Near packings of graphs

Andrzej Žak*
Faculty of Applied Mathematics
AGH University of Science and Technology
Kraków, Poland
zakandrz@agh.edu.pl

Submitted: Dec 18, 2012; Accepted: May 16, 2013; Published: May 24, 2013
Mathematics Subject Classifications: 05C70

Abstract
A packing of a graph G is a set \{G_1, G_2\} such that $G_1 \cong G$, $G_2 \cong G$, and G_1 and G_2 are edge disjoint subgraphs of K_n. Let \mathcal{F} be a family of graphs. A near packing admitting \mathcal{F} of a graph G is a generalization of a packing. In a near packing admitting \mathcal{F}, the two copies of G may overlap so the subgraph defined by the edges common to both copies is a member of \mathcal{F}. In the paper we study three families of graphs (1) \mathcal{E}_k – the family of all graphs with at most k edges, (2) \mathcal{D}_k – the family of all graphs with maximum degree at most k, and (3) \mathcal{C}_k – the family of all graphs that do not contain a subgraph of connectivity greater than or equal to $k + 1$. By $m(n, \mathcal{F})$ we denote the maximum number m such that each graph of order n and size less than or equal to m has a near-packing admitting \mathcal{F}. It is well known that $m(n, \mathcal{C}_0) = m(n, \mathcal{D}_0) = m(n, \mathcal{E}_0) = n - 2$ because a near packing admitting \mathcal{C}_0, \mathcal{D}_0 or \mathcal{E}_0 is just a packing. We prove some generalization of this result, namely we prove that $m(n, \mathcal{C}_k) \approx (k + 1)n$, $m(n, \mathcal{D}_1) \approx \frac{n}{2}$, $m(n, \mathcal{D}_2) \approx 2n$. We also present bounds on $m(n, \mathcal{E}_k)$. Finally, we prove that each graph of girth at least five has a near packing admitting \mathcal{C}_1 (i.e. a near packing admitting the family of the acyclic graphs).

1 Introduction

In this paper we use the term graph to refer to simple graphs without loops or multiple edges. The vertex and edge set of a graph G is denoted by $V(G)$ and $E(G)$, respectively. The maximum degree of G is denoted by $\Delta(G)$. A graph is called k-connected if any two of its vertices can be joined by k internally vertex disjoint paths. A complete graph K_1 is

*The author was partially supported by the Polish Ministry of Science and Higher Education.
0-connected. By \(N_G(x) \) we denote the set of vertices adjacent with \(x \) in \(G \). For a vertex set \(X \), the set \(N_G(X) \) denotes the external neighbourhood of \(X \) in \(G \), i.e.

\[
N_G(X) = \{ y \in V(G) \setminus X : y \text{ is adjacent with some } x \in X \}.
\]

The degree of a vertex \(x \) is the number of vertices adjacent to \(x \) and is denoted by \(d_G(x) \).

Definition 1. Let \(G_1 \) and \(G_2 \) be two graphs such that \(|V(G_1)| = |V(G_2)| = n. A packing of \(G_1 \) and \(G_2 \) is a pair of edge-disjoint subgraphs \(\{H_1, H_2\} \) of \(K_n \) such that \(H_1 \cong G_1 \) and \(H_2 \cong G_2 \).

Definition 2. Let \(\mathcal{F} \) be any family of graphs and let \(G_1, G_2 \) be two graphs such that \(|V(G_1)| = |V(G_2)| = n. A near packing admitting \(\mathcal{F} \) of \(G_1 \) and \(G_2 \) is a pair of subgraphs \(\{H_1, H_2\} \) of \(K_n \) such that \(H_1 \cong G_1 \) and \(H_2 \cong G_2 \), and the subgraph having edges \(E(H_1) \cap E(H_2) \) is a member of \(\mathcal{F} \).

Given a graph \(G \) and a permutation \(\sigma \) of \(V(G) \), by \(\sigma(G) \) we denote the graph with \(V(\sigma(G)) = V(G) \) and such that \(\sigma(u)\sigma(v) \in E(\sigma(G)) \) if and only if \(uv \in E(G) \) for any \(u, v \in V(G) \). The spanning subgraph of \(G \) having edges \(E(G) \cap E(\sigma(G)) \) is denoted by \(G^\sigma \) (abbreviated to \(G^* \) if no confusion arises). Thus, in case when \(G_1 \cong G_2 \cong G \) the problem of finding a near packing admitting \(\mathcal{F} \) of \(G_1 \) and \(G_2 \) is equivalent to the problem of finding a near packing \(\sigma \) of \(V(G) \) such that \(G^\sigma \in \mathcal{F} \). Such a permutation \(\sigma \) of \(V(G) \) is called a near packing of \(G \) admitting \(\mathcal{F} \).

