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Abstract

In this note we study asymptotic properties of random lifts of graphs introduced
by Amit and Linial as a new model of random graphs. Given a base graph G and
an integer n, a random lift of G is obtained by replacing each vertex of G by a set of
n vertices, and joining these sets by random matchings whenever the corresponding
vertices of G are adjacent. In this paper we study connectivity properties of random
lifts. We show that the size of the largest topological clique in typical random lifts,
with G fixed and n → ∞, is equal to the maximum degree of the core of G plus
one. A similar idea can be used to prove that for any graph G with δ(G) > 2k − 1
almost every random lift of G is k-linked.
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1 Introduction

The concept of covering maps of graphs is essentially a restriction to the case of graphs
the general topological notion of covering maps. Let G, G̃ be finite graphs. A map f from
V (G̃) to V (G) is called a covering map if for every vertex x ∈ G̃, the mapping f maps
the neighbors of x one-to-one onto the neighbors of f(x). Note that every covering map
is also a homomorphism of graphs, but the converse is not true.

Whenever there is a covering map f from G̃ to G, we say that G̃ is a lift of G and
G is the base graph. The set of vertices which are mapped in f to a given vertex v ∈ G
is called the fiber related to v and denoted by G̃v. One can view G̃v as a vertical stack
of vertices above v. It is easy to see that fibers of all vertices in a connected graph G
have the same cardinality. This common value is denoted by n and called the degree of
covering. A lift for which all fibers have size n is called a n-lift. The edge set of an n-lift
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G̃ consists, for each edge (u, v) ∈ E(G), of perfect matchings between fibers G̃u and G̃v.
The set of all n-lifts of a fixed graph G is denoted Ln(G).

A simple model for a random lift R(n,G) of G was proposed by Amit and Linial [1].
The idea is to choose uniformly at random some graph from the set Ln(G). Equivalently,
R(n,G) can be obtained in the following way: for each edge {u, v} of G we join sets G̃u

and G̃v by a random matching, i.e., a matching chosen uniformly at random from all
possible matchings between G̃u and G̃v. Yet another way to construct R(n,G) is, for any
two adjacent vertices u and v, choose uniformly at random one of the n! permutations
σuv : [n]→ [n] and connect ui with vσuv(i).

As typical in random graph theory we are interested in properties of lifts of graphs
when n is large. In particular, we say that some property of a random lift of graph G holds
for almost every lift of G if a graph H drawn at random from Ln(G) has this property
with probability 1 − εn, where εn → 0 as n → ∞. We say that a sequence of random
events Xn occurs with high probability (w.h.p.) if limn→∞ Pr[Xn] = 1.

There are only a handful of papers concerning this model of random graphs. Amit
and Linial [1] proved that if G is a simple connected graph with minimum degree δ > 3,
then almost every random lift of G is δ-connected. They continued this study in [3]
proving that random lifts have good expanding properties. The third article in this series
of papers on random lifts, written jointly with Matousek [2], deals with the independence
and chromatic numbers of random lifts.

We say that a theorem is a zero-one law if it specifies that each event of a certain
type either w.h.p. happens or w.h.p. does not happen. That is, the probability that
such an event occurs tends either to zero, or to one. Another part of research in the area
of random lifts is connected with such theorems. Linial and Rozenman [11] showed that
for any graph G its random lift either w.h.p. has a perfect matching or w.h.p. does not
have such matching. A similar question has been raised for hamiltonicity, but only partial
results have been obtained (see [4] and [5]).

Subdividing an edge uv in a graph means replacing the edge uv by a path uwv con-
taining a new vertex w. Graph H is a topological clique if it can be obtained from a
complete graph by series of edge subdivisions. The vertices of the original complete graph
are called branch vertices.

Drier and Linial [7] proved the following theorems concerning topological cliques.

Theorem 1. For almost every H ∈ Ln(K`), a maximum topological clique in H is smaller
than O(

√
n`).

