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Abstract

In Part I of this paper ([PW12]), the minimal regular covers of three of the eight
Archimedean tilings were determined. However, the computations described in that
work grow more complicated as the number of flag orbits of the tilings increases.
In Part II, we develop a new technique in order to present the minimal regular
covers of certain periodic abstract polytopes. We then use that technique to finish
determining the minimal regular covers of the Archimedean tilings.

1 Introduction

Symmetric maps on surfaces, and their automorphism groups, have been studied since the
early 20th century, mainly in the case when the maps are finite, that is, when they lie on
compact surfaces (see [Bra27], [CM80]). Much is known about the regular covers and the
closely related monodromy groups of such finite maps (e.g., [Orb07, Wil76, Wil94, Wil02]).
However, tilings of the Euclidean or hyperbolic plane are examples of maps on non-
compact surfaces, and as such, require somewhat different methods of investigation.
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Since the late 20th century, maps whose vertex-figures are polygons have been studied
as abstract polyhedra (rank 3 abstract polytopes) [MS02, Section 6B]. Much work has been
done to understand (abstract) regular polytopes, where [MS02] is the primary reference
work. However, in comparison, much less is known about polytopes with less symmetry.
A particularly useful tool for the study of non-regular abstract polytopes is [Har99a], in
which Hartley demonstrates that any abstract polytope can be realized as the quotient
of a regular (abstract) polytope. There is a strong connection between this idea and
the concept of regular covers of maps. In particular, every map has a minimal regular
cover, in the sense that no other regular cover is covered by the minimal one. It is easy
to demonstrate that the minimal regular cover of a polyhedron is itself a polyhedron
(details are provided in [MPW]). This paper and its predecessor [PW12] are part of a
project whose goal is to better understand the structure of quotients and covers both
geometrically and algebraically. For a discussion of topological aspects of the covers of
infinite maps see [CPR+].

Symmetric tilings have been the subject of intense interest and investigation, espe-
cially since the publication of Grünbaum and Shephard’s Tilings and Patterns [GS87].
Consequently, the Archimedean tilings provide a natural starting point in the study of
regular covers of infinite maps. In [PW11b] representations of the Archimedean tilings
as quotients of regular hyperbolic tilings were provided by means of a general description
developed by Hartley in [Har99a] (more basic information about such representations is
available in [Har99b] and [HW10]). The minimal regular covers of the three Archimedean
tilings (3.6.3.6), (4.8.8) and (3.12.12) were found in [PW12]. These tilings have in com-
mon that the number of orbits on flags under the symmetry group is at most 3. The
technique used consists of finding the intersection of stabilizers of certain flags under the
action of the monodromy group of the tiling. While this method is very general, and
can be used to work with arbitrary abstract polytopes, the calculations were lengthy and
seemed intractable for the remaining five Archimedean tilings.

Using new techniques, in this paper we complete the determination of the minimal
regular covers of the Archimedean tilings. The theory leading to the procedure which we
used to find the minimal regular covers of the Archimedean tilings (3.4.6.4), (3.3.4.3.4),
(3.3.3.4.4), (4.6.12) and (3.3.3.3.6) is provided in Section 3. This procedure is a natural
tool which could be applied to other periodic tessellations of Euclidean spaces. In Section
4 we show the details of this procedure while considering the tiling (3.4.6.4). Finally, an
application of this procedure to finite maps on the torus is discussed in Section 5.

2 Basic notions and previous results

In this paper, we define polyhedra as abstract polytopes of rank 3 in the sense of [MS02];
that is, a polyhedron is a partially ordered set with a rank function on the set {0, 1, 2}
satisfying certain properties. Following the notation of convex polyhedra, the vertices,
edges and faces of an abstract polyhedron are its elements of rank 0, 1 and 2 respectively.
Every vertex belongs to at least two edges, and every face contains at least two edges.

A section F/G of a polyhedron is defined when G 6 F to be the partially ordered
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set of all elements H such that G 6 H 6 F , that is F/G := {H ∈ P | G 6 H 6 F}.
The vertex-figure at a vertex v is the section {F ∈ P | v 6 F}. Abstract polyhedra
satisfy the diamond condition, that is, every edge contains precisely two vertices and is
contained in precisely two faces, and the section determined by an incident face f and
vertex v pair contains exactly two edges. A flag is a (vertex, edge, face) triple of mutually
incident elements of the partially ordered set. As a consequence of the diamond condition,
given i ∈ {0, 1, 2} and a flag Ψ, there exists a unique flag Ψi that coincides with Ψ in all
elements except in that of rank i. The flag Ψi is called the i-adjacent flag of Ψ. Finally, an
abstract polyhedron is also strongly flag-connected, that is, any two flags in a polyhedron
can be connected by a sequence of adjacent flags, and this connectivity is preserved when
restricted to either faces or vertex-figures.

The degree of a vertex v is the number of edges containing v, and the co-degree of a
face f is the number of edges contained in f . Whenever every vertex of a polyhedron P
has the same degree q, and every face of P has the same co-degree p we say that P is
equivelar and has Schläfli type {p, q}.

An automorphism of a polyhedron P is an order preserving bijection of its elements.
We say that a polyhedron is regular if its automorphism group Γ(P) acts transitively
on the set of flags of P . The Platonic solids and the familiar regular tessellations of
the Euclidean plane by triangles, squares, or hexagons (36, 44, and 63 in the notation of
[GS87]) are examples of abstract regular polyhedra.

A string C-group G of rank 3 is a group which has distinct distinguished involutory
generators ρ0, ρ1, ρ2 satisfying that (ρ0ρ2)2 = id, the identity in G, and that 〈ρ0, ρ1〉 ∩
〈ρ1, ρ2〉 = 〈ρ1〉 (the latter is called the intersection condition). The automorphism group
of an abstract regular polyhedron P is always a string C-group of rank 3. Given an
arbitrarily chosen base flag Φ of P , ρi can be taken to be the (unique) automorphism
mapping Φ to the i-adjacent flag Φi. Furthermore, any string C-group Γ of rank 3 is
the automorphism group of an abstract regular polyhedron P(Γ) [MS02, 2B], so, up to
isomorphism, there is a one-to-one correspondence between the string C-groups of rank 3
and the abstract regular polyhedra. Thus, in the study of regular abstract polyhedra we
may either work with the polyhedron as a poset or with its automorphism group.

Examples of regular polyhedra are the regular tilings. We define a tiling of the (spher-
ical, Euclidean or hyperbolic) plane as an edge to edge covering of the plane by convex
polygons whose interiors are pairwise disjoint. There are three regular tilings of the
Euclidean plane, namely the tessellations by equilateral triangles, squares and regular
hexagons.

