mathcal{H}$ is ovoidal with respect to H. Suppose $Q_{3} \in \mathcal{H} \backslash\left\{Q_{1}\right\}$ and $x_{3} \in Q_{3} \cap H$ such that $x_{1}=\pi_{Q_{1}}\left(x_{3}\right) \in Q_{1} \cap H$. Then the line $x_{1} x_{3}$ is contained in H and hence $x^{*} \in x_{1} x_{3}$. But this is impossible, since no quad of \mathcal{H} contains x^{*}. Hence, $\pi_{Q_{1}}\left(Q_{3} \cap H\right)$ is disjoint from $Q_{1} \cap H$. By Lemma 8, the set $\left\{\pi_{Q_{1}}\left(Q_{3} \cap H\right) \mid Q_{3} \in \mathcal{H}\right\}$ is a partition of Q_{1} into ovoids. This is however impossible since the generalized quadrangle $Q(4, q), q$ even, has no partition in ovoids by Payne and Thas [18, Theorem 1.8.5].

3.3 The case $v=q^{5}+q^{4}+q^{3}+q^{2}+2 q+1$

We suppose that $v=q^{5}+q^{4}+q^{3}+q^{2}+2 q+1$ and $l=\left(q^{2}+q+1\right)\left(q^{3}+2\right)$. Recall that if Q is a singular quad and x is the deep point of Q, then case (2) of Lemma 12 occurs for the pair (Q, x).

Lemma 20. Let Q be a singular quad, let x be the deep point of Q, let L be the line through x not contained in Q such that $x^{\perp} \cap H=\left(x^{\perp} \cap Q\right) \cup L$ and let y be a point of $L \backslash\{x\}$. Then there are $q+1$ lines $L_{1}, L_{2}, \ldots, L_{q+1}$ through y different from L that are contained in H. The $q+2$ lines $L, L_{1}, L_{2}, \ldots, L_{q+1}$ form a hyperoval of the projective plane $\operatorname{Res}(y) \cong \mathrm{PG}(2, q)$. (Hence, q must be even.)
Proof. The $q+1$ quads R_{1}, \ldots, R_{q+1} through L determine a partition of the set of lines through y different from L. Each of these quads is subquadrangular. Hence, R_{i}, $i \in\{1,2, \ldots, q+1\}$, contains a unique line $L_{i} \neq L$ through y that is contained in H.

For all $i, j \in\{1,2, \ldots, q+1\}$ with $i \neq j$, the lines L, L_{i} and L_{j} are not contained in a quad since the quad $\left\langle L, L_{i}\right\rangle$ is subquadrangular. Suppose there exist mutually distinct $i, j, k \in\{1,2, \ldots, q+1\}$ such that L_{i}, L_{j} and L_{k} are contained in a quad Q^{\prime}. Then L is not contained in Q^{\prime} and hence $Q \cap Q^{\prime}=\emptyset$. Since L_{i}, L_{j} and L_{k} are contained in H, Q^{\prime} is singular with deep point y. Let $z^{\prime} \in Q^{\prime} \backslash y^{\perp}$ and $z:=\pi_{Q}\left(z^{\prime}\right)$. Since z and z^{\prime} are not contained in H, the line $z z^{\prime}$ contains a unique point $z^{\prime \prime} \in H$. Let $Q^{\prime \prime}$ denote the unique quad through $z^{\prime \prime}$ intersecting L in a point u. Then $Q^{\prime \prime} \in \mathcal{H}\left(Q, Q^{\prime}\right)$. So, every point of $u^{\perp} \cap Q^{\prime \prime}$ is contained in a line joining a point of $y^{\perp} \cap Q^{\prime}$ with a point of $x^{\perp} \cap Q$ and hence is contained in H. Since also $z^{\prime \prime} \in H, Q^{\prime \prime} \subseteq H$, contradicting the fact that there are no deep quads.

Lemma 21. There are four possible types of points in H :
(A) points x for which $\Lambda_{H}(x)$ is the union of a line of $\operatorname{Res}(x)$ and a point of $\operatorname{Res}(x)$ not belonging to that line;
(B) points x for which $\Lambda_{H}(x)$ is a hyperoval of $\operatorname{Res}(x)$;
(C) points x for which $\left|\Lambda_{H}(x)\right|=2$;
(D) points x for which $\Lambda_{H}(x)$ is empty.

Moreover, we have:
(i) Every point of Type (A) has distance 1 from precisely $q^{2}-1$ points of Type $(A), q$ points of Type (B) and $q+1$ points of Type (C).
(ii) Every point of Type (B) has distance 1 from precisely $q+2$ points of Type (A), $(q+2)(q-1)$ points of Type (B) and 0 points of Type (C).
(iii) Every point of Type (C) has distance 1 from precisely $2 q$ points of Type (A), 0 points of Type (B) and 0 points of Type (C).