Theorem 2. If ` = Ω(n), then for almost every H ∈ Ln(K`), the size of a maximum
topological clique in H is greater than Ω(n).

In those cases the degree of covering depends on the size of the complete graph. Our
main result, Theorem 3, deals with the case when the size of the base graph is fixed
and does not depend on n. In order to state it we need one more notion. For a graph
G = (V,E), the core of G, denoted as core(G), is the maximal subgraph of G with
minimum degree at least two. It is easy to see that the core of the lift of a graph G
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is the same as the lift of the core of G. Thus, the maximum size of the topological
clique contained in the lift of the graph is bounded from above by ∆(core(G)) + 1, where
∆(core(G)) stands for the maximum degree in the core of G. We show that in a random
lift of a given graph G with high probability we can find a topological clique of the
maximum possible size.

Theorem 3. For a given graph G almost every H ∈ Ln(G) contains a topological clique
of size ∆(core(G)) + 1.

Let us recall that a graph with at least 2k vertices is said to be k-linked if for every 2k
distinct vertices s1, s2, . . . , sk, t1, t2, . . . , tk it contains k vertex-disjoint paths P1, P2, . . . , Pk
such that Pi connects si to ti, 1 6 i 6 k. Obviously, from Menger’s theorem it follows that
each k-linked graph is k-connected. The converse is far from being true. Using basically
the same argument as in the proof of Theorem 3 one can prove the following result.

Theorem 4. For a given graph G, with δ(G) > 2k − 1 almost every H ∈ Ln(G) is
k-linked.

2 Proof of the Main Result

The idea of the proof is the following. Let G be a base graph and let H denote the core
of G. We want to find a set of vertices which form a topological clique of size ∆H + 1 in
H̃. Therefore the vertices of such a clique must have degree at least ∆H in H̃. Let v be
a vertex of the maximum degree ∆H in H. Since vertex v could be the only one having
the required degree in H we focus on vertices from the fiber H̃v. We choose first ∆H + 1
vertices U = {u1, u2, . . . , u∆H+1} ⊂ H̃v of H̃v. Our aim will be to generate large sets of
vertices which can be reached from each ui. We will be using a family W of different
closed walks in H which contain vertex v to perform a bfs-type procedure. Starting from
one vertex of the fiber H̃v we follow each cover of walk from W to get to more vertices
from this fiber. We continue this procedure until our set is large enough. Let R`(ui)
denote the set of vertices of H̃v which can be reached from vertex ui in ` steps of such a
procedure.

Note, however, that in the topological clique the paths which connect branch vertices
should be vertex disjoint. Moreover we want the R`(ui)’s to be generated “nearly” inde-
pendently of each other. These are the main technical obstacles we should deal with in our
argument. Thus, roughly speaking, in the process of generating the set R`(uj), we have
to omit the vertices which had been added to the sets R`(ui) generated in earlier stages of
the algorithm. Hence, whenever we reach an “already visited” vertex we do not continue
expansion from it. Clearly, the modified set R̂`(uj) generated in this way will be slightly
smaller than R`(uj), but we argue that w.h.p. this difference is not substantial and does

not much affect the probability that the random sets R̂`(uj) and R̂`(ui) have a non-empty
intersection. Using properties of random lifts we will show that for ρ 6 log log4 n, when
|Rρ(ui)| = O(log4 n) it is easy to get all Rρ(ui)’s disjoint. In the next step we expand
those sets to sizes of

√
n log n using walks from the family W . We show that w.h.p. we
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can avoid R`(ul)’s with which we do not want to have an intersection, simultaneously
obtaining connection between R̂`(ui) and R̂`(uj). Once we find a common vertex w for
these two sets, we establish a path connecting uj and ui in H̃. We repeat the argument
above for each pair of vertices.

When we connect branch vertices by paths it is important that these paths do not cross
at any place. Thus, although two cycles Ci and Cj fromW can intersect at vertices other
than v, we want to avoid such intersections likewise intersections on R`(uj). Note that for
each common point, every cover C̃p

i of Ci intersect with at most one of C̃k
j . Assume that

there is an intersection between some walks Ci and Cj apart from fiber H̃v. Then if we use
a cycle Ci to expand the R`(uj) we do not want to use a cycle Cj anytime in the future.