For any polyhedron P we define permutations r0, r1, r2 on F(P) by

Ψri := Ψi,

for every flag Ψ of P and i = 0, 1, 2 (note that these are not automorphisms of P). The
group Mon(P ) := 〈r0, r1, r2〉 will be referred to as the monodromy group of P [HOW09].
It is now well known that Mon(P) is a string C-group for every polyhedron P (see for
example [MPW]).
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Note that, by definition of automorphism, the action of each ri commutes with the
automorphisms of any given polyhedron. That is,

α(Ψri) = (αΨ)ri (1)

for i = 0, 1, 2 and α ∈ Γ(P). More generally, an inductive process shows that the action
of the monodromy group on the flags commutes with the action by automorphisms, that
is,

α(Ψw) = (αΨ)w (2)

for every w ∈ Mon(P), α ∈ Γ(P). In other words, the left action of Γ(P) and right action
of Mon(P) on the set of flags are compatible.

The flag action of a string C-group Γ = 〈ρ0, ρ1, ρ2〉 on P is the group homomorphism
Γ→ Mon(P ) defined by ρi 7→ ri, provided such a homomorphism exists. We say that the
regular polyhedron P is a cover of Q, denoted by P ↘ Q, if Q admits a flag action from
Γ(P). For example, the (universal) polyhedron with automorphism group isomorphic
to the Coxeter group [∞,∞] := 〈ρ0, ρ1, ρ2 | (ρ0ρ2)2 = id〉 covers all other polyhedra.
Whenever the least common multiple of the co-degrees of the faces of a polyhedron P is
p, and the least common multiple of the vertex degrees of P is q, P is covered by the
tiling {p, q} whose automorphism group is isomorphic to the string Coxeter group

[p, q] := 〈ρ0, ρ1, ρ2 | (ρ0ρ2)2 = (ρ0ρ1)p = (ρ1ρ2)q = id〉.

Recall that {p, q} can be viewed as a regular tiling of the sphere, Euclidean plane or
hyperbolic plane, depending on whether 1

p
+ 1

q
is bigger than, equal to, or less than 1

2
,

respectively.
Whenever P ↘ Q, the polyhedron Q is totally determined by P and the stabilizer

N of a chosen base flag Φ of Q under the flag action of Γ(P). Indeed, Q = P/N , the
polytope whose faces are orbits under the action of N on P [Har99a].

Since the monodromy group of every polyhedron is a string C-group, any polyhedron
Q is automatically equipped with a regular cover, P(Mon(Q)). Moreover, it is straight-
forward to demonstrate that

Mon(Q) ∼= Γ/Core(Γ, N), (3)

where Γ is the automorphism group of any regular cover of Q, N is the stabilizer of a flag
in Q under the flag action of Γ, and the core, Core(Γ, N), is the largest normal subgroup
of Γ in N (see [MPW] for details). In particular, it follows from (3) that there is a
group homomorphism from Γ to Mon(Q) mapping the generator ρi to ri, implying that
any regular cover of Q also covers the polyhedron P(Mon(Q)). This motivates the name
“minimal regular cover of Q” for P(Mon(Q)) since it is actually the smallest possible
regular cover.

As a consequence of the previous discussion, the monodromy group of a regular poly-
tope P is isomorphic to Γ(P)/Core(Γ, N), where N is the stabilizer of any flag in P . Note
that in this case Core(Γ, N) is trivial, since the stabilizer of all flags is the same as the
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stabilizer of any individual flag (due to regularity) and every conjugate of the stabilizer
N of a flag of P is the stabilizer of another flag of P . Hence Γ(P) ∼= Mon(P ) (for further
details of this fact see [MPW]).

This leads to a useful reinterpretation of the condition for a regular polyhedron P to be
a cover of Q. The fact that Q admits a flag action by Γ(P) is equivalent to there being an
epimorphism from Mon(P ) to Mon(Q). Thus, we find it more natural to understand the
cover P ↘ Q as an epimorphism of monodromy groups, instead of as a homomorphism
from an automorphism group to a monodromy group. This perspective is motivated by
the natural way in which i-adjacent flags of P are mapped into i-adjacent flags of Q.
Henceforth we shall proceed according to this notion and use the generators r0, r1, r2 of
Mon(P ) instead of those of Γ(P) to denote the action on the flags of Q.

Several geometric objects can be viewed as abstract polyhedra, for example the convex
polyhedra and the plane tilings. In such cases, the symmetry group is the group of isome-
tries of the ambient space preserving the polyhedron. Every symmetry can be understood
as an automorphism of the abstract object, but in general not every automorphism can be
realized as a symmetry of a geometric realization of the abstract object. Throughout the
remainder of this paper we will use the term “polyhedra” to mean either the geometric
objects or abstract polyhedra, as appropriate.

An Archimedean or uniform tiling of the Euclidean plane is a non-regular tiling by reg-
ular convex polygons such that its automorphism group acts transitively on the vertices.
There are eight Archimedean tilings, determined by the types and cyclic order of the
regular polygons meeting at each vertex. Following [GS87], we denote each Archimedean
tiling by a symbol of the form (p1.p2. . . . .pk) where each pi indicates a pi-gon in a cyclic
ordering of the faces around a vertex. Thus (3.6.3.6) denotes the Archimedean tiling of
the plane in which each vertex is surrounded by a triangle, a hexagon, a triangle and a
hexagon (or any cyclic reordering or reversal of this sequence).

Every Archimedean tiling of the plane contains faces of different sizes. In some of
these tilings each flag orbit O, under the symmetry group, is determined by the size of
the faces in flags in O together with the size of the faces of their 2-adjacent flags, thus
giving a combinatorial description of the flag orbits. More generally, each flag orbit O,
under the symmetry group of an Archimedean tiling of the plane, is determined by the
sizes of the faces in flags in O together with the sizes of the faces in images of the flags
in O by some monodromy elements which depend only on the tiling. This combinatorial
description of the flag orbits under the symmetry group implies that the symmetry group
and the automorphism group of any Archimedean tiling are isomorphic. Whenever A is
an Archimedean tiling we can abuse notation and understand the elements of Γ(A) either
as combinatorial automorphisms or as symmetries of the geometric tessellation as needed.
The eight Archimedean tilings are listed in Table 1.

A toroidal quotient of a tiling T of E2 is a quotient T /〈t1, t2〉 where t1 and t2 are two
translations with respect to linearly independent vectors that are also symmetries of T .
The vertices, edges and faces of T /〈t1, t2〉 are the orbits of the vertices, edges and faces
of T under the action of 〈t1, t2〉, and the incidence in T /〈t1, t2〉 is the natural incidence
induced from that in T .
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3 Structure of the covers

In this section we show that the monodromy group of every Archimedean tiling A is a
finite extension of a free abelian group of finite rank. As we shall see, the rank of such
an abelian group is 2k, where k is the number of flag orbits of A under Γ(A). Specific
details of the monodromy groups of the Archimedean tilings are given in Lemmas 1 to 6.
The main result is stated as Theorem 7.