Proof. Suppose Q^{*} is a singular quad and x^{*} is its deep point. Consider the collinearity graph Γ of $D W(5, q)$ and let Γ_{H} denote the subgraph of Γ induced on the vertex set H. Suppose x is a point of H such that x and x^{*} belong to different connected components of Γ_{H}. We prove that $\Lambda_{H}(x)$ is empty. Suppose to the contrary that there exists a line L through x contained in H. If L meets Q^{*}, then $L \cap Q^{*}$ must be contained in $x^{* \perp}$, contradicting the fact that x^{*} and x belong to different connected components of Γ_{H}. So, L is disjoint from Q^{*}. Then $\pi_{Q^{*}}(L)$ meets $x^{* \perp}$ and hence x^{*} and x are connected by a path of Γ_{H}, again a contradiction.

Notice that by Lemma 14 and the fact that $v=q^{5}+q^{4}+q^{3}+q^{2}+2 q+1, x^{*}$ is a point of Type (A). So, in order to prove the first part of the lemma, it suffices to verify that every vertex x of Type $(X), X \in\{A, B, C\}$, of Γ_{H} is adjacent with only vertices of Type (A), (B) or (C). As a by-product of our verification, also the conclusions of the second part of the lemma will be obtained.

First, suppose that x is a point of Type (A). Without loss of generality, we may suppose that $x=x^{*}$. Let L^{*} denote the unique line through x^{*} such that $x^{* \perp} \cap H=\left(x^{* \perp} \cap Q^{*}\right) \cup L^{*}$. By Lemma 20, every point of $L^{*} \backslash\left\{x^{*}\right\}$ has Type (B). Now, let L be a line through x^{*} contained in Q^{*}. Then $\left\langle L, L^{*}\right\rangle$ is a subquadrangular quad. Any quad through L different from $\left\langle L, L^{*}\right\rangle$ and Q^{*} is singular with deep point contained in $L \backslash\left\{x^{*}\right\}$. By Lemmas 12 and 14 and the fact that $v=q^{5}+q^{4}+q^{3}+q^{2}+2 q+1$, every point of $L \backslash\left\{x^{*}\right\}$ is the deep point of at most 1 such singular quad. Hence, $q-1$ points of $L \backslash\left\{x^{*}\right\}$ have Type (A) and the remaining point of $L \backslash\left\{x^{*}\right\}$ has type (C).

Suppose x is a point of Type (C). Let L_{1} and L_{2} denote the two lines through x that are contained in H. Then $\left\langle L_{1}, L_{2}\right\rangle$ is a subquadrangular quad. If Q is a quad through L_{1} distinct from $\left\langle L_{1}, L_{2}\right\rangle$, then Q is singular with deep point on $L_{1} \backslash\{x\}$. By Lemmas 12 and 14 and the fact that $v=q^{5}+q^{4}+q^{3}+q^{2}+2 q+1$, every point of $L_{1} \backslash\{x\}$ is the deep point of at most 1 such singular quad. It follows that every point of $L_{1} \backslash\{x\}$ has Type (A). In a similar way, one shows that every point of $L_{2} \backslash\{x\}$ has Type (A).

Suppose x is a point of Type (B). Let L be an arbitrary line through x contained in H. Every quad through L is subquadrangular. It follows that through every point $u \in L$ there are precisely $q+2$ lines that are contained in H. If at least three of these lines are contained in a certain quad R, then R is singular with deep point u and hence u is of type (A). Otherwise, u is of type (B). By Lemma 20, there are two possibilities.
(1) L contains a unique point of Type (A) and q points of Type (B).
(2) L contains $q+1$ points of Type (B).

We show that case (2) cannot occur. Suppose it does occur. Then $\left|\Gamma_{0}(L) \cap H\right|=q+1$ and $\left|\Gamma_{1}(L) \cap H\right|=(q+1)^{2} q$. Each quad intersecting L in a unique point is either ovoidal or subquadrangular and contributes q^{2} to the value of $\left|\Gamma_{2}(L) \cap H\right|$. Since every point of $\Gamma_{2}(L)$ is contained in a unique quad that intersects L in a unique point, $\left|\Gamma_{2}(L) \cap H\right|=(q+1) q^{2} \cdot q^{2}$.

It follows that $|H|=\left|\Gamma_{0}(L) \cap H\right|+\left|\Gamma_{1}(L) \cap H\right|+\left|\Gamma_{2}(L) \cap H\right|=(q+1)+(q+1)^{2} q+(q+1) q^{4}=$ $q^{5}+q^{4}+q^{3}+2 q^{2}+2 q+1$, contradicting the fact that $|H|=q^{5}+q^{4}+q^{3}+q^{2}+2 q+1$.