Thus, in this case, in order to prevent Cj from being a part of R̂`(uj), for any prospective
vertex, we add the ends of the second walk to the set of already visited vertices of H̃v.
Let c denote the total number of intersections between walks C1, C2, . . . , C∆H

apart from
at vertex v. Note that c is bounded from above by the square of the number of vertices
of G. Thus, let us recall, is a constant which does not depend on n.

We start our argument with a fact about some asymptotic properties of random lifts.

Lemma 5. Let G be a simple graph with δ(G) > 2, v be a vertex of H such that deg(v) =
∆(H). Then, for almost every H ∈ Ln(G) the ∆(H)+1 first lexicographically first vertices
of the fiber H̃v lie at distance at least 11 log log n from each other. Moreover almost
surely all those vertices are at the distance at least 6 log log n from any cycle shorter than
12 log log n.

Proof. Let r denote an order of a graph G. Let S be the set of the ∆(G) + 1 lexicograph-
ically first vertices of H̃v and let Za,b count the number of paths shorter than 11 log log n
connecting the vertices a, b ∈ S. Then we get

EZa,b 6
11 log logn∑
m=1

(
rn

m

)
(m)!

( 1

n−m

)m+1

6
11 log logn∑
m=1

(rn)m

m!

m!

(n−m)m+1

6
11 log logn∑
m=1

(rn)m

(n−m)m+1

(1)

6
11 log logn∑
m=1

(10r)m

n−m

6
(10r)11 log logn11 log log n

n− 11 log log n
6

exp((log log n)2)

n− 11 log log n
.

(1) For sufficiently large n.
Let Z counts the expected number of paths shorter than 11 log log n connecting any

pair of vertices from S. Then using union bound we get

EZ =

(
∆(G) + 1

2

)
EZa,b

n→∞
6

(
∆(G) + 1

2

)
exp((log log n)2

n− 11 log log n

n→∞−→ 0.

the electronic journal of combinatorics 20(2) (2013), #P23 4



Thus, from Markov’s inequality,

P(Z > 0) 6 EZ = o(1) ,

and the first assertion follows.
Now we would like to count the expected number of cycles shorter than 12 log log n

which are closer than 6 log log n to some vertex in S. Let X count the number of paths
starting at a vertex in S which are shorter than 25 log log n and for which the last vertex
has an edge to any vertex from this path. Then

EX 6
25 log logn∑
m=1

(∆(H) + 1)

(
rn

m

)
(m)!m

( 1

n−m

)m+1

6
25 log logn∑
m=1

(∆(H) + 1)
(rn)mm

(n−m)m+1

(1)

6
25 log logn∑
m=1

(∆(H) + 1)
(10r)mm

n−m
(1)

6 (∆(H) + 1)
(10r)25 log logn25(log log n)

n− 25 log log n

n→∞−→ 0.

(1) For sufficiently large n.
Again, from Markov’s inequality,

P(X > 0) 6 EX = o(1) ,

and the second part of the assertion follows.

Proof of Theorem 3. Let G be a base graph and let H denote the core of G. By ∆H we
denote the maximum degree of vertices in H and let v ∈ V (H) be a vertex with degree
equal to ∆H . We show that with probability tending to 1 the ∆H + 1 lexicographically
first vertices of the fiber H̃v are branch vertices of some topological clique.

If ∆H = 2, then H is collection of cycles. The lift of a cycle is a sum of cycles, so
the lift of G contains a topological clique of size 3. Therefore we may assume ∆H > 2
and, since we are considering the core of G, δH > 2. For the remainder of this section, we
condition on the event that a graph H̃ satisfy conditions of Lemma 5 (i.e. The ∆(H) + 1
lexicographically first vertices of the fiber Hv are at distance 11 log log n from each other
and at distance at least 6 log log n from all short cycles in H).