Lemma 1. Let A be an Archimedean tiling of E2. There exists an orbit O of flags under
the action of Γ(A), such that there exist zO, wO ∈ Mon(A) fixing all flags of A not in O
while acting on flags in O like translational symmetries of A in two linearly independent
directions.

Proof. In Table 1 we show an element zO for each of the choices of A. In each case, the
orbit O is represented by the flag in gray in Figure 1. For each tessellation, the translation
vector is with respect to the basis indicated in the same figure, where the white-head arrow
indicates the first vector of the basis.

A zO Translation vector
(3.6.3.6) [(r0r1)3r2r1r2]2 (2, 0)
(4.8.8) [(r0r1)4r2]4 (4, 0)

(3.12.12) [(r0r1)3r2]3[(r1r0)3r2]3 (2, 0)
(3.4.6.4) (r0r1)3r2(r0r1)6r2(r1r0)3r2(r0r1)6r2 (2, 0)

(3.3.4.3.4) [(r1r0)3r2r1r2]2[(r0r1)3r2r1r2]2 (1, 1)
(3.3.3.4.4) [(r0r1)3r2(r0r1)2r2r0r1r2(r1r0)2r2r1r2r1r2]2 (2, 0)
(4.6.12) (r0r1)4[r2(r0r1)−4]2r2(r0r1)6r2[(r0r1)4r2]2(r0r1)−4r2(r0r1)6r2 (2, 2)

(3.3.3.3.6) [(r0r1)3r2r1r2r0r1r2]4 (4, 0)

Table 1: Element zO ∈ Mon(A)

In all cases we can obtain wO by conjugating zO with an element in Mon(A) fixing
orbit O. For instance

(3.6.3.6) → wO = r1r0zOr0r1,
(4.8.8) → wO = r1r0r1zOr1r0r1,

(3.12.12) → wO = r1r0r1zOr1r0r1,
(3.4.6.4) → wO = r0r1zOr1r0,

(3.3.4.3.4) → wO = r1r0zOr0r1,
(3.3.3.4.4) → wO = r2r1r0r1r2zOr2r1r0r1r2,

(4.6.12) → wO = r1r0r1zOr1r0r1,
(3.3.3.3.6) → wO = r1r0zOr0r1.

(4)
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(3.3.4.3.4) (3.3.3.4.4) (3.3.3.3.6)

(3.12.12) (4.6.12)

(3.6.3.6) (4.8.8) (3.4.6.4)

Figure 1: Bases for the translation subgroups of the symmetry groups of the Archimedean
tilings.

Lemma 2. Let A be an Archimedean tiling of E2 and let O1, . . . ,Ok be its flag orbits
under Γ(A). Then, for each j ∈ {1, . . . , k} there exist zj, wj ∈ Mon(A) fixing all flags of
A not in Oj while acting on flags in O like translational symmetries of A in two linearly
independent directions.

Proof. Without loss of generality assume that z1 and w1 are respectively zO and wO as in
Lemma 1. Recall that the action of the monodromy group is transitive on the flags of A.
This implies that if a flag on orbit O1 is reached from a flag Φ on orbit Oj by the element
f ∈ Mon(A) then we may define zj and wj as fz1f

−1 and fw1f
−1 respectively. To see that

zj and wj act on flags in Oj like translational symmetries of A in two linearly independent
directions, it suffices to consider the corresponding action on the triangle of the barycentric
subdivision of the tiling A corresponding to Φ and the triangle corresponding to Φf . Thus
the geometric effect of fz1f

−1 on Φ is the translation that maps Φf to Φfz1.

In the following three lemmas we concentrate our attention on properties of the group
〈zj, wj | j ∈ {1, . . . , k}〉.

Lemma 3. Let A, zj, and wj be as in Lemma 2. Then 〈zj, wj | j ∈ {1, . . . , k}〉 ∼= Z2k.

Proof. By definition, an element in Mon(A) equals id if and only if it acts like id on
all flags of A. Note that the elements zizjz

−1
i z−1

j , wiwjw
−1
i w−1

j and ziwjz
−1
i w−1

j act
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on all flags of A like a composition of two (maybe trivial) translational symmetries of
A and their inverses. Since the action of any pair of translations commute, zizjz

−1
i z−1

j ,

wiwjw
−1
i w−1

j and ziwjz
−1
i w−1

j act like id on all flags, implying that every pair of generators
of 〈zj, wj | j ∈ {1, . . . , k}〉 must commute. Clearly zi and wi have infinite order, and
Lemma 2 implies that none of these generators can be expressed in terms of the others.
Thus the lemma holds.

Lemma 4. Let A, zj, and wj be as in Lemma 2. Then 〈zj, wj | j ∈ {1, . . . , k}〉 has finite
index in Mon(A).

Proof. Let t1 and t2 be the translations in Γ(A) such that if Φ ∈ O1 then Φz1 = t1Φ and
Φw1 = t2Φ. Note that, for any j ∈ {1, . . . , k}, there exists Φ ∈ Oj such that Φzj = t1Φ
and Φwj = t2Φ. In general, any flag Φ ∈ Oj satisfies that Φzj = t̄1Φ and Φwj = t̄2Φ for
some translations t̄1 and t̄2 with respect to the images of the translation vectors of t1 and
t2 under some symmetry of A.

Let M be the maximum of the lengths of the translation vectors t1 and t2. Then every
pair of points of the parallelogram determined by t̄1 and t̄2 have a distance less than 2M
between them. We claim that, given any element x ∈ Mon(A), there exists an element
y ∈ 〈zj, wj | j ∈ {1, . . . , k}〉 such that, for any flag Φ of A, the (Euclidean) distance
between the vertices of A in Φ and Φxy is less than 2M . In fact, if for some flag orbit
j0 it happens that the distance between the vertices of Φ and Φx is greater or equal than
2M , then there exist appropriate powers α1 and α2 of the translations t̄1 and t̄2 defined
above, such that the distance between the vertices of Φ and t̄α1

1 t̄
α2
2 Φx is less than 2M (it

is enough to express in terms of t̄1 and t̄2 the translation mapping the vertex of Φx to the
parallelogram determined by the vertex of Φ together with the translations t̄1 and t̄2). By
multiplying x by the corresponding powers of zj0 and wj0 we obtain an element xzα1

j0
zα2
j0

with the property that the distance between the vertices of Φ and Φxzα1
j0
zα2
j0

is less than
2M . This argument can be applied to all flag orbits.

