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Abstract

In this paper it is shown that the logarithm of the number of non-isomorphic
rooted trees of depth k > 3 with n vertices is asymptotically π2

6 ·
n

log log... logn , where
log is iterated k − 2 times in the denominator.
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1 Introduction

In 1889 Cayley showed that there are nn−2 labelled trees on n vertices. In 1948 asymptotic
formulas were given for the number of unlabelled trees and unlabelled rooted trees. In
the seminal paper of Otter [5] it is shown that the number of unlabelled trees of order
n is asymptotically bn−5/2αn (1 +O (1/n)), and the number of unlabelled rooted trees of
order n is asymptotically cn−3/2αn (1 +O (1/n)), where α = 2.95576 . . . , b = 0.5349 . . .
and c = 0.4399 . . . . All results about counting trees are summarized in the book of
Drmota [2]. Several parameters of trees were analyzed in detail, for example, the average
depth, the distribution of the depth in unlabelled rooted trees [3] and random d-ary trees,
etc. For the distribution of the depth of binary unlabelled rooted trees see [1].

In this paper we count the number of rooted trees of given depth on n vertices. We
show that the logarithm of the number of rooted trees of depth k > 3 is asymptotically
π2

6
· n
log log... logn

, where log is iterated k − 2 times in the denominator.

2 Generating functions

Denote by fk (n) the number of n-vertex rooted trees of depth at most k. A rooted tree
of depth 0 is a single point. A rooted tree of depth 1 has a root and n − 1 leaves all
connected to the root. Hence f1 (n) = 1 for all n > 1. The 5-vertex trees of depth at
most 2 are shown on Figure 1. Thus f2 (5) = 5. It is easy to find a general formula for
the number of rooted trees of depth at most 2.

Lemma 2.1. f2 (n) = p (n− 1), where p (m) denotes the number of partitions of m.

Proof. Let us omit the root of an n-vertex tree of depth at most 2. Then we obtain some
(rooted) trees of depth at most 1 with altogether n− 1 vertices. Trees of depth at most 1
are uniquely determined by the number of their vertices. Hence, we have exactly as many
such configurations as many partitions of n− 1. Thus f2 (n) = p (n− 1).

For a fixed k let Fk (x) denote the generating function of the sequence fk (n).

Fk (x) =
∞∑
n=1

fk (n)xn

By Lemma 2.1, F2 (x) =
∞∑
n=1

p (n− 1)xn = xP (x), where P (x) denotes the generating

function of the partitions of n. By the Hardy-Ramanujan formula f2 (n) ∼ 1
4n
√
3
eπ
√

2n
3 ,

which shows the asymptotic behaviour of f2 (n). For more details see [6]. To attain a
recurrence formula for Fk (x), we use again the idea of chopping the tree: Omit the root of
an n-vertex tree of depth at most k. The remaining part of the graph is a forest consisting
of trees of depth at most k − 1 with n − 1 vertices altogether. Let µj be the number of
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Figure 1:

rooted trees with j vertices after the chopping. There are
(
fk−1(j)+µj−1

µj

)
ways to choose

µj trees with j vertices. Thus we have the following recurrence formula

fk (n) =
∑

∑
iµi=n−1

(
n−1∏
j=1

(
fk−1 (j) + µj − 1

µj

))
(1)

This technique, and the following formulas can be found in [4], but we summarize the
proofs for the reader’s convenience.

Theorem 2.2. Let k > 2. Then the generating function of the sequence fk (n) is

Fk (x) = x

∞∏
j=1

(
1− xj

)−fk−1(j)

and satisfies the recurrence formulas

Fk (x) = x exp

(
∞∑
m=1

1

m

∞∑
j=1

fk−1 (j)xjm

)
(F1)

Fk (x) = x exp

(
∞∑
m=1

1

m
Fk−1 (xm)

)
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Proof. According to the generalized binomial theorem, for every |x| < 1 we have

(
1− xj

)−fk−1(j) =
∞∑

µj=0

(
−fk−1 (j)

µj

)
·
(
−xj

)µj =
∞∑

µj=0

(
fk−1 (j) + µj − 1

µj

)
xjµj

Thus the coefficient of xn−1 in the expression
∞∏
j=1

(1− xj)−fk−1(j) is

∑
µ1+2µ2+···+(n−1)µn−1=n−1

(
n−1∏
j=1

(
fk−1 (j) + µj − 1

µj

))

and this is exactly fk (n) by (1). By expanding the Taylor-series of log(1 − xj), for
0 < x < 1 we obtain

logFk (x) = log x+
∞∑
j=1

(−fk−1 (j)) log
(
1− xj

)
= log x+

∞∑
j=1

(−fk−1 (j))
∞∑
m=1

(
− 1

m
xjm
)

= log x+
∞∑
m=1

1

m

∞∑
j=1

fk−1 (j)xjm = log x+
∞∑
m=1

1

m
Fk−1 (xm)

which is equivalent to (F1).