In our argument we use a family W = {C1, C2, . . . , C∆H
} of directed closed walks

which start and end in v and are such that each edge incident with v is traversed from
v to its neighbor by precisely one walk from W (for which it is, of course, the starting
edge). Each walk from W forms either a cycle, or a cycle connected by a path to v, so
for every lift C̃i the probability that it starts and ends at the same vertex equals 1

n
. It is

easy to see that, because the minimum degree of H is at least two, such a family exists.
Note that for every walk from Ci ∈ W its lift C̃i is a set of disjoint walks which

start and end at vertices of the fiber H̃v. In our argument, for a given u ∈ H̃v, we
recursively build sets of vertices of the graph H̃ which can be reached from u; we do it
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in the following way. Let T0(u) = R0(u) = u. By T1(u) we denote the set of vertices
of the walks in H̃ which start at u and are lifts of paths from the set W - namely Ci,
for i ∈ {1, 2, . . . ,∆H}. Let R1(u) = T1(u) ∩ H̃v denote the set of all vertices of the fiber
above v in which those walks end. Next, T2(u) would be the set which consists of T1(u)
and T1(u′), for all u′ ∈ R1(u)\u. Thus, let us recall, we start with a vertex u, use the
lifts of each Ci, for i ∈ {1, 2, . . . ,∆H}, to travel from u to the fiber H̃v and then use all
the walks from W again to reach next vertices. Notice that this time there is no point in
using edges by which we arrived to the points of R1(u), because they take us back to u
using vertices which were already visited. In general we set R`(u) = T`(u) ∩ H̃v and call
it the `-vicinity of u. The set of vertices T`(u) is defined recursively, we take all vertices
of T`−1(u) and add to them vertices which cover walks from W and start at vertices from
R`−1(u)\R`−2(u). Again, whenever we branch from any one of them one direction points
us to a previously used path, so it does not add any new vertex to T`(u).

Note that the set R`(u) has a structure of a tree T rooted at u, which has all leaves
placed on the fiber H̃v; we can think of ordering the vertices of this tree from the root to
the leaves. We a call vertex a successor if it has a directed edge pointing towards it, i.e.
each successor of w follows w in the lift of one of the walks from W . Note that because
δ(T ) > 3 the sizes of R`(u) are expected to grow exponentially with `, at least for small `.

Let us consider vertices from sets R`(u
′) and their successors on the tree rooted at u′.

Notice that for a given closed walk Ci ∈ W the mapping assigning in G̃ to each vertex of
G̃v its closest successor on G̃v is a random matching, which can be viewed as a random
permutation.

Now let us restate the above ideas in a rigorous way. By N(ui) we will denote the
set of log5 n vertices which are at shortest distance to ui in H̃ and called it a neigh-
borhood of ui. By Lemma 5 the first ∆H + 1 vertices of the fiber above v, namely
U = {u1, u2, . . . , u∆H+1} ⊆ H̃v are almost surely at distance at least 11 log log n from each
other. Moreover, since they are at distance at least 6 log log n from any cycle of length
at most 12 log log n, for all i we can choose neighborhood N(ui) which form a tree and
is disjoint from other neighborhoods. Notice that in these neighborhoods the distance
between two vertices from the fiber H̃v is bounded by the size of G, which is constant and
does not grow with n.

For all trees N(ui) we will restrict our attention only to vertices from H̃v. For each
i we define a new tree Mui , the set of vertices for those trees is the set H̃v and two of
them are connected by an edge if they are closest neighbors in the neighborhood N(ui).
Notice that Mui is a topological minor of N(ui) and the number of vertices of each Mui

is of order Θ(log4 n). Next we will perform further subdivision on those trees. For each
ui, we choose a subset of vertices Ui = {u1

i , . . . , u
∆H
i } ∈ Mui and divide Mui into disjoint

connected subtrees Mu1
i
∪ · · · ∪M

u
∆H
i

rooted at uji ’s of sizes Θ(log4 n). We will connect

those vertices by paths such that the ui’s would create a topological clique. Therefore we
will take pairs of vertices {uji , uij} for i 6= j and {uji , ui∆H+1} for i = j and try to build a
set of disjoint paths between them.