Recall that any element of Mon(A) is a permutation of the flags of A. It follows
from (2) that if Ψ = βΦ for some β ∈ Γ(A) then the image of Ψ under a given element
s ∈ Mon(A) is determined by β and the image of Φ under s. This implies that to describe
an element in Mon(A) it suffices to define its action on only one flag of each flag orbit of
A under Γ(A).

Since there are finitely many flags whose vertices are at distance less than 2M from
the vertex of Φ, there are finitely many cosets of 〈zj, wj | j ∈ {1, . . . , k}〉 in Mon(A).
Hence 〈zj, wj | j ∈ {1, . . . , k}〉 has finite index in Mon(A).

Lemma 5. Let A, zj, and wj be as in Lemma 2. Then the monodromy elements zj and
wj can be chosen so that 〈zj, wj | j ∈ {1, . . . , k}〉 is a normal subgroup of Mon(A).

Proof. Let Cl(z) denote the normal closure of z in Mon(A), and let zj and wj be as in
the proofs of Lemmas 1 and 2. Since each zj and wj is a conjugate of z1 it follows that
〈zj, wj | j ∈ {1, . . . , k}〉 6 Cl(z1).
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On the other hand, every conjugate of z1 acts like id on all orbits of flags but one. Let
x ∈ Mon(A) and let Oj be the flag orbit containing flags where x−1z1x does not act like
id. Then x−1z1x acts on any flag in Oj like a translation. From the actions of x−1z1x,
zj, and zw on the flags of each Archimedean tessellation A, it can be seen that x−1z1x is
in the group 〈zj, wj〉. This shows that 〈zj, wj | j ∈ {1, . . . , k}〉 > Cl(z1) and the lemma
holds.

In what follows we derive a procedure to obtain a presentation in terms of generators
and relations of Mon(A), for any given Archimedean tiling A. We first define a finite map
that arises from the quotient of Mon(A) by the normal subgroup 〈zj, wj | j ∈ {1, . . . , k}〉
as in Lemma 5. The following lemma shows that such a map is in fact a toroidal quotient
of A.

Lemma 6. Let A be an Archimedean tiling of E2, let zj, wj be as in Lemma 2, chosen
to satisfy the conditions in Lemma 5, and let t1, t2 be the translations in Γ(A) such that
t1Φ = Φz1 and t2Φ = Φw1 for some flag Φ. Then

Mon(A)/〈zj, wj | j ∈ {1, . . . , k}〉 ∼= Mon(A/〈t1, t2〉).

Proof. Since there is a rank and adjacency preserving function from the flags of A to the
flags A/〈t1, t2〉 it follows that there is a surjective group homomorphism from Mon(A)
to Mon(A/〈t1, t2〉) (see [MPW] where these functions are called rap-maps). The kernel
H of such homomorphism contains 〈zj, wj | j ∈ {1, . . . , k}〉 since all the monodromy
elements in the latter preserve all flags in A/〈t1, t2〉. On the other hand, the action of
every element in H equals the action of some product of generators zj and wj implying
that H = 〈zj, wj | j ∈ {1, . . . , k}〉.

Note that the map A/〈t1, t2〉 lies on the torus, and in particular, its monodromy
group is finite. This allows us to compute a presentation of Mon(A/〈t1, t2〉) in terms of
generators and relations. Assume that p is the least common multiple of the co-degrees
of the faces, and q is the degree of the vertices of A, let π be the natural quotient from
[p, q] to Mon(A), and suppose that

Mon(A/〈t1, t2〉) = [p, q]/Cl[p,q]({g1, . . . , gm})

for some gi ∈ [p, q], where ClΛ(X) denotes the normal closure of X in the group Λ. Then,
for i ∈ {1, . . . ,m} there exists hi ∈ 〈zj, wj | j ∈ {1, . . . , k}〉, such that

π(gi) = hi. (5)

Here we are assuming that hi is presented as an expression in terms of {zj, wj | j ∈
{1, . . . , k}}, whereas π(gi) = g̃i has the same expression in terms of the generators r0, r1, r2

of Mon(A) as gi does in terms of the generators ρ0, ρ1, ρ2 of [p, q].
It follows from Lemma 3 that Mon(A) satisfies the relations

zizj = zjzi,
wiwj = wjwi,
ziwj = wjzi,

(6)
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for i, j ∈ {1, . . . , k}.
From Lemma 5 we conclude that for i ∈ {0, 1, 2} and for j ∈ {1, . . . , k} there exist a

word xi,j and a word yi,j on the set {zl, wl | l ∈ {1, . . . , k}} such that

rizjri = xi,j
riwjri = yi,j

(7)

Clearly Mon(A) satisfies (5), (6) and (7). The next theorem shows that these relations
suffice to describe Mon(A) as a quotient of the Coxeter group [p, q].

Theorem 7. Let A be an Archimedean tiling of E2 with vertices of degree q such that the
least common multiple of the co-degrees of its faces is p. Let zj and wj be as in Lemma
5. Then Mon(A) is the quotient of the Coxeter group [p, q] by the extra relations given in
(5), (6) and (7), where ri in (7) should be interpreted as the corresponding generator ρi
of [p, q].

Proof. This is equivalent to proving that the relations on the ri given by (5), (6) and
(7) form a sufficient set of relations to determine if two arbitrary words in r0, r1 and r2

represent the same word in Mon(A).
Let gω ∈ Mon(A) be represented by a word ω on the ri, and let ωi be representatives

from each of the cosets of Cl[p,q]({g̃1, . . . , g̃m}) in Mon(A). Lemma 5 implies that we can
rewrite gω = wiβ, where β ∈ Cl[p,q]({g̃1, . . . , g̃m}). Thus β = β1g̃i1β

−1
1 β2g̃i2β

−1
2 · · · βng̃inβ−1

n

for some choice of βi words on the ri and g̃ik ∈ {g̃1, . . . , g̃m}. By (5)

gω = ωiβ1hi1β
−1
1 β2hi2β

−1
2 · · · βnhinβ−1

n

where hij ∈ 〈zj, wj | j ∈ {1, . . . , k}〉. By (7), zjri = rixij and wjri = riyij. Since xij, yij ∈
〈zj, wj | j ∈ {1, . . . , k}〉, repeated applications of these relations show that βkhklβk =

βkβ
−1
k ĥkl = ĥkl , where ĥkl ∈ 〈zj, wj | j ∈ {1, . . . , k}〉. Thus gω = ωiΠ

n
i=1ĥij = ωit for

some t ∈ 〈zj, wj | j ∈ {1, . . . , k}〉. By the commutativity of the generators of 〈zj, wj | j ∈
{1, . . . , k}〉 obtained as a consequence of (6), t may be represented uniquely as a product
of the form Πk

i=1(zpii w
qi
i ) for some choice of pi, qi ∈ Z. Thus every element of Mon(A) has

a unique presentation of the form ωiΠ
k
j=1(z

pj
j w

qj
j ), completing the argument.