3 Preliminary calculations

We give a list of elementary analytic calculations often used in the estimations of the gen-
erating functions. Those not interested in the technical details of these easy calculations
can skip the whole section.

Definition 3.1. For m > 1 we denote by Lm(x) the m-th iterated logarithm func-
tion log log . . . log x. Similarly, Em(x) denotes the m-th iterated exponential function
exp exp . . . expx.

Lemma 3.2. The following rules apply for the functions Lm and Em.

(i) For x, y > 2 we have log x 6 log(x+ y) 6 log x+ log y.

(ii) For every m > 2 and every large enough x, y we have Lm(x) 6 Lm(xy) 6 Lm(x) +
Lm(y).

(iii) Em(x/2) 6 Em(x)1/2 and Em(x/3) 6 Em(x)1/3 for large enough x.

(iv) For all C1, C2 > 0 there exits a constant C3 > 0 with C1Em(x + C2) 6 Em(x + C3)
for large enough x.
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Proof. As log x is increasing we have log x 6 log(x+y) for x, y > 2. For the other inequal-

ity without loss of generality assume that x 6 y. Then log (x+ y) = log
(
y
(

1 + x
y

))
=

log y + log
(

1 + x
y

)
6 log y + log 2 6 log y + log x.

Let x, y be large enough such that Lm(x) > 2 and Lm(y) > 2. Then according to
the monotonicity of Lm(x) we have Lm(x) 6 Lm(xy). Applying (i) repeatedly, we obtain
Lm(xy) 6 Lm−1(L1(x) + L1(y)) 6 Lm−2(L2(x) + L2(y)) 6 · · · 6 Lm(x) + Lm(y).

Item (iii) is shown by induction. It is clear for m = 1. For m > 1 we have
Em(u/2) = exp(Em−1(u/2)) 6 exp(Em−1(u)1/2) 6 Em(u)1/2 by the induction hypoth-
esis, if Em−1(u) > 4.

Item (iv) follows from the formula Em(x+y) > Em(x)Em(y) for large enough x, y.

Throughout the paper we estimate certain power series coefficientwise. That is, 6coeff

is a partial order on the set of real power series, and
∞∑
n=0

anx
n 6coeff

∞∑
n=0

bnx
n if and only

if an 6 bn for all n > 0. The following rules are going to be used several times.

Lemma 3.3. Let
∞∑
n=0

anx
n and

∞∑
n=0

bnx
n be two (formal) power series. Then

(i) exp

(
∞∑
n=0

anx
n

)
=
∞∑
n=0

(
∞∑
i=0

1
i!

∑
k1+···+ki=n

ak1 · · · aki
)
xn,

(ii) if 0 6coeff

∞∑
n=0

anx
n 6coeff

∞∑
n=0

bnx
n, then

exp

(
∞∑
n=0

anx
n

)
6coeff exp

(
∞∑
n=0

bnx
n

)

Proof. The first item follows from exp(y) =
∞∑
i=0

1
i!
yi, and item (ii) is a direct consequence

of (i).

4 Asymptotic formulas

In this section, we prove the main theorem of the paper.

Theorem 4.1. The sequences fk (n) satisfy the following asymptotic formulas

(1) f2 (n) = p (n− 1) ∼ 1
4n
√
3
eπ
√

2n
3 ,

(2) log fk (n) = π2

6
· n
Lk−2(n)

·
(

1 +Ok

(
Lk−1(n)

Lk−2(n)

))
for k > 2,

where Lm (x) denotes the m-th iterated logarithm function log log · · · log x.

The first statement of this theorem is a direct consequence of Lemma 2.1. For the
second item a series of lemmas is needed.
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4.1 The lower estimation

First we give a lower bound for k = 3.