Now, let n_{A}, n_{B}, n_{C} respectively n_{D}, denote the total number of points of H of Type (A), (B), (C), respectively (D). Then by Lemma 21, we have $n_{A} \cdot q=n_{B} \cdot(q+2)$ and $n_{A} \cdot(q+1)=n_{C} \cdot 2 q$. Hence,

$$
\begin{align*}
n_{B} & =\frac{n_{A} \cdot q}{q+2} \tag{1}\\
n_{C} & =\frac{n_{A} \cdot(q+1)}{2 q} . \tag{2}
\end{align*}
$$

Now, counting in two different ways the number of pairs (x, L), with $x \in H$ and L a line through x contained in H, we obtain

$$
\begin{equation*}
n_{A} \cdot(q+2)+n_{B} \cdot(q+2)+n_{C} \cdot 2=l \cdot(q+1)=\left(q^{2}+q+1\right)(q+1)\left(q^{3}+2\right) . \tag{3}
\end{equation*}
$$

From equations (1), (2) and (3), we find $n_{A}=\frac{\left(q^{2}+q+1\right)\left(q^{3}+2\right) q}{2 q+1}, n_{B}=\frac{\left(q^{2}+q+1\right)\left(q^{3}+2\right) q^{2}}{(q+2)(2 q+1)}$ and $n_{C}=\frac{\left(q^{2}+q+1\right)\left(q^{3}+2\right)(q+1)}{2(2 q+1)}$. If $q=3$, then $n_{A} \notin \mathbb{N}$. If $q \geqslant 4$, then

$$
\begin{aligned}
n_{A}+n_{B}+n_{C} & =\left(q^{2}+q+1\right)\left(q^{3}+2\right) \cdot \frac{5 q^{2}+7 q+2}{2(q+2)(2 q+1)} \\
& >\left(q^{5}+q^{4}+q^{3}+q^{2}+2 q+1\right) \cdot 1 \\
& =v
\end{aligned}
$$

a contradiction. Hence, the case $v=q^{5}+q^{4}+q^{3}+q^{2}+2 q+1$ cannot occur.

3.4 The case $v=q^{5}+q^{4}+q^{3}+q^{2}+q+1$

Suppose $v=q^{5}+q^{4}+q^{3}+q^{2}+q+1$.
Lemma 22. There are five possible types of points in H :
(A) points x for which $\left|\Lambda_{H}(x)\right|=1$;
(B) points x for which $\Lambda_{H}(x)$ is a line of Res (x);
(C) points x for which $\Lambda_{H}(x)$ is the union of two distinct lines of $\operatorname{Res}(x)$;
(D) points x for which $\Lambda_{H}(x)$ is an oval of $\operatorname{Res}(x)$;
(E) points x for which $\Lambda_{H}(x)$ is empty.

Proof. Suppose Q^{*} is a singular quad and x^{*} is its deep point. Consider the collinearity graph Γ of $D W(5, q)$ and let Γ_{H} denote the subgraph of Γ induced on the vertex set H. Suppose x is a point of H such that x and x^{*} belong to different connected components of Γ_{H}. Then we prove that $\Lambda_{H}(x)$ is empty. Suppose to the contrary that there exists a line L through x contained in H. If L meets Q^{*}, then $L \cap Q^{*}$ must be contained in $x^{* \perp}$, contradicting the fact that x^{*} and x belong to different connected components of Γ_{H}. So,
L is disjoint from Q^{*}. Then $\pi_{Q^{*}}(L)$ meets $x^{* \perp}$ and hence x^{*} and x are connected by a path of Γ_{H}, again a contradiction.

By Lemmas 12 and 14 applied to the pair $\left(Q^{*}, x^{*}\right), x^{*}$ is a point of Type (B) or (C). So, in order to prove the lemma, it suffices to prove that if x is a point of Type $(X) \in\{(A),(B),(C),(D)\}$ and y is a point of $H \backslash\{x\}$ collinear with x, then y is of Type (A), (B), (C) or (D). Put $L:=x y$. Since x is of Type (A), (B), (C) or (D), one of the following two possibilities occurs:
(1) L is contained in $q+1$ singular quads with deep point on L.
(2) L is contained in a unique singular quad with deep point on L and q subquadrangular quads.

Observe that case (1) can only occur if x has Type (A), (B) or (C), while case (2) can only occur if x has Type (C) or (D).

Suppose case (1) occurs. Then $\Lambda_{H}(y)$ is the union of a number of lines of $\operatorname{Res}(y)$ through a given point of $\operatorname{Res}(y)$, union this point. Since every quad through y is singular, subquadrangular or ovoidal, every line of $\operatorname{Res}(y)$ intersects $\Lambda_{H}(y)$ in either $0,1,2$ or $q+1$ points. Notice also that the point y cannot be deep with respect to H, since otherwise Lemmas 12 and 14 applied to any singular quad through y would yield that $v=q^{5}+q^{3}+q^{2}+q+1$, which is impossible. It follows that y is of Type (A), (B) or (C). If case (2) occurs, then there are two possibilities:
(2a) $\Lambda_{H}(y)$ is a line of $\operatorname{Res}(y)+q$ extra points. By Lemma 12, y necessarily is a point of Type (C).
(2b) $\left|\Lambda_{H}(y)\right|=q+1$. If at least three of the points of $\Lambda_{H}(y)$ are collinear, then $\Lambda_{H}(y)$ is necessarily a line of $\operatorname{Res}(y)$. But this is impossible since y is not the deep point of a singular quad through L. So, no three points of $\Lambda_{H}(y)$ are collinear. This implies that $\Lambda_{H}(y)$ is an oval of $\operatorname{Res}(y)$, i.e. y is a point of Type (D).