We consider three families of graphs: (1) \(\mathcal{E}_k \) being the family of all graphs with with at most \(k \) edges, (2) \(\mathcal{D}_k \) being the family of all graphs with maximum degree at most \(k \), and (3) \(\mathcal{C}_k \) being the family of all graphs that do not contain a subgraph of connectivity greater than or equal to \(k + 1 \). Notice that \(\mathcal{D}_0 = \mathcal{C}_0 = \mathcal{E}_0 \) is a family of edgeless graphs. Furthermore \(\mathcal{C}_1 \) is a family of acyclic graphs and \(\mathcal{C}_1 \cap \mathcal{D}_2 \) is a family of linear forests (i.e. disjoint unions of paths).

Let \(\mathcal{F} \) be any family of graphs. By \(m(n, \mathcal{F}) \) we denote the maximum number \(m \) such that each graph of order \(n \) and size less than or equal to \(m \) has a near-packing admitting \(\mathcal{F} \). A classic result in this area, obtained independently in [1, 2, 7], states that

Theorem 3 ([1, 2, 7]). \(m(n, \mathcal{C}_0) = m(n, \mathcal{D}_0) = m(n, \mathcal{E}_0) = n - 2, \)

because a near packing admitting \(\mathcal{C}_0, \mathcal{D}_0 \) or \(\mathcal{E}_0 \) is just a packing. Our aim is to prove some generalizations of Theorem 3. For every \(k \geq 1 \), we determine \(m(n, \mathcal{C}_k) \) up to a constant depending only on \(k \). We find the problem concerning near packings admitting \(\mathcal{D}_k \) considerably harder. We determine only \(m(n, \mathcal{D}_1) \) up to a constant, while \(m(n, \mathcal{D}_2) \) is determined assymptotically. We also give bounds on \(m(n, \mathcal{E}_k) \).

The notion of a near packing was introduced by Eaton [3] in order to obtain some investigations concerning the following conjecture of Bollobás and Eldridge:

Conjecture 4 ([1]). If \(|V(G_1)| = |V(G_2)| = n \) and \((\Delta(G_1) + 1) \cdot (\Delta(G_2) + 1) \leq n + 1, \)

then there is a packing of \(G_1 \) and \(G_2 \).

The following theorem is a special case of a more general result proved by Eaton.
Lemma 7. Let G be a graph and $k,l,q \geq 0$ integers. Suppose that G contains an independent set $U \subset V(G)$ that satisfies the following conditions:

1. $d_G(u) \leq k$ for each $u \in U$,
2. $|N_G(u) \cap N_G(v)| \leq q$ for every $u,v \in U$.

If $|U| \geq \frac{2(k-q)}{l-q+1}$, then for every permutation σ' of $V(G) \setminus U$ there exists a permutation σ of $V(G)$ such that $\sigma|_{G-U} = \sigma'$ and $d_{G'}(u) \leq l$ for each $u \in U$.

Proof. Let $G' := G - U$ and σ' be any permutation of $V(G')$. Below we show that we can extend σ' to a permutation σ as required of G.

For any $v \in V(G')$ let us define $\sigma(v) := \sigma'(v)$. Then let us consider a bipartite graph B with partition sets $X := U \times \{0\}$ and $Y := U \times \{1\}$. For $u,v \in U$ the vertices $(u,0)$, $(v,1)$ are joined by an edge in B if and only if $|\sigma'(N_G(u)) \cap N_G(v)| \leq l$. So, if $(u,0)$, $(v,1)$ are joined by an edge in B we can put $\sigma(u) = v$. In other words, if $(u,0)$, $(v,1)$ are not neighbors in B, then $|\sigma'(N(u)) \cap N(v)| \geq l + 1$. Therefore, since $|N_G(u) \cap N_G(v)| \leq q$ and $d_G(u) \leq k$ for $u \in U$, we have $d_B((u,0)) \geq |U| - \frac{k-q}{l-q+1} \geq \frac{k-q}{l-q+1}$, by the assumption on $|U|$. Similarly, $d_B((v,1)) \geq \frac{k-q}{l-q+1}$.