Remark 8. To conclude this section we note that the translation vectors in Table 1 were
verified to be of minimal length possible. To do this we analyzed, with the help of
GAP [GAP], the action of Mon(A) on the toroidal quotient of A determined by the
translation vectors of zO and wO, and noticed that no element in Mon(A) acts like a
translation on flags with preimage in O while fixing the others.

4 The Minimal Regular Cover of (3.4.6.4)

In this section we demonstrate how the theoretical results of the previous section are
used to compute the monodromy group of the (3.4.6.4) tiling A. The group Γ(A) acts
with four orbits on the flags of A, and thus, following Lemma 2, we define zj and wj
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for j ∈ {1, . . . , 4}. To describe the action of these monodromy elements in terms of
translations, we pick a basis (b1, b2) (see Figure 2 for a representation of the four flag
orbits and this basis).

4
3

2
1 b2

b1

Figure 2: The four flag orbits and a basis for the translation subgroup of the symmetry
group of (3.4.6.4).

Following Table 1 and Equation (4) we define:

z1 := (r0r1)3r2(r0r1)6r2(r1r0)3r2(r0r1)6r2 and w1 := r0r1z1r1r0.

Then, the proof of Lemma 2 shows how to construct the remaining zj and wj. This yields:

z2 = r2z1r2 w2 = r2w1r2

z3 = r1r2z1r2r1 w3 = r1r2w1r2r1

z4 = r2r1r2z1r2r1r2 w4 = r2r1r2w1r2r1r2

Let Φ be the shaded flag in Figure 2 that is in orbit 1. The monodromy elements z1 and
w1 act trivially on any flag not in the same orbit of Φ and act like translation on any flag
in orbit 1. In particular, if t1 = (2, 0) and t2 = (0, 2); then t1Φ = Φz1 and t2Φ = Φw1.
Furthermore, each zj and wj is a conjugate of z1, and thus the conditions in Lemma 5 are
satisfied. Therefore, by Lemma 6,

Mon(A)/〈zj, wj | j ∈ {1, . . . , k}〉 ∼= Mon(A/〈t1, t2〉).

In this case, the quotient A/〈t1, t2〉 consists of four hexagons, twelve squares, and eight
triangles on the torus, and therefore has 192 flags. Thus, the group Mon(A/〈t1, t2〉) can
be constructed as a subgroup of the symmetric group S192. Then, a presentation for the
group can be computed in GAP.

The result of this calculation is that Mon(A/〈t1, t2〉) is the quotient of the Coxeter
group [12, 4] by the relators:
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g1 = (ρ2(ρ0ρ1)4ρ2ρ1(ρ0ρ1)3)2,

g2 = ρ2(ρ0ρ1)5ρ2ρ1ρ2(ρ0ρ1)3ρ2(ρ0ρ1)2ρ2(ρ0ρ1)4ρ2ρ1,

g3 = (ρ1ρ2(ρ1ρ0)3ρ2(ρ1ρ0)5)2.

Following Theorem 7, the monodromy group of A is the quotient of the Coxeter group
[12, 4] by extra relations of types (5), (6) and (7). To determine the hi for the relations
of type (5), we must determine the action of gi on the flags of A. The result of this
computation is that:

g1 = Id,

g2 = z−1
3 w3,

g3 = z3.

The twenty eight relations of type (6) are trivial to write down, and all that remains to
find a complete presentation for the monodromy group is to calculate the xi,j and yi,j for
the relations of type (7). This is straight forward, and the result is shown in the following
table. Each entry in the table is the result of conjugating the element of a column label
by the element of the row label.

z1 w1 z2 w2 z3 w3 z4 w4

r0 z1 w−1
1 z1 z2 w−1

2 z2 z−1
3 z−1

3 w3 z−1
4 w4z

−1
4

r1 z1w
−1
1 w−1

1 z3 w3 z2 w2 w−1
4 z4 w−1

4

r2 z2 w2 z1 w1 z4 w4 z3 w3

Table 2: The monodromy element in the table is equal to the element obtained by conju-
gating the column label by the row label.

The monodromy group of the (3.4.6.4) tiling is obtained from the Coxeter group [12, 4]
by adding the 3 relations of type (5), the 28 relations of type (6), and the 24 relations of
type (7). However, many of these relations are redundant. Using GAP, we were able to
reduce this list of 55 extra relations down to a set of 20. Our final presentation for Mon(A)
can be found in Appendix A. We include descriptions of the sets of necessary relations for
the remaining tilings as Appendix B. Unlike for the (3.4.6.4) tiling, the relations of type (5)
are generally quite long and are instead found online at http://hdl.handle.net/11122/1232.

5 Covers of the Archimedean Toroids

All vertex-transitive maps on the torus are toroidal quotients of regular or Archimedean
tessellations of E2 [PW11a], but not all such quotients are vertex-transitive. The minimal
regular covers of (not necessarily vertex-transitive) toroidal maps obtained as toroidal
quotients of the regular tessellations of E2 were found in [DM13]. All such covers are
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toroidal maps with Schlafli type {3, 6}, {4, 4}, or {6, 3}. In this section we discuss an
approach to finding the minimal regular covers of toroidal quotients of the Archimedean
tilings using the minimal regular covers of these tilings. For some of the toroidal quotients
we explicitly describe how to obtain the minimal regular cover.

Let A be an Archimedean tiling. The elements zO as in Table 1 and wO as in (4) in
Mon(A) act on flags in all but one flag orbit (namely O) as id, whereas they act on a
given flag Φ ∈ O like translations t1 and t2. Moreover, the translation vectors in Table
1 were chosen so that their norm is minimal possible (see Remark 8). It is easy to see,
then, that if x ∈ Mon(A) acts on all flags not in O like id and acts on Φ like a translation
t3 then t3 ∈ 〈t1, t2〉.

Lemmas 3, 4, 5, and 6 hold if we substitute zO by zsO for some integer s > 2 while
defining wO as in (4) and zi, wi as in the proof of Lemma 2. In other words, given a normal
finite index subgroup H of Mon(A) isomorphic to Z2k = 〈y1, . . . , y2k〉 as in Section 3, the
subgroup of H isomorphic to 〈sy1, . . . , sy2k〉 is also normal and has finite index. Moreover,

Mon(A)/〈zsj , wsj | j ∈ {1, . . . , k}〉 ∼= Mon(A/〈ts1, ts2〉) (8)

if zj and wj are as in Lemma 6. The next theorem follows from (8).