Definition. As we have already noticed in the proof of Lemma 22, every line $L \subseteq H$ must be contained in either $q+1$ singular quads or one singular quad and q subquadrangular quads. If all quads on L are singular, then L is said to be special.

Lemma 23. If L is a special line, then L contains only points of Type $(A),(B)$ and (C). Moreover, the number of points of Type (A) on L equals the number of points of Type (C) on L.

Proof. Since every quad through L is singular, there are $(q+1) q$ lines contained in H that meet L in a unique point. Moreover, for every $y \in L, \Lambda_{H}(y)$ is the union of a number of lines of $\operatorname{Res}(y)$, union the point of $\operatorname{Res}(y)$ corresponding to L. It follows that every point of L is of Type (A), (B) or (C). Let n_{1}, n_{2}, respectively n_{3}, denote the number of points of Type (A), (B), respectively (C), contained in L. Then $n_{1}+n_{2}+n_{3}=q+1$ and $n_{1} \cdot 0+n_{2} \cdot q+n_{3} \cdot 2 q=q(q+1)$. It follows that $n_{1}=n_{3}$.

The proof of the following lemma is straightforward.

Lemma 24. Every point of Type (A) is contained in a unique special line. Every point of Type (C) is contained in a unique special line.

Let $n_{A}, n_{B}, n_{C}, n_{D}$, respectively n_{E}, denote the total number of points of H of Type (A), (B), (C), (D), respectively (E). The following is an immediate corollary of Lemmas 23 and 24.

Corollary 25. We have $n_{C}=n_{A}$.
Lemma 26. We have $n_{E}=0$.
Proof. We count in two different ways the number of pairs (x, L) with $x \in H$ and L a line of H through x. We find

$$
n_{A} \cdot 1+n_{B} \cdot(q+1)+n_{C} \cdot(2 q+1)+n_{D} \cdot(q+1)+n_{E} \cdot 0=l(q+1) .
$$

Using the facts that $n_{A}=n_{C}$ and $l=\left(q^{2}+q+1\right)\left(q^{3}+1\right)=v$, we find $n_{A}+n_{B}+n_{C}+n_{D}=v$. Hence, $n_{E}=0$.
Lemma 27. We have $n_{D}=\frac{2 q^{2}}{q+1} n_{A}$.
Proof. We count in two different ways the number of pairs (x, Q) where Q is a singular quad and x is its deep point. We find

$$
\begin{equation*}
S i=n_{B}+2 \cdot n_{C}, \tag{4}
\end{equation*}
$$

where $S i$ denotes the total number of singular quads. We count in two different ways the number of pairs (x, Q) where Q is a singular quad and x is a point of $Q \cap H$ distinct from the deep point of Q. We find

$$
\begin{equation*}
(q+1) q \cdot S i=(q+1) n_{A}+q(q+1) n_{B}+(q-1) n_{C}+(q+1) n_{D} . \tag{5}
\end{equation*}
$$

From (4) and (5) and the fact that $n_{A}=n_{C}$, it readily follows that $n_{D}=\frac{2 q^{2}}{q+1} n_{A}$.
Now, put $\delta:=n_{A}$. Then we have $n_{A}=n_{C}=\delta, n_{D}=\frac{2 q^{2}}{q+1} \cdot \delta$ and $n_{B}=\left(q^{2}+q+1\right)\left(q^{3}+\right.$ 1) $-\frac{2\left(q^{2}+q+1\right)}{q+1} \cdot \delta$.

Lemma 28. We have $0 \leqslant \delta \leqslant\left\lfloor\frac{1}{2}(q+1)\left(q^{3}+1\right)\right\rfloor$.
Proof. This follows from the fact that $n_{B} \geqslant 0$.
Remark. If $q \geqslant 4$ is even, then by De Bruyn [7], the dual polar space $D W(5, q)$ has up to isomorphism two hyperplanes not containing quads. The values of δ corresponding to these two hyperplanes are respectively equal to 0 and $\frac{q^{3}(q+1)}{2}$. If q is odd, then by Cooperstein and De Bruyn [5], the dual polar space $D W(5, q)$ has up to isomorphism two hyperplanes not containing quads. The values of δ corresponding to these two hyperplanes
are respectively equal to $\frac{1}{2}(q+1)\left(q^{3}-1\right)$ and $\frac{1}{2}(q+1)\left(q^{3}+1\right)$. So, the lower and upper bounds in Lemma 28 can be tight.