In each step of the expansion we would have to avoid vertices visited earlier. The first
reason is that we do not want to intersect some path chosen earlier and the second is that
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we want neighborhoods to be generated nearly independently of previously generated
ones. Let us denote by S the set of vertices which we have already visited, meaning
vertices for which we have already generated their vicinities (we generated at least one
edge coming out from it). After choosing the ui’s and generating the Mui ’s our set S
equals {u1, u2, . . . , u∆H+1} together with vertices of Mui ’s and endings of cycles which
cross those neighborhoods. Let Sv = S ∩ H̃v and SCk

= Sv ∪ {C̃k : |C̃k ∩ Sv| > 1} be the
set of unvisited ends of the cycles from the set of all covers of cycle Ck.

Consider the first pair of vertices {u2
1, u

1
2}. Our goal is to further expand the neigh-

borhood of u2
1 chosen earlier. We take all leaves of Mu2

1
and expand their vicinities in

the following manner. Let w ∈ Mu2
1

be currently processed vertex. We generate consec-
utively R1(w), R2(w), . . . , Rj(w). This is equivalent to choosing, for each of the vertices
w′ ∈ Rj−1(w)\(Rj−2(w) ∪ Sv), and for all walks Ck, k ∈ {1, 2, . . . ,∆H}, an element from
corresponding set H̃v − SCk

at random with uniform distribution. The selected vertex
w′ is added to the vicinity and to the sets S and SCk

. Furthermore if a walk Ck crosses
any other walk Cq the we add end vertices from the walk C̃q to the sets S and SCq . We
continue expanding until for some ` we obtain |R`(w)| = Θ(

√
n/log3 n).

The probability of the event C, that at some point of this process we choose a vertex
which has already been visited, is bounded by

Pr(C) 6 c

√
n

log3 n
· |S|
n− |S|

6 c

√
n

log3 n
·
√
n

n−
√
n
6

c

log2 n

n→∞−→ 0.

Thus, for a vertex u2
1, there are c log4 n vertices whose vicinities we want to expand

and the probability of failure in each equals c
log2 n

. The probability of the event D, that

we fail to expand one half of the vertices from Mu2
1
, is bounded by

Pr(D) 6 2c log4 n

(
c

log2 n

)c log4 n

= o(n−3∆H ). (1)

This means that w.h.p. we expand the vicinities of vertices of Mu2
1

to the size of√
n/ log3 n, avoiding previously visited vertices. In total we expand the vicinity of u2

1

to size
√
n log n. The same analysis can be done with respect to the vertex u1

2. Again,
during the expansion of the vicinity, we have to exclude all vertices from S (which now
also contains vertices used in previous step, so |S| = Θ(

√
n log n)). Thus, the probability

of the event C ′, that at some point of this process we choose an already visited vertex, is
bounded by

Pr(C ′) 6 c

√
n

log3 n
· |S|
n− |S|

6 c

√
n

log3 n
·
√
n log n

n−
√
n log n

=
c

log2 n

n→∞−→ 0.

As before, for u1
2, there are at least c log4 n vertices whose vicinities we want to expand.

The probability of the eventD′, that we fail to expand one half of these vertices, is bounded
by

Pr(D′) 6 2c log4 n

(
c

log2 n

)c log4 n

= o(n−3∆H ). (2)
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Denote the sets obtained for both of the vertices by R(u2
1) and R(u2

1). Both of these
sets have size Θ(

√
n log n). In order to connect vertices u2

1 and u1
2 by a path we need to

find some vertex w ∈ R(u2
1)∩R(u2

1), then the path u2
1− · · · −w− · · · − u1

2 would connect
u1 with u2. The probability that such a vertex does not exist can be bounded by the
probability that we can choose a random set R(u1

2) of size
√
n log n which avoids R(u2

1).
Thus(

n−|S|−
√
n logn√

n logn

)(
n−|S|√
n logn

) 6
(n− |S| −

√
n log n)!