Theorem 9. Let A be an Archimedean tiling of E2. Let zO and wO be as in Table 1 and
(4) respectively, let t1 and t2 be translations such that t1Φ = ΦzO and t2Φ = ΦwO for some
flag Φ, and let zi and wi be as in the proof of Lemma 2. Let Ats1,ts2 be the toroidal map
obtained from A by taking quotient by the translation group 〈ts1, ts2〉. Then Mon(Ats1,ts2) is
obtained from Mon(A) by imposing the single extra relation zsO = id.

As an example, consider the map M = At21,t22 where A is the tiling 3.4.6.4. Then, by
Theorem 9 we know that the minimal regular cover of M is obtained as the quotient of
the Coxeter group [12, 4] by the elements in the table of Appendix A plus the single extra
relation z2

1 = id.
We note that if At1,t2 is as in Theorem 9 then Relations (6) and (7) become redundant

in Mon(At1,t2) because of the extra relation zO = id. This is consistent with what we
knew, since the only defining relations of At1,t2 are (5).

So far we have described the minimal regular covers of toroidal maps obtained as
quotients of Archimedean tessellations by the specific translation groups 〈ts1, ts2〉. These
particular quotients cover any other toroidal quotient of the Archimedean tessellations
[DS]. Consequently, the minimal regular cover of a toroidal quotient Ats11 t

r1
2 ,t

s2
1 t

r2
2

of an
Archimedean tiling is a quotient of the minimal regular cover of one of the toroidal maps
Ats1,ts2 , and, given any particular such tiling, its cover can be found easily by computing
the stabilizer of a flag of Ats11 t

r1
2 ,t

s2
1 t

r2
2

under the action of the monodromy group of its
cover. The determination of these convenient covers Ats1,ts2 for arbitrary toroidal quotients
of Archimedean maps is beyond the scope of this paper, hence we do not present a full
description of them.
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6 Conclusions and Open Questions

For each of the tilings described in this paper we have been able to identify a corresponding
abelian extension of a finite group to which a minimal regular cover of the tiling may be
associated. Critical to this construction are the existence of elements in the monodromy
group of the tiling that act like translations in two different directions on one transitivity
class of flags and fix all other classes. This is suggestive.

Conjecture 10. For each periodic tiling T of the plane there exist a pair of elements
wO, zO ∈ Mon(T ) with the property that wO, zO act like translations in two different
directions on all flags in one transitivity class of flags under the symmetry group of T ,
and fix all flags in the other transitivity classes.

If the previous conjecture is true, the following conjecture would be a simple corollary
by arguments similar to those presented in this paper.

Conjecture 11. Every periodic tiling of the plane admits a representation of the form
given in Theorem 7.

A broader question in the context of these results is the formulation of what it means
for an infinite abstract polytope to be periodic in the absence of a geometric presentation
(abstract polytopes are a generalization to higher ranks of abstract polyhedra, for more
details see [MS02]). A first candidate would be to consider those polytopes of rank d whose
automorphism groups contain a free abelian subgroup of finite index of rank (d − 1), or
translational periodic polytopes; in the case of the periodic tilings of the Euclidean plane
the free abelian group is actually the group of translational symmetries of the tiling.

Given the context of the current work, a second candidate would be to consider those
polytopes whose monodromy groups contain a free abelian subgroup of finite index of
rank (d− 1)k where d is the dimension (rank) of the abstract polytope, k is the number
of flag orbits under the automorphism group. This class of polytopes could be referred to
as monodromy periodic. A natural additional requirement on the (d − 1)k generators is
that, for each flag orbit O, d generators act nontrivially on flags in O while fixing all flags
in the other orbits. Is every translational periodic polytope automatically a monodromy
periodic polytope? Conversely, is every monodromy periodic polytope a translational
periodic polytope? A contrasting approach to periodicity, in the context of aperiodic
tilings, can be found in [Sch03], where a tiling of a Euclidean space by convex tiles is
periodic if its automorphism group contains an element of infinite order.

The classification of automorphism groups of polytopes satisfying either of these defi-
nitions would be interesting since they would be freed of the geometric constraints of the
crystallographic restriction, and so one might expect there to be more than the familiar
17 plane crystallographic groups, or the 230 crystallographic space groups. A related
question about monodromy groups of abstract polytopes subject to the same restrictions
is whether all such monodromy groups arise from Euclidean periodic tilings.
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A Presentation for the monodromy group of (3.4.6.4)

The monodromy group of the (3.4.6.4) tiling can be presented as the quotient of the
Coxeter group [12, 4] by the following twenty additional relators.

(ρ2(ρ1ρ0)3ρ1ρ2(ρ1ρ0)4))2

(ρ2(ρ0ρ1)5)4

(ρ0ρ1)5ρ2ρ1ρ2(ρ0ρ1)3ρ0ρ2ρ1ρ2(ρ0ρ1)6ρ2ρ1ρ2(ρ0ρ1)3ρ0ρ2ρ1ρ0ρ2ρ1

ρ2(ρ0ρ1)2ρ0ρ2ρ1ρ2ρ1(ρ0ρ1)2ρ2ρ0ρ1ρ2(ρ0ρ1)3ρ2(ρ0ρ1)2ρ2ρ1(ρ0ρ1)4ρ0ρ2ρ1ρ2ρ1(ρ0ρ1)4ρ2ρ1

(ρ0ρ1)3(ρ2ρ1ρ0)3(ρ1ρ0)3(ρ2ρ1ρ0)2(ρ1ρ0)4(ρ2ρ1ρ0ρ1)2ρ0ρ1ρ0ρ2(ρ1ρ0)3ρ2ρ1ρ2

(ρ0ρ1)3ρ2(ρ0ρ1)2(ρ2ρ0ρ1)2(ρ0ρ1)3ρ2ρ1ρ0ρ1ρ2(ρ0ρ1)3ρ2(ρ0ρ1)2ρ0ρ2ρ1ρ2ρ1(ρ0ρ1)5(ρ2ρ1ρ0ρ1)2ρ2(ρ0ρ1)4ρ2

(ρ1ρ0)2ρ2(ρ1ρ0)3(ρ1ρ2ρ1ρ0)2(ρ1ρ0)2(ρ1ρ2)2(ρ0ρ1)3(ρ0ρ2ρ1)2ρ0(ρ1ρ2)2(ρ0ρ1)5(ρ2ρ1ρ0)2(ρ1ρ0)2ρ2