Definition. Recall that if Q is a quad of $D W(5, q)$ then the points and lines of $D W(5, q)$ contained in Q bijectively correspond to the points and lines of $\operatorname{PG}(4, q)$ that are contained in a given nonsingular parabolic quadric $Q(4, q)$ of $\operatorname{PG}(4, q)$. A conic of Q is a set of $q+1$ points of Q that corresponds to a nonsingular conic of $Q(4, q)$, i.e. with a set of $q+1$ points of $Q(4, q)$ contained in a plane π of $\mathrm{PG}(4, q)$ intersecting $Q(4, q)$ in a nonsingular conic of π.

Lemma 29. Let $\left\{Q_{1}, Q_{2}, \ldots, Q_{q+1}\right\}$ be a hyperbolic set of quads of $D W(5, q)$ such that Q_{1} is ovoidal with respect to H and $\left|\pi_{Q_{1}}\left(Q_{2} \cap H\right) \cap\left(Q_{1} \cap H\right)\right| \geqslant 2$. Then:
(1) $\pi_{Q_{1}}\left(Q_{2} \cap H\right) \cap\left(Q_{1} \cap H\right)$ is a conic of Q_{1}.
(2) The number of ovoidal quads of $\left\{Q_{1}, \ldots, Q_{q+1}\right\}$ is bounded above by $\frac{q+1}{2}$. If the number of these ovoidal quads is precisely $\frac{q+1}{2}$, then the remaining $\frac{q+1}{2}$ quads of $\left\{Q_{1}, \ldots, Q_{q+1}\right\}$ are subquadrangular with respect to H.

Proof. We first prove that $\pi_{Q_{1}}\left(Q_{2} \cap H\right) \neq Q_{1} \cap H$. Suppose to the contrary that $\pi_{Q_{1}}\left(Q_{2} \cap H\right)=Q_{1} \cap H$. Let u be a point of $Q_{1} \backslash H$, let L be the unique line through u meeting each quad of $\left\{Q_{1}, Q_{2}, \ldots, Q_{q+1}\right\}$, let v denote the unique point of L contained in H, and let i be the unique element of $\{3, \ldots, q+1\}$ such that $v \in Q_{i}$. Now, since $Q_{i} \cap H$ contains $\pi_{Q_{i}}\left(Q_{2} \cap H\right)$ and the point $v \in Q_{i} \backslash \pi_{Q_{i}}\left(Q_{2} \cap H\right)$, we must have $Q_{i} \subseteq H$. This is however impossible since no quad is contained in H.

So, $\pi_{Q_{1}}\left(Q_{2} \cap H\right) \neq Q_{1} \cap H$. By Lemma $8,\left\{\pi_{Q_{1}}\left(Q_{i} \cap H\right) \mid 1 \leqslant i \leqslant q+1\right\}$ is a pencil of hyperplanes of $\widetilde{Q_{1}}$. Let α_{1}, α_{2}, respectively α_{3}, denote the number of quads of $\left\{Q_{1}, \ldots, Q_{q+1}\right\}$ that are ovoidal, singular, respectively subquadrangular, with respect to H. Put $\beta:=\left|\pi_{Q_{1}}\left(Q_{2} \cap H\right) \cap\left(Q_{1} \cap H\right)\right| \geqslant 2$. We prove that $\beta=q+1$.

If $\alpha_{1}=q+1$ and $\alpha_{2}=\alpha_{3}=0$, then $(q+1)\left(q^{2}+1\right)=\left|Q_{1}\right|=\beta+(q+1)\left(q^{2}+1-\beta\right)=$ $(q+1)\left(q^{2}+1\right)-q \beta<(q+1)\left(q^{2}+1\right)$, a contradiction. So, without loss of generality, we may suppose that Q_{2} is not ovoidal with respect to H. If Q_{2} is subquadrangular with respect to H, then $\beta=\left|\pi_{Q_{1}}\left(Q_{2} \cap H\right) \cap\left(Q_{1} \cap H\right)\right|=q+1$. If Q_{2} is singular with respect to H with deep point u such that $\pi_{Q_{1}}(u) \notin Q_{1} \cap H$, then also $\beta=\left|\pi_{Q_{1}}\left(Q_{2} \cap H\right) \cap\left(Q_{1} \cap H\right)\right|=q+1$. If Q_{1} were singular with respect to H with deep point u such that $\pi_{Q_{1}}(u) \in Q_{1} \cap H$, then $\beta=\left|\pi_{Q_{1}}\left(Q_{2} \cap H\right) \cap\left(Q_{1} \cap H\right)\right|=1$, a contradiction. Hence, $\beta=q+1$ as claimed.