Let $S \subset X$. If $|S| \leq |U| - \frac{k-q}{l-q+1}$ then obviously $|N_B(S)| \geq |S|$. Notice that if $|S| > |U| - \frac{k-q}{l-q+1}$ then $N_B(S) = Y$. Indeed, otherwise let $(v,1) \in Y$ be a vertex which has no neighbour in S. Thus,

$$d_B((v,1)) \leq |A| - |S| = |U| - |S| < |U| - \frac{k-q}{l-q+1} = \frac{k-q}{l-q+1},$$

a contradiction. Hence, in any case $|S| \leq |N(S)|$. Thus, by the Hall’s theorem there is a matching M in G. Therefore we can define $\sigma(u) = v$ for $u,v \in U$ such that $(u,0)$, $(v,1)$ are incident with the same edge in M. \hfill \square

Theorem 5 ([3]). If $|V(G_1)| = |V(G_2)| = n$ and $(\Delta(G_1)+1) \cdot (\Delta(G_2)+1) \leq n + 1$, then there is a near packing admitting \mathcal{D}_1 of G_1 and G_2.

We also investigate another conjecture of graph packing by Faudree, Rousseau, Schelp and Schuster [4]:

Conjecture 6. For every non-star graph G of girth at least 5, there is a packing of two copies of G.

In particular, Conjecture 6 is true for sufficiently large planar graphs [6]. On the other hand, the statement from the above conjecture is true if G is a non-star graph of girth at least six [5]. In this paper we prove that the statement is true if the term ‘packing’ is replaced by the term ‘near packing admitting G’. This result is in some sense best possible, since for every permutation σ of $V(K_{n,n})$ with $n \geq 3$, $K_{n,n}$ contains a cycle C_4.
where

Recall that m near packings admitting V denote a graph with vertex set X pairwise disjoint and E connecting any two vertices of K.

Proof. Let K be a graph on the same vertex set as G, then K has m edges.

Let K be a graph of order n and size m with $m \leq an - f(n)$, where a is a real number and $f(n)$ is a non-decreasing function. If $U \subset V(G)$ and vertices from U cover at least $a|U|$ edges, then

$$m' \leq an - f(n')$$

where n' and m' are respectively the order and the size of $G - U$.

Proof. Let K denote the complement of a graph G.

We will show G is k-connected. In what follows \bar{G} denotes the complement of a graph G, i.e. a graph on the same vertex set as G and with the property that $e \in E(G)$ if and only if $e \notin E(\bar{G})$.

Lemma 9. $m(n, C_k) \leq (k + 1)n - (k + 1)\frac{k+2}{2} - 1$.

Proof. Let $G = \overline{K_{k+1}} + K_{n-k-1}$. Clearly, $|E(G)| = (k + 1)n - (k + 1)\frac{k+2}{2}$. We will show that G does not have a near packing admitting C_k. Consider an arbitrary permutation σ of $V(G)$. Let $S \subset V(K_{k+1})$ be a maximal set of vertices with the property that $\sigma(S) \subset V(K_{k+1})$. Let $|S| = s$. Then, G_σ contains a $K^+_{s,k+1-s,k+1-s}$ with $X_1 = S$, $Y = V(K_{k+1}) \setminus S$ and $X_2 \subset V(K_{n-k-1})$.

3 Near packings admitting C_k

Recall that $m(n, C_0) = n - 2$. We start with the following construction. Let $K^+_{s,k-s,k-s}$ denote a graph with vertex set $V(K^+_{s,k-s,k-s}) = X_1 \cup X_2 \cup Y$ such that X_1, X_2, Y are pairwise disjoint and $|X_1| = s$, $|X_2| = |Y| = k - s$. Furthermore, $E(K^+_{s,k-s,k-s}) = E_1 \cup E_2$, where $E_1 = \{xy : x \in X_1 \cup X_2, y \in Y\}$ and $E_2 = \{xz : x \in X_1, z \in X_1 \cup X_2\}$. In other words, $K^+_{s,k-s,k-s}$ arises from a tripartite graph (with partition sets X_1, X_2 and Y) by adding all possible edges having two endpoints in X_1, see Figure 1. It is easily seen that any two vertices of $K^+_{s,k-s,k-s}$ are joined by at least k internally vertex disjoint paths, so $K^+_{s,k-s,k-s}$ is k connected. In what follows G denotes the graph G.
Theorem 10. \(m(n, C_k) \geq (k + 1)n - 4k(k + 1)^2 - 2 \).