(ρ1ρ0)2ρ2ρ1ρ2

(ρ0ρ1)3ρ2(ρ1ρ0)2(ρ1ρ2ρ1ρ0)2(ρ1ρ0)3ρ1ρ2ρ0(ρ1ρ2ρ1ρ0)2ρ1ρ0(ρ2ρ1)2(ρ0ρ1)2ρ2ρ0ρ1ρ2(ρ1ρ0)4ρ1ρ2(ρ1ρ0)2ρ1ρ2

(ρ0ρ1)2ρ2ρ0ρ1ρ2

ρ2(ρ0ρ1)2ρ2(ρ0ρ1)3ρ0(ρ2ρ1)2(ρ0ρ1)4ρ0(ρ2ρ1)2(ρ0ρ1)2ρ2(ρ0ρ1)2ρ0(ρ2ρ1)2(ρ0ρ1)5ρ2(ρ1ρ0)2ρ1ρ2(ρ0ρ1)2ρ2

(ρ1ρ0)3ρ1ρ2(ρ1ρ0)2ρ2ρ1

ρ1ρ0ρ1ρ2(ρ1ρ0)4(ρ1ρ2)2(ρ0ρ1)3ρ2(ρ1ρ0)2ρ2(ρ1ρ0)5(ρ1ρ2ρ1ρ0)2(ρ1ρ0)2(ρ2(ρ1ρ0)2)2ρ1ρ0(ρ1ρ2)2(ρ0ρ1)5ρ2

(ρ1ρ0)3ρ2ρ1ρ0ρ1ρ2ρ1ρ0

(ρ1ρ0)3(ρ2ρ1)2(ρ0ρ1)3(ρ2ρ0ρ1)2ρ2(ρ1ρ0)5(ρ2ρ1)2(ρ0ρ1)3ρ2(ρ0ρ1)2ρ2(ρ1ρ0)2ρ2(ρ1ρ0)3(ρ1ρ2)2ρ0ρ1ρ2

(ρ1ρ0)3ρ1ρ2(ρ1ρ0)2ρ1ρ2(ρ0ρ1)3(ρ2ρ0ρ1)2(ρ0ρ1)2ρ2

ρ0ρ1ρ2(ρ1ρ0)4ρ1ρ0(ρ2ρ1)2(ρ0ρ1)3(ρ2ρ1ρ0ρ1)2(ρ0ρ1)4ρ2(ρ0ρ1)2ρ2(ρ1ρ0)2ρ1ρ2(ρ0ρ1)2ρ0(ρ2ρ1)2(ρ0ρ1ρ2)2

(ρ1ρ0)5(ρ2ρ1)2(ρ0ρ1)3ρ2(ρ0ρ1)2(ρ2ρ0ρ1)2ρ2

(ρ0ρ2ρ1)2(ρ0ρ1)4ρ2(ρ1ρ0)2(ρ2ρ1ρ0)2ρ1ρ0(ρ1ρ2)2(ρ0ρ1)5(ρ2ρ1ρ0)2(ρ1ρ0ρ2)2(ρ1ρ0)3ρ2(ρ1ρ0)2(ρ1ρ2ρ1ρ0)2ρ2

(ρ1ρ0)3(ρ1ρ2)2(ρ0ρ1)2ρ0(ρ2ρ1ρ0)2(ρ1ρ0)3ρ2(ρ1ρ0)2ρ1

(ρ0ρ1)2ρ2(ρ0ρ1)3ρ2(ρ0ρ1)5(ρ2ρ0ρ1)2(ρ0ρ1)4ρ2ρ1ρ2(ρ0ρ1)3ρ2(ρ0ρ1)2ρ2(ρ1ρ0)3(ρ1ρ2)2((ρ0ρ1)3ρ2)2(ρ1ρ0)2ρ1ρ2

(ρ0ρ1)3ρ2(ρ1ρ0)4(ρ2ρ1)2(ρ0ρ1)2ρ0ρ2ρ1ρ2

ρ2(ρ1ρ0)3(ρ2ρ1ρ0)2(ρ1ρ2(ρ1ρ0)2)2ρ2(ρ1ρ0)2ρ2(ρ1ρ0)5(ρ1ρ2)2(ρ0ρ1)2(ρ0ρ2ρ1)2(ρ0ρ1)2ρ2(ρ0ρ1)2(ρ0ρ2ρ1)2

(ρ0ρ1)2ρ2(ρ0ρ1)3ρ2(ρ1ρ0)4(ρ2ρ1)2(ρ0ρ1)2ρ2(ρ1ρ0)3ρ2(ρ1ρ0)2

ρ0ρ1(ρ0ρ2ρ1)2ρ0ρ1ρ0ρ2(ρ1ρ0)3(ρ1ρ2)2(ρ0ρ1)5(ρ2ρ1ρ0)2(ρ1ρ2ρ1ρ0)2ρ1ρ0(ρ1ρ2)2(ρ0ρ1)5(ρ2ρ1ρ0)2(ρ1ρ0)2ρ2

(ρ1ρ0)3ρ2(ρ1ρ0)4(ρ1ρ2)2(ρ0ρ1)3ρ2(ρ0ρ1)2ρ2(ρ0ρ1)3ρ2ρ1

ρ0(ρ1ρ2)2(ρ0ρ1)4(ρ2(ρ1ρ0)3)2(ρ2ρ1ρ0)2ρ1ρ2(ρ0ρ1)3ρ0(ρ2ρ1)2(ρ0ρ1)4ρ2(ρ0ρ1)2ρ2(ρ1ρ0)4(ρ1ρ2(ρ1ρ0)2)2ρ2

(ρ1ρ0)3ρ1ρ2(ρ0ρ1)2(ρ2ρ0ρ1)2(ρ0ρ1)2ρ0(ρ2ρ1)2(ρ0ρ1)2ρ2ρ1ρ0ρ1

ρ0(ρ2ρ1ρ0)2ρ1ρ2(ρ0ρ1)4(ρ2ρ1ρ0)2(ρ1ρ0)3(ρ1ρ2)2(ρ0ρ1)3(ρ2ρ1ρ0)2ρ1ρ0(ρ1ρ2)2(ρ0ρ1)4ρ2(ρ1ρ0)2ρ2(ρ1ρ0)4

(ρ2ρ1ρ0ρ1)3ρ2(ρ0ρ1)3(ρ0ρ2ρ1)2ρ0(ρ1ρ0ρ2)2ρ1ρ0(ρ1ρ2)2(ρ0ρ1)3ρ2(ρ0ρ1)3

ρ0ρ1ρ0ρ2(ρ1ρ0)2ρ2(ρ1ρ0)3(ρ1ρ2)2(ρ0ρ1)5(ρ2ρ1ρ0)3ρ1ρ0(ρ1ρ2)2(ρ0ρ1)5(ρ2ρ1ρ0)2(ρ1ρ0)2ρ2(ρ1ρ0)2ρ1ρ2