Now, we have $\alpha_{1}+\alpha_{2}+\alpha_{3}=q+1$ and $(q+1)\left(q^{2}+1\right)=\left|Q_{1}\right|=(q+1)+\alpha_{1}\left(q^{2}-q\right)+$ $\alpha_{2} q^{2}+\alpha_{3}\left(q^{2}+q\right)=(q+1)+(q+1) q^{2}+q\left(\alpha_{3}-\alpha_{1}\right)$, i.e. $\alpha_{1}+\alpha_{2}+\alpha_{3}=q+1$ and $\alpha_{1}=\alpha_{3}$. Hence, $\alpha_{1}=\alpha_{3} \leqslant \frac{q+1}{2}$. Moreover, if $\alpha_{1}=\alpha_{3}=\frac{q+1}{2}$, then $\alpha_{2}=0$. This proves claim (2).

Now, $\alpha_{2}+\alpha_{3} \geqslant \frac{q+1}{2}$. So, $\alpha_{2}+\alpha_{3} \geqslant 2$. Without loss of generality, we may suppose that the quads Q_{2} and Q_{3} are singular or subquadrangular with respect to H.

The points and lines contained in Q_{1} can be identified (in a natural way) with the points and lines lying on a given nonsingular parabolic quadric $Q(4, q)$ of $\mathrm{PG}(4, q)$. Now, each of $\pi_{Q_{1}}\left(Q_{2} \cap H\right)$ and $\pi_{Q_{1}}\left(Q_{3} \cap H\right)$ is either a singular hyperplane or a subgrid of $\widetilde{Q_{1}}$ and hence arises by intersecting $Q(4, q)$ with a hyperplane of $\operatorname{PG}(4, q)$. Since $\pi_{Q_{1}}\left(Q_{2} \cap\right.$
$H) \cap \pi_{Q_{1}}\left(Q_{3} \cap H\right)=\pi_{Q_{1}}\left(Q_{2} \cap H\right) \cap\left(Q_{1} \cap H\right)$ is a set of $q+1$ mutually noncollinear points, $\pi_{Q_{1}}\left(Q_{2} \cap H\right) \cap\left(Q_{1} \cap H\right)$ must be a conic of Q_{1}.

Lemma 30. If Q_{1} is an ovoidal quad, then through every two points of $Q_{1} \cap H$, there is a conic of Q_{1} that is completely contained in $Q_{1} \cap H$.

Proof. Let x_{1} and x_{2} be two distinct points of $Q_{1} \cap H$. By Lemmas 22 and 26, there exists a line $L_{i}, i \in\{1,2\}$ through x_{i} that is contained in H. Let Q_{2} be a quad distinct from Q_{1} that meets L_{1} and L_{2}, and let $\left\{Q_{1}, Q_{2}, \ldots, Q_{q+1}\right\}$ be the unique hyperbolic set of quads of $D W(5, q)$ containing Q_{1} and Q_{2}. Since $\left\{x_{1}, x_{2}\right\} \subseteq \pi_{Q_{1}}\left(Q_{2} \cap H\right) \cap\left(Q_{1} \cap H\right)$, Lemma 29 applies. We conclude that $\pi_{Q_{1}}\left(Q_{2} \cap H\right) \cap\left(Q_{1} \cap H\right)$ is a conic containing x_{1} and x_{2}.

Lemma 31. For every quad Q_{1} that is ovoidal with respect to H, there is a quad Q_{2} disjoint from Q_{1} that is singular with respect to H such that $\pi_{Q_{1}}(u) \notin Q_{1} \cap H$ where u is the deepest point of the singular hyperplane $Q_{2} \cap H$ of $\widetilde{Q_{2}}$.

Proof. The number of points $x \in \Gamma_{1}\left(Q_{1}\right) \cap H$ for which $\pi_{Q_{1}}(x) \notin Q_{1} \cap H$ is equal to $\left(\left|Q_{1}\right|-\left|Q_{1} \cap H\right|\right) \cdot q^{2}=q^{3}\left(q^{2}+1\right)$. Now, since $n_{D}=\frac{2 q^{2}}{q+1} \delta \leqslant \frac{2 q^{2}}{q+1} \cdot \frac{1}{2}(q+1)\left(q^{3}+1\right)=$ $q^{2}\left(q^{3}+1\right)<q^{3}\left(q^{2}+1\right)$, there exists a point $y \in \Gamma_{1}\left(Q_{1}\right) \cap H$ not of type (D) for which $\pi_{Q_{1}}(y) \notin Q_{1} \cap H$. Let $L \subseteq H$ be a special line through y and let z denote the unique point of L for which $\pi_{Q_{1}}(z) \in Q_{1} \cap H$. By Lemma 22, there are at most two quads R through L for which z is the deep point of the singular hyperplane $R \cap H$ of \widetilde{R}. Hence, there exists a quad Q_{2} through L for which the deep point u of the singular hyperplane $Q_{2} \cap H$ of $\widetilde{Q_{2}}$ is distinct from z. Since u is not collinear with a point of $Q_{1} \cap H, Q_{1}$ and Q_{2} are disjoint.
Lemma 32. If Q_{1} is ovoidal with respect to H, then $Q_{1} \cap H$ is a classical ovoid of $\widetilde{Q_{1}}$.
Proof. By Lemma 31, there exists a quad Q_{q+1} disjoint from Q_{1} that is singular with respect to H such that $\pi_{Q_{1}}(u) \notin Q_{1} \cap H$ where u is the deep point of the singular hyperplane $Q_{q+1} \cap H$ of $\widetilde{Q_{q+1}}$. Let $\left\{Q_{1}, Q_{2}, \ldots, Q_{q+1}\right\}$ denote the unique hyperbolic set of quads of $D W(5, q)$ containing Q_{1} and Q_{q+1}. By Lemma 29 , we then have:
(1) $X:=\pi_{Q_{1}}\left(Q_{q+1} \cap H\right) \cap\left(Q_{1} \cap H\right)$ is a conic of Q_{1};
(2) the number k of ovoidal quads of the set $\left\{Q_{1}, Q_{2}, \ldots, Q_{q+1}\right\}$ is at most $\frac{q}{2}$.