Lemma 4.2. log f3 (n) > π2

6
· n
logn

+O
(
n log logn

log2 n

)
Proof. According to formula (F1) we have the trivial lower bound

F3 (x) >coeff x exp

(
∞∑
n=1

f2 (n)xn

)

By expanding the exponential function for f3 (n) we obtain

f3 (n) >
n∑
i=1

1

i!

∑
a1+···+ai=n−1

f2 (a1) · · · f2 (ai)

Consider a term where i = π2

6
· n
log2 n

·
(

1 +O
(

log logn
logn

))
and a1 = · · · = ai = n−1

i
. Then

a1 = · · · = ai = 6
π2 · log2 n ·

(
1 +O

(
log logn
logn

))
·
(
1− 1

n

)
= 6

π2 · log2 n ·
(

1 +O
(

log logn
logn

))
.

By estimating log i! with Stirling’s formula and by using that for large enough m the

inequality f2 (m− 1) > exp
(
π
√

2m
3
− 2 logm

)
holds, we obtain

log f3(n) > −i log i+ i log f2(a1)

> −π
2

6
· n

log2 n
·
(

1 +O

(
log log n

log n

))
· log

(
π2

6
· n

log2 n
·
(

1 +O

(
log log n

log n

)))
+
π2

6
· n

log2 n
·
(

1 +O

(
log log n

log n

))

·

π
√√√√2 6

π2 · log2 n ·
(

1 +O
(

log logn
logn

))
3

− 2 log

(
6

π2
· log2 n ·

(
1 +O

(
log log n

log n

)))
After rearranging the terms we arrive at

log f3(n) > −π
2

6
· n

log2 n
·
(

1 +O

(
log log n

log n

))
· (log n+O (log log n))

+
π2

3
· n

log2 n
·
(

1 +O

(
log log n

log n

))
· log n ·

(
1 +O

(
log log n

log n

))
+
π2

6
· n

log2 n
·O(log log n) =

π2

6
· n

log n
·
(

1 +O

(
log log n

log n

))
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We proceed by induction to show the lower bound for fk (n) for k > 3. Hence, assume

that the estimation log fk (n) > π2

6
· n
Lk−2(n)

·
(

1 +Ok

(
Lk−1(n)

Lk−2(n)

))
holds for some k > 3.

To obtain a similar lower bound for fk+1 (n) we use the recurrence formula (F1), that is,

Fk+1 (x) = x exp

(
∞∑
m=1

1
m

∞∑
j=1

fk (j)xjm

)
, which yields the estimation

Fk+1 (x) >coeff x exp

(
∞∑
n=1

fk (n)xn

)

According to the induction hypothesis there exist nk ∈ N and Rk ∈ R such that

fk (n) > exp
(
π2

6
· n
Lk−2(n)

·
(

1 +Rk
Lk−1(n)

Lk−2(n)

))
for n > nk. As fk (n) > 0 we may omit the

first few terms of the sum.

Fk+1 (x) >coeff x exp

(
∞∑

n=nk

exp

(
π2

6
· n

Lk−2 (n)
·
(

1 +Rk
Lk−1 (n)

Lk−2 (n)

))
xn

)

By expanding the power series of exp we obtain that for n > 1

fk+1 (n+ 1) >
n∑
i=1

1

i!

∏
nk6a1,...,ai;a1+···+ai=n

i∏
j=1

exp

(
π2

6
· aj
Lk−2 (aj)

·
(

1 +Rk
Lk−1 (aj)

Lk−2 (aj)

))

For large enough n and x0 = π2

6
· n
L1(n)···Lk−2(n)L

2
k−1(n)

(
1 +O

(
Lk(n)
Lk−1(n)

))
we have x0 > nk.