Proof. For \(k = 0 \) the result follows from Theorem 3. Fix \(k \geq 1 \) and let \(c_k = 4k(k + 1)^2 + 2 \). We will prove that each graph of order \(n \) and size at most \((k + 1)n - c_k \) has a near packing admitting \(C_k \).

Suppose that \(G \) is a counterexample with minimum order \(n \). Let \(m \) denote the size of \(G \), so \(m \leq (k + 1)n - c_k \). Note that if \(n \leq 4(k + 1)^2 \), then

\[
m \leq (k + 1)n - c_k = kn - c_k + n
\leq k(4(k + 1)^2) - (4k(k + 1)^2 + 2) + n = n - 2.
\]

Hence \(G \) has a near packing admitting \(C_k \), by Theorem 3, which contradicts our assumption on \(G \). Thus, we may assume that \(n \geq 4(k + 1)^2 + 1 \). Furthermore, if \(\Delta(G) \leq 2(k + 1) - 1 \) then \((\Delta(G) + 1)^2 \leq 4(k + 1)^2 < n + 1 \). Hence, \(G \) has a near packing admitting \(C_k \) by Theorem 5 (because \(D_1 \subseteq C_k \)), a contradiction again. Therefore, we may assume that \(\Delta(G) \geq 2(k + 1) \). Let \(w \in V(G) \) with \(d_G(w) \geq 2(k + 1) \).

Suppose first that \(G \) contains a vertex \(u \) with \(d_G(u) \leq k \). By Proposition 8 and by the minimality assumption, \(G' := G - \{u, w\} \) has a near packing \(\sigma' \) admitting \(C_k \). We claim that \(\sigma := (u, w)\sigma' \) is a near packing of \(G \) admitting \(C_k \). Indeed, since \(d_G(u) \leq k \) then \(d_G((u) \leq k \) as well as \(d_G(w) \leq k \). Hence, neither \(u \) nor \(w \) can be in a subgraph of \(G^{*} \) of connectivity \(k + 1 \) or more. Moreover, since \(\sigma|_G \) is a near packing of \(G' \) admitting \(C_k \), then \(G^{*} - \{u, w\} \) does not contain a subgraph of connectivity \(k + 1 \) or more, neither. Therefore, \(\sigma \) is a near packing of \(G \) admitting \(C_k \).

Thus, we may assume that \(d_G(u) \geq k + 1 \) for every \(u \in V(G) \). Let \(S \) be a maximum set of vertices of \(G \) such that \(S \) is independent, \(k + 1 \leq d_G(u) \leq 2k + 1 \) for each \(u \in S \), and \(|N_G(u) \cap N_G(w)| \leq k \) for every \(u, w \in S \). Since \(S \) is independent, by Proposition 8 and by the minimality assumption, \(G - S \) has a near packing \(\sigma'' \) admitting \(C_k \). By Lemma 7 (with \(k, l, q \) replaced by \(2k + 1, k, k \), respectively), if \(|S| \geq 2k + 2 \) then there is a permutation \(\sigma \) of \(G \), such that \(\sigma|_{G - S} = \sigma'' \) and \(d_G^{-1}(u) \leq k \) for every \(u \in S \). Simirarly as before, we can see that \(\sigma \) is a near packing of \(G \) admitting \(C_k \), a contradiction.

Therefore \(|S| \leq 2k + 1 \) and so \(|N_G(S)| \leq (2k + 1)^2 \). Let \(V_j = \{v \in V(G) \setminus N_G(S) : d_G(v) = j\} \). Note that by the definition of \(S \), we have \(|N_G(S) \cap N_G(u)| \geq k + 1 \) for every \(u \in V_{k+1} \cup \cdots \cup V_{2k+1} \). Hence, vertices from \(N_G(S) \) are incident (in common) to at least \((k + 1)(|V_{k+1}| + \cdots + |V_{2k+1}|)\) edges. Thus,

\[
(2k + 2)n - 8k(k + 1)^2 - 4 \geq 2m
= \sum_{u \in N_G(S)} d_G(u) + \sum_{v \in V(G) \setminus N_G(S)} d_G(v)
\geq (k + 1)(|V_{k+1}| + \cdots + |V_{2k+1}|) + (k + 1)|V_{k+1}| + \cdots + (k + 1)|V_{2k+1}|
+ (2k + 2)(n - |V_{k+1}| + \cdots |V_{2k+1}| - |N_G(S)|)
\geq (2k + 2)n - (2k + 2)(2k + 1)^2,
\]
a contradiction. Hence, we deduce no counterexample to Theorem 10 exists. \qed

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(2) (2013), #P36
5
Theorem 11. Every graph of girth at least 5 has a near packing admitting C_1.