Without loss of generality, we may suppose that Q_{1}, \ldots, Q_{k} are the quads of $\left\{Q_{1}, Q_{2}, \ldots\right.$, $\left.Q_{q+1}\right\}$ that are ovoidal with respect to H. Since $(q+1)-\frac{q}{2} \geqslant 2, Q_{q}$ and Q_{q+1} are not ovoidal with respect to H. By Lemmas 5 and $8, \pi_{Q_{1}}\left(Q_{q} \cap H\right)$ and $\pi_{Q_{1}}\left(Q_{q+1} \cap H\right)$ are contained in a unique pencil of classical hyperplanes of $\widetilde{Q_{1}}$. Moreover, this pencil contains the hyperplanes $\pi_{Q_{1}}\left(Q_{i} \cap H\right), i \in\{k+1, \ldots, q+1\}$. Let A_{1}, \ldots, A_{k} denote the remaining elements of this pencil. Then $X \subseteq A_{1} \cap \cdots \cap A_{k}$ and $A_{1} \cup \cdots \cup A_{k}=\pi_{Q_{1}}\left(Q_{1} \cap H\right) \cup$ $\cdots \cup \pi_{Q_{1}}\left(Q_{k} \cap H\right)$. Now, $\left|A_{1} \cup \cdots \cup A_{k}\right| \geqslant|X|+k\left(q^{2}+1-|X|\right)=(q+1)+k\left(q^{2}-q\right)$ and equality holds if and only if every $A_{j}, j \in\{1, \ldots, k\}$, is a classical ovoid of $\widetilde{Q_{1}}$. Now, since $\left|\pi_{Q_{1}}\left(Q_{1} \cap H\right) \cup \cdots \cup \pi_{Q_{1}}\left(Q_{k} \cap H\right)\right|=|X|+k\left(q^{2}+1-|X|\right)=(q+1)+k\left(q^{2}-q\right)$, we can conclude that every $A_{j}, j \in\{1, \ldots, k\}$, is a classical ovoid of $\widetilde{Q_{1}}$.

Now, let $i \in\{1, \ldots, k\}$ and suppose there exists no $j \in\{1, \ldots, k\}$ such that $\pi_{Q_{1}}\left(Q_{i} \cap\right.$ $H)=A_{j}$. Then $X \subseteq \pi_{Q_{1}}\left(Q_{i} \cap H\right) \subseteq A_{1} \cup \cdots \cup A_{k}$ and there exist two distinct $j_{1}, j_{2} \in$ $\{1, \ldots, k\}$ such that $\pi_{Q_{1}}\left(Q_{i} \cap H\right) \cap\left(A_{j_{1}} \backslash X\right) \neq \emptyset$ and $\pi_{Q_{1}}\left(Q_{i} \cap H\right) \cap\left(A_{j_{2}} \backslash X\right) \neq \emptyset$. Let y_{1} be an arbitrary point of $\pi_{Q_{1}}\left(Q_{i} \cap H\right) \cap\left(A_{j_{1}} \backslash X\right)$ and let y_{2} be an arbitrary point of $\pi_{Q_{1}}\left(Q_{i} \cap H\right) \cap\left(A_{j_{2}} \backslash X\right)$. By Lemma 30, there exists a conic C through y_{1} and y_{2} that is completely contained in $\pi_{Q_{1}}\left(Q_{i} \cap H\right)$ and hence also in $A_{1} \cup \cdots \cup A_{k}$. Since $|C|=q+1$ and $k \leqslant \frac{q}{2}$, there exists a $j_{3} \in\{1, \ldots, k\}$ such that $\left|C \cap A_{j_{3}}\right| \geqslant 3$. Since $A_{j_{3}}$ is a classical ovoid of $\widetilde{Q_{1}}$, this necessarily implies that $C \subseteq A_{j_{3}}$, contradicting the fact that $y_{1} \in A_{j_{1}} \backslash X$, $y_{2} \in A_{j_{2}} \backslash X$ and $j_{1} \neq j_{2}$. Hence, there exists a $j \in\{1, \ldots, k\}$ such that $\pi_{Q_{1}}\left(Q_{i} \cap H\right)=A_{j}$. This implies that the ovoid $Q_{i} \cap H$ of $\widetilde{Q_{i}}$ is classical.