By setting log i! 6 i log i, with i = x0 and a1 = · · · = ai = n
x0

we obtain

log fk+1 (n+ 1) > −x0 log x0 + x0
π2

6
·

n
x0

Lk−2

(
n
x0

) ·
1 +Rk

Lk−1

(
n
x0

)
Lk−2

(
n
x0

)


= −x0 log x0 +
π2

6
· n

Lk−2

(
n
x0

) ·
1 +Rk

Lk−1

(
n
x0

)
Lk−2

(
n
x0

)


From the definition of x0 we have

n

x0
=

6

π2
L1(n) · · ·Lk−2(n)L2

k−1(n) ·
(

1 +O

(
Lk(n)

Lk−1(n)

))
By Lemma 3.2 it follows that Lm

(
n
x0

)
= Lm+1 (n)+O (Lm+2 (n)). Finally, the estimation
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x0 log x0 = O
(

n
L2
k−1(n)

)
yields

logfk+1 (n+ 1)

> O

(
n

L2
k−1 (n)

)
+
π2

6
· n

Lk−1 (n) +O (Lk (n))
·
(

1 +Rk
Lk (n) +O (Lk+1 (n))

Lk−1 (n) +O (Lk (n))

)
= O

(
n

L2
k−1 (n)

)
+
π2

6
· n

Lk−1 (n)
·
(

1 +O

(
Lk (n)

Lk−1 (n)

))
·
(

1 +Rk
Lk (n)

Lk−1 (n)
O (1)

)
=
π2

6
· n

Lk−1 (n)
·
(

1 +O

(
Lk (n)

Lk−1 (n)

))
Thus we arrive at the lower bound

log fk+1 (n) >
π2

6
· n− 1

Lk−1 (n− 1)
·
(

1 +O

(
Lk (n− 1)

Lk−1 (n− 1)

))
>
π2

6
· n

Lk−1 (n)
·
(

1− 1

n

)
·
(

1 +O

(
Lk (n)

Lk−1 (n)

))
=
π2

6
· n

Lk−1 (n)
·
(

1 +O

(
Lk (n)

Lk−1 (n)

))

4.2 The upper estimation

Lemma 4.3. We have for real x→ 1−

logF2(x) =
π2

6(1− x)
+

1

2
log(1− x)− π2

12
− log

√
2π +O(1− x)

Proof. This is a reformulation of formula (68) on p. 576 from [4]. We just note that
F2(x) = xP (x) and that the factor x leads to an (additional) error term of the form
log x = O(1− x).

The next step is to extend Lemma 4.3 in a proper way for Fk(x), k > 2.

Lemma 4.4. For every k > 2 there exists Ck > 0 and x0(k) < 1 such that

Lk−1(Fk(x)) 6
π2

6(1− x)
+

1

2
log(1− x) + Ck (2)

for x0(k) 6 x < 1.

Proof. The statement is shown by induction. However, we first observe that the sum∑
m>1 Fk(x

m)/m can be replaced by a much simpler upper bound. For 0 < x < 1 we set
m0 = m0(x) = d1/ log(1/x)e. If x1 < 1 is sufficiently close to 1, then we can apply the
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estimation Fk(x) = O(x) to obtain

∑
m>m0

1

m
Fk(x

m) = O(
∑
m>m0

1

m
xm) = O(

∞∑
m=0

1

m
xm −

m0∑
m=0

1

m
xm)

= O(− log(1− x)− log(m0) +O(1))

= O(− log
1− x
log x

+O(1)) = O(1)

which is negligible, as there will be a larger error term. Furthermore, we have

m0∑
m=3

1

m
Fk(x

m) = O

(
1

log(1/x)
Fk(x

3)

)
= O

(
1

1− x
Fk(x

3)

)
which leads to the upper bound∑

m>1

1

m
Fk(x

m) = Fk(x) +
1

2
Fk(x

2) +O

(
1

1− x
Fk(x

3)

)
Finally, we prove (2) by induction. By Lemma 4.3 it is certainly true for k = 2. So

we assume now that it is true for some k > 2. For notational convenience we set

G(x) =
π2

6(1− x)
+

1

2
log(1− x).

It is immediate that

G(x2) =
π2

6(1− x2)
+

1

2
log(1− x2) =

π2

12(1− x)
+

1

2
log(1− x) +O(1)

as x→ 1−; and a similar estimation follows if we replace x2 by x3:

G(x3) =
π2

6(1− x3)
+

1

2
log(1− x3) =

π2

18(1− x)
+

1

2
log(1− x) +O(1).

Since log(1 − x) → −∞ (as x → 1−) we have that for every C > 0 there exists x2 =
x2(C) < 1 such that

G(x2) + C 6
1

2
G(x) and G(x3) + C 6

1

3
G(x)

for x2 6 x < 1. According to the induction hypothesis we have Fk(x) 6 Ek−1(G(x)+Ck