(
√
n log n)!(n− |S| − 2

√
n log n)!

· (
√
n log n)!(n− |S| −

√
n log n)!

(n− |S|)!

=
(n− |S| − 2

√
n log n) · · · · · (n− |S| −

√
n log n)

(n− |S| −
√
n log n)(n− |S| −

√
n log n+ 1) · · · · · (n− |S|)

6

(
1− log n√

n−O(log n)

)√n logn

= o(n−3∆(H)) −→ 0. (3)

The argument for other pairs of vertices is similar to the one above but after each
phase we must take into account the fact that the size of the set S increases. Therefore
the probability of success in connecting the last pair is smaller than the probability of
success in connecting each of the previous pairs. Since there are only (∆H + 1)2 pairs, if
we show that the probability of failure in connecting the last pair tends to zero as n goes
to infinity, then we prove that w.h.p. we get success for all the events.

When we are connecting the last pair the size of S is less than m = (∆H+1)2
√
n log n+

∆H + 1. Now the probability of choosing some previously visited vertex while expanding
vicinities of both vertices to the size of

√
n/log3 n, is bounded by

c
√
n

log3 n
· m

n−m
(1)

6
c(∆H + 1)2

log2 n

n→∞−→ 0.

(1) For sufficiently large n.
Hence, Pr(D) = o(n−3∆H ) and we would be able to expand vicinities of more than half

of the vertices from the neighborhood of the considered pair to size
√
n

log3 n
. This implies

that in O(log n) stages we expand the vicinities of vertices from our pair to the sizes of√
nlog n. Finally, as in (1), the probability that we do not find a vertex which connects

these two vicinities can be bounded from above by(
n−p−

√
n logn√

n logn

)(
n−p√
n logn

) = o(n−3∆H ), (4)

where p = (∆H + 1)2
√
n log n+ ∆H + 1.

Thus, we have showed that the probability of failure in connecting any pair is smaller
than o(1). Moreover we show that besides choosing the first ∆H+1 vertices the probability
that we fail in any step is o(n−3∆H ). Since there are a finite number of pairs, the probability
that we do not find a topological clique of size ∆H + 1 can be also bounded by o(1).
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3 Links

Connectivity properties of random lifts were first considered by Amit and Linial [1]. They
proved the following theorem.

Theorem 6 ([1]). If G is a connected simple graph with minimum degree δ > 3, then
almost every H ∈ Ln(G) is δ-connected.

Jung [9] and, independently, Larman and Mani [10] proved that every 2k-connected
graph that contains a K3k as a topological minor is k-linked. Combining their result with
Theorem 3 and Theorem 7 we get the following corollary.

Corollary 7. If G is a connected graph with minimum degree δ, then almost every H ∈
Ln(G) is min{∆(core(G))/3, δ/2}-linked.

A slight modification of the argument used in the proof of Theorem 3 will give us a
sharp result. To be able to apply it we will also need one additional fact concerning lifts
of graphs.

Lemma 8. Let G be a simple graph. Then, for almost every H ∈ Ln(G) no two cycles
of length smaller than (log log n)2 in H lie within distance (log log n)2 from each other.

Proof. Let G be a graph on r vertices. Let Z count the number of pairs of cycles which
are shorter than (log log n)2 and are connected by path of length at most (log log n)2 in
H ∈ Ln(G). It is easy to see that Z is bounded from above by the number of paths of
length smaller than 3(log log n)2 such that both ends of the path P has neighbors among
internal vertices of P . Thus

EZ 6
3(log logn)2∑

m=1

(
rn

m

)
m!m2

( 1

n−m

)m+1

6
3(log logn)2∑

m=1

(rn)m

m!

m!m2

(n−m)m+1

6
3(log logn)2∑

m=1

(rn)mm2

(n−m)m+1

(1)

6
3(log logn)2∑

m=1

(10r)mm2

n−m

6
9(10r)3(log logn)2

(log log n)6

n− 3(log log n)2
6

exp(log log n)2

n− 3(log log n)2
.