Corollary 33. The hyperplane H is classical.
Proof. This is an immediate corollary of Proposition 7 and Lemma 32.
Remark. With the terminology of Cooperstein \& De Bruyn [5] and De Bruyn [7], the hyperplane H is either a hyperplane of Type V or a hyperplane of Type VI.

Acknowledgment

At the time of the writing of this paper, the author was a Postdoctoral Fellow of the Research Foundation - Flanders (Belgium).

References

[1] S. Ball, P. Govaerts and L. Storme. On ovoids of parabolic quadrics. Des. Codes Cryptogr., 38:131-145, 2006.
[2] A. Barlotti. Un'estensione del teorema di Segre-Kustaanheimo. Boll. Un. Mat. Ital., 10:498-506, 1955.
[3] I. Cardinali and B. De Bruyn. The structure of full polarized embeddings of symplectic and Hermitian dual polar spaces. Adv. Geom., 8:111-137, 2008.
[4] B. N. Cooperstein. On the generation of dual polar spaces of symplectic type over finite fields. J. Combin. Theory Ser. A, 83:221-232, 1998.
[5] B. N. Cooperstein and B. De Bruyn. Points and hyperplanes of the universal embedding space of the dual polar space $D W(5, q), q$ odd. Michigan Math. J., 58:195-212, 2009.
[6] B. N. Cooperstein and A. Pasini. The non-existence of ovoids in the dual polar space DW $(5, q)$. J. Combin. Theory Ser. A, 104:351-364, 2003.
[7] B. De Bruyn. The hyperplanes of $D W\left(5,2^{h}\right)$ which arise from embedding. Discrete Math., 309:304-321, 2009.
[8] B. De Bruyn. The hyperplanes of finite symplectic dual polar spaces which arise from projective embeddings. European J. Combin., 32:1384-1393, 2011.
[9] B. De Bruyn. Hyperplanes of $D W(5, \mathbb{K})$ containing a quad. Discrete Math., 313:12371247, 2013.
[10] B. De Bruyn and P. Vandecasteele. The distance-2-sets of the slim dense near hexagons. Ann. Comb., 10:193-210, 2006.
[11] W. M. Kantor. Ovoids and translation planes. Canad. J. Math., 34:1195-1207, 1982.
[12] A. Kasikova and E. Shult. Absolute embeddings of point-line geometries. J. Algebra, 238:265-291, 2001.
[13] C. M. O'Keefe and T. Penttila. Ovoids of $\mathrm{PG}(3,16)$ are elliptic quadrics. J. Geom., 38:95-106, 1990.
[14] C. M. O'Keefe and T. Penttila. Ovoids of $\mathrm{PG}(3,16)$ are elliptic quadrics, II. J. Geom., 44:140-159, 1992.
[15] G. Panella. Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. Boll. Un. Mat. Ital., 10:507-513, 1955.
[16] A. Pasini. Embeddings and expansions. Bull. Belg. Math. Soc. Simon Stevin, 10:585626, 2003.
[17] A. Pasini and S. V. Shpectorov. Uniform hyperplanes of finite dual polar spaces of rank 3. J. Combin. Theory Ser. A, 94:276-288, 2001.
[18] S. E. Payne and J. A. Thas. Finite generalized quadrangles. Second edition. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich, 2009.
[19] T. Penttila and B. Williams. Ovoids of parabolic spaces. Geom. Dedicata, 82:1-19, 2000.
[20] H. Pralle. A remark on non-uniform hyperplanes of finite thick dual polar spaces. European J. Combin., 22:1003-1007, 2001.
[21] H. Pralle. The hyperplanes of $D W(5,2)$. Experiment. Math., 14:373-384, 2005.
[22] M. A. Ronan. Embeddings and hyperplanes of discrete geometries. European J. Combin., 8:179-185, 1987.
[23] E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata, 9:1-72, 1980.
[24] J. A. Thas and S. E. Payne. Spreads and ovoids in finite generalized quadrangles. Geom. Dedicata, 52:227-253, 1994.
[25] S. Thomas. Designs and partial geometries over finite fields. Geom. Dedicata, 63:247253, 1996.
[26] J. Tits. Ovoïdes et groupes de Suzuki. Arch. Math., 13:187-198, 1962.