(ρ1ρ0)3ρ2(ρ1ρ0)3(ρ1ρ2)2(ρ0ρ1)5ρ2ρ1ρ0(ρ2ρ1)2(ρ0ρ1)3ρ2ρ1ρ2(ρ0ρ1)3ρ2(ρ0ρ1)2ρ2(ρ0ρ1)4ρ2ρ1ρ2ρ0ρ1ρ2

ρ0ρ1ρ0ρ2(ρ1ρ0)2ρ2(ρ1ρ0)3(ρ1ρ2)2(ρ0ρ1)5(ρ2ρ1ρ2(ρ0ρ1)3)2ρ2(ρ0ρ1)2ρ2(ρ0ρ1)4(ρ2ρ1ρ0)4(ρ1ρ0)3(ρ1ρ2)2

(ρ0ρ1)3(ρ2(ρ0ρ1)2)2(ρ2ρ1ρ0)2(ρ1ρ2)2(ρ0ρ1)5(ρ2ρ1ρ0)2(ρ1ρ0)2ρ2(ρ1ρ0)2ρ2ρ1ρ0ρ2ρ1ρ2

Table 3: Non-Coxeter relators for the presentation of Mon((3.4.6.4))

B The remaining minimal regular covers

In this section we give a summary of the relations in the presentations of the monodromy
groups for the (3.3.4.3.4), (3.3.3.4.4), (4.6.12), and (3.3.3.3.6) tilings. We give these rela-
tions in terms of the monodromy elements zj and wj described in Lemma 2. Following The-
orem 7, the equations (5), (6), and (7) define three different types of relations in the pre-
sentation. The relations of type (5) will be omitted here, as they are quite long. However,
the full list of these relations can be found online at http://hdl.handle.net/11122/1232.
Those of type (6) are trivial to write down and are omitted. In each of the tables below
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we summarize the relations of type (7), each monodromy element in the table is equal to
the element obtained by conjugating the column label by the row label.

B.1 (3.3.4.3.4)

z1 = [(r1r0)3r2r1r2]2[(r0r1)3r2r1r2]2 w1 = r1r0z1r0r1

z2 = r0z1r0 w2 = r0w1r0

z3 = r2z1r2 w3 = r2w1r2

z4 = r2r0z1r0r2 w4 = r2r0w1r0r2

z5 = r1r2r0z1r0r2r1 w5 = r1r2r0w1r0r2r1

z1 z2 z3 z4 z5 w1 w2 w3 w4 w5

r0 z2 z1 z4 z3 z−1
5 w2 w1 w4 w3 w5

r1 w−1
2 w1 z−1

3 z5 z4 z2 z−1
1 w3 w5 w4

r2 z3 z4 z1 z2 z5 w3 w4 w1 w2 w−1
5

Table 4: The relations of type (7) for (3.3.4.3.4)

B.2 (3.3.3.4.4)

z1 = [(r0r1)3r2(r0r1)2r2r0r1r2(r1r0)2r2r1r2r1r2]2 w1 = r2r1r0r1r2z1r2r1r0r1r2

z2 = r1z1r1 w2 = r1w1r1

z3 = r0r1z1r1r0 w3 = r0r1w1r1r0

z4 = r2z1r2 w4 = r2w1r2

z5 = r1r2z1r2r1 w5 = r1r2w1r2r1

z1 z2 z3 z4 z5 w1 w2 w3 w4 w5

r0 w−1
1 z3 z2 w−1

4 w5 z−1
1 w3 w2 z−1

4 z5

r1 z2 z1 w−1
3 z5 z4 w2 w1 z−1

3 w5 w4

r2 z4 z−1
3 z−1

2 z1 w−1
5 w4 w−1

3 w−1
2 w1 z−1

5

Table 5: The relations of type (7) for (3.3.3.4.4)

B.3 (4.6.12)

z1 = (r0r1)4[r2(r0r1)−4]2r2(r0r1)6r2[(r0r1)4r2]2(r0r1)−4r2(r0r1)6r2 w1 = r1r0r1z1r1r0r1

z2 = r1z1r1 w2 = r1w1r1

z3 = r2z1r2 w3 = r2w1r2

z4 = r1r2z1r2r1 w4 = r1r2w1r2r1

z5 = r2r1z1r1r2 w5 = r2r1w1r1r2

z6 = r2r1r2z1r2r1r2 w6 = r2r1r2w1r2r1r2
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z1 z2 z3 z4 z5 z6 w1 w2 w3 w4 w5 w6

r0 z1 w2 z3 w−1
4 w5 w−1

6 z−1
1 w−1

1 z2 z−1
3 w−1

3 z−1
4 z5 z−1

6

r1 z2 z1 z4 z3 z6 z5 w2 w1 w4 w3 w6 w5

r2 z3 z5 z1 z6 z2 z4 w3 w5 w1 w6 w2 w4

Table 6: The relations of type (7) for (4.6.12)

B.4 (3.3.3.3.6)

z1 = [(r0r1)3r2r1r2r0r1r2]4 w1 = r1r0z1r0r1

z2 = r0z1r0 w2 = r0w1r0

z3 = r2z1r2 w3 = r2w1r2

z4 = r2r0z1r0r2 w4 = r2r0w1r0r2

z5 = r1r2z1r2r1 w5 = r1r2w1r2r1

z6 = r1r2r0z1r0r2r1 w6 = r1r2r0w1r0r2r1

z7 = r0r1r2z1r2r1r0 w7 = r0r1r2w1r2r1r0

z8 = r0r1r2r0z1r0r2r1r0 w8 = r0r1r2r0w1r0r2r1r0

z9 = r2r1r2r0z1r0r2r1r2 w9 = r2r1r2r0w1r0r2r1r2

z10 = r0r2r1r2r0z1r0r2r1r2r0 w10 = r0r2r1r2r0w1r0r2r1r2r0

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

r0 z2 z1 z4 z3 z7 z8 z5 z6 z10 z9

r1 z2w
−1
2 w1 z5 z6 z3 z4 z8 z7 w−1

10 z−1
9 w9

r2 z3 z4 z1 z2 z−1
7 z9 z−1

5 z10 z6 z8

Table 7: Relations of type (7) for (3.3.3.3.6)

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

r0 w2 w1 w4 w3 w7 w8 w5 w6 w10 w9

r1 z2 z−1
1 w1 w5 w6 w3 w4 w8 w7 z10w

−1
10 z−1

9

r2 w3 w4 w1 w2 w−1
7 w9 w−1

5 w10 w6 w8

Table 8: Remaining relations of type (7) for (3.3.3.3.6)
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