(1) For sufficiently large n.
Thus, from Markov’s inequality,

P(Z > 0) 6 EZ = o(1) ,

and the assertion follows.
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Theorem 9 (4). For a given k > 2 and a connected graph G with δ(G) > 2k− 1, almost
every H ∈ Ln(G) is k-linked.

Proof. Let us first remark that this result is sharp. Assume that δ(G) = 2k − 2. If we
choose a set of 2k vertices S = {s1, s2, . . . , sk, t1, t2, . . . , tk} in such way that the first
vertex s1 is connected to s2, s3, . . . , sk, t2, t3, . . . , tk, then obviously we can not find a path
connecting s1 to t1 which avoids s2, s3, . . . , sk, t2, t3, . . . , tk. Thus we assume δ(G) > 2k−1.

In the proof we would consider only those lifts of G which fulfill Lemma 8. In particular
this means that if we take two vertices a, b which are close (at a distance less than 6 log log n
from each other) and look at their neighborhoods N(a) and N(b) of radius 18 log log n,
then we can always find a pair of vertices a′ ∈ N(a) and b′ ∈ N(b) which are at distance
at least 6 log log n from each other. Moreover paths connecting a with a′ and b with b′ are
disjoint.

By Lemma 8 the neighborhoods of the vertices in S of diameter 6 log log n form trees
with at most one cycle. Thus we either find for each pair a short path connecting particular
si with ti inside N(si) ∪ N(ti) or we can find a set of disjoint paths connecting vertices
s1, s2, . . . , sk, t1, t2, . . . , tk with vertices u1, . . . , u2k respectively, satisfying Lemma 5 (we
want ui’s to be on one fiber and far from each other in H). Now we proceed in the same
way as in our proof of Theorem 3. We can connect u1, . . . , u2k in a topological clique
avoiding initially chosen paths from each si and tl to corresponding uj’s. The probability
that we fail in any step of the proof is less than o(n−3∆H ) (see the estimates in (1)-(4)). Let
g denote the number of vertices in G. Since there are at most

(
ng
2k

)
6 (ng)2k possibilities

to choose 2k vertices out of ng vertices the probability of failure in connecting any of
them tends to 0 as n→∞.

Let us remark that the above statement does not hold for k = 1 even if δ(G) = 2,
since w.h.p. the random lift of a cycle is not connected.

4 k-diameter

Another parameter which is related to connectivity properties of graphs is the k-diameter
of a graph. Let G be a k-connected graph and u, v, u 6= v, be any pair of vertices of G.
Let Pk(u, v) be a family of k vertex disjoint paths between u and v, i.e.

Pk(u, v) = {p1, p2, . . . , pk}, where |p1| 6 |p2| 6 . . . 6 |pk|

and |pi| denotes the number of edges in path pi. The k-distance dk(u, v) between vertices
u and v is the minimum |pk| among all Pk(u, v) and the k-diameter dk(G) of G is defined
as the maximum k-distance dk(u, v) over all pairs u, v of vertices of G. The concept of
k-diameter comes from analysis of the performance of routing algorithms [6] but has also
drawn some attention as a graph parameter [8]. In the case of lifts of a given graph G,
for all vertices u, v ∈ V (G), by the proof of Theorem 3, we know that for almost every
random lift whenever we choose nearest neighbors of u and v we find a set of disjoint
paths connecting vertices from these two sets. It is easy to see that by the same argument
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as we used in the proof of Theorem 3 it follows that each such a path is of order O(log n).
Hence, we get following result

Corollary 10. If G is a connected graph with minimum degree δ > 3, then for all k =
1, 2, . . . , δ, the k-diameter of almost every H ∈ Ln(G) is O(log n).
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