Proof. Let G be a minimum counterexample to Theorem 11. Let $u \in V(G)$ with $d_G(u) = \Delta(G)$. Let $G' = G - u$ and $U = N_G(u)$. By the girth assumption, U is an independent set in G' (as well as in G), and $N_G(x) \cap N_G(y) = \emptyset$ for every $x, y \in U$. By the minimality assumption $G'' := G' - U$ has a near packing σ'' admitting C_1. Moreover, $|U| = \Delta(G)$ and $d_G(u) \leq \Delta(G) - 1$. Hence, by Lemma 7 (with $k = \Delta(G) - 1, l = 1, q = 0$), G'' has a near packing σ' such that $\sigma'|_{G''} = \sigma''$ and $d_{G''}(u) \leq 1$ for each $u \in U$. Thus, since G'' is acyclic, G'' is also acyclic. Let u be any vertex from U. It is easy to see that the permutation σ such that $\sigma(u) = x, \sigma(x) = u$ and $\sigma(y) = \sigma'(y)$ for every $y \in V(G) \setminus \{u, x\}$ is a near packing of G admitting C_1, a contradiction. $$\square$$

4 Near packings admitting D_k

Recall that $m(n, D_0) = n - 2$.

Lemma 12. $m(n, D_k) \leq \left\lfloor \frac{(k+2)(n-1)}{2} \right\rfloor - 1$.

Proof. Let H be a k-regular graph of order $n - 1$ provided that k is even or $n - 1$ is even. Otherwise, let H be a graph having all but one vertices having degree k and one vertex having degree $k + 1$. Let $G = K_1 + H$ and $V(K_1) = \{u\}$. It is easily seen that for any permutation σ of $V(G)$, the vertex u (as well as its image) has degree at least $k + 1$ in G'_*. Thus, G does not have a near packing admitting D_k. Furthermore, $E(G) = \frac{(k+1)(n-1)+n-1}{2} = \frac{(k+2)(n-1)}{2}$ if k is even or $n - 1$ is even, or $E(G) = \frac{(k+1)(n-2)+(k+2)+n-1}{2} = \frac{(k+2)(n-1)+1}{2}$ otherwise. \square

We are tempted to propose the following conjecture

Conjecture 13.

$$\frac{k+2}{2}n - c_1(k) \leq m(n, D_k) \leq \frac{k+2}{2}n - c_2(k),$$

where $c_i(k)$ are constants depending only on k.

The next theorem confirms Conjecture 13 for $k = 1$.

Theorem 14. $m(n, D_1) \geq \frac{3}{2}n - 10$.

Proof. Let G be a counterexample of minimum order n. Without loss of generality we assume that $m := |E(G)| = \frac{3}{2}n - 10$. Note that if $n \leq 16$ then $\frac{3}{2}n - 10 \leq n - 2$. Thus, by Theorem 3, G has a packing which contradicts our assumption on G. Hence, we may assume that $n \geq 17$. Furthermore, if $\Delta(G) \leq 3$, then $(\Delta(G) + 1)^2 \leq 16 < n + 1$, so G has a near packing admitting D_1 by Theorem 5. Thus, we may assume that $\Delta(G) \geq 4$. Let $w \in V(G)$ with $d_G(w) \geq 4$.

Suppose first that G has a vertex u with $d_G(u) = 0$. Then, by Proposition 8 and by the minimality assumption, $G_1 := G - \{u, w\}$ has a near packing σ_1 admitting D_1. Clearly, $(u, w)\sigma_1$ is a near packing of G admitting D_1.

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(2) (2013), #P36
So we may assume that G has no isolated vertex. Suppose now that G has a vertex u with $d_G(u) = 1$ and let v be the neighbor of u. If $d_G(v) \geq 3$ then, by Proposition 8 and the minimality assumption, $G_2 := G - \{u, v\}$ has a near packing σ_2 admitting D_1. Clearly, $(u, v)\sigma_2$ is a near packing admitting D_1 of G. Similarly, if $d_G(v) = 1$ then $(u)(w, v)\sigma_3$ is a near packing admitting D_1 of G where σ_3 is a near packing admitting D_1 of $G - \{u, v, w, x\}$ (σ_4 exists by the minimality assumption). Thus we may assume that $d_G(v) = 2$. Let x be the neighbor of v different from u. If $x \neq w$ then $(u)(v, w, x)\sigma_4$ is a near packing admitting D_1 of G where σ_4 is a near packing admitting D_1 of $G - \{u, v, w, x\}$ (σ_5 exists by the minimality assumption).

Therefore, we may assume that $d_G(u) \geq 2$ for each $u \in V(G)$. Let $S \subseteq V(G)$ be a maximal set such that S is independent in G, $d_G(v) = 2$ for every $v \in S$, and $N_G(u) \cap N_G(v) = \emptyset$ for every $u, v \in S$. Note that $S \neq \emptyset$. By Proposition 8 and by the minimality assumption, $G - S$ has a near packing σ' admitting D_1. Note that if $|S| \geq 4$, then by Lemma 7 (with $k = 2$, $q = 0$ and $l = 0$), there exists a near packing of G admitting D_1, a contradiction with the assumption on G. Thus, $|S| \leq 3$ and so $|N_G(S)| \leq 6$. Let $V_j = \{v \in V(G) \setminus N_G(S) : d_G(v) = j\}$. Note that by the definition of S, we have $|N_G(S) \cap N_G(u)| \geq 1$ for every $u \in V_2$. Therefore,

$$3n - 20 = 2m = \sum_{u \in N_G(S)} d_G(u) + \sum_{v \in V(G) \setminus N_G(S)} d_G(v) \geq |V_2| + 2|V_2| + 3(n - |V_2| - |N_G(S)|) \geq 3n - 18,$$

a contradiction. Hence, we deduce no counterexample to Theorem 14 exists. \hfill \Box

The following result provides some evidence for Conjecture 13 in case when $k = 2$.

Theorem 15 ([8]). $m(n, D_2) \geq 2n - 10n^{2/3} - 7$.

5 Near packings admitting E_k

The join $G = G_1 + G_2$ of graphs G_1 and G_2 with disjoint vertex sets V_1 and V_2 and edge sets E_1 and E_2 is the graph union $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$ together with all the edges joining V_1 and V_2.

Lemma 16. If $n \geq 2k + 2$ then $m(n, E_{2k}) \leq \left\lfloor \frac{(k+2)(n-1)}{2} \right\rfloor - 1$.

Proof. Let H be a k-regular graph of order $n - 1$ provided that k is even or $n - 1$ is even. Otherwise, let H be a graph with all but one vertices having degree k and one vertex having degree $k + 1$. Let $G = K_1 + H$ and $V(K_1) = \{u\}$. It is easily seen that for any permutation σ of $V(G)$, the vertex u as well as $\sigma(u)$ has degree at least $k + 1$ in G_σ. Thus, if $u \neq \sigma(u)$ then G_σ^* has at least $2k + 1$ edges. If $u = \sigma(u)$ then u has degree $n - 1$ in G_σ^*. Since $n \geq 2k + 2$, G_σ^* has at least $2k + 1$ edges. Therefore, G does not have a near
packing admitting \mathcal{E}_{2k}. Furthermore, $E(G) = \frac{(k+1)(n-1)+n-1}{2} = \frac{(k+2)(n-1)}{2}$ if k is even or $n-1$ is even, or $E(G) = \frac{(k+1)(n-2)+(k+2)+(n-1)}{2} = \frac{(k+2)(n-1)+1}{2}$ otherwise. \hfill \Box

Theorem 17. $m(n, \mathcal{E}_k) \geq \sqrt{\frac{k}{2}n(n-1)}$.

Proof. Let G be a graph of order n and size m. We will prove that if $m \leq \sqrt{\frac{k}{2}n(n-1)}$ then there is a near-packing of G admitting \mathcal{E}_k. Consider the probability space whose $n!$ points are the permutations of $V(G)$. For any two edges $e, f \in E(G)$ let X_{ef} denote the indicator random variable with value 1 if f is an image of e. Then

$$E(X_{ef}) = \text{Prob}(X_{ef} = 1) = \frac{2(n-2)!}{n!} = \left(\frac{n}{2}\right)^{-1}.$$

Let $X = \sum_{e,f \in E(G)} X_{ef}$. Thus, by the linearity of expectation, we have

$$E(X) = \sum_{e,f \in E(G)} E(X_{ef}) \leq m^2 \left(\frac{n}{2}\right)^{-1} \leq k.$$

This implies that there exists a permutation σ of $V(G)$ such that G^*_{σ} has at most k edges. Thus, σ is a near packing of G admitting \mathcal{E}_k. \hfill \Box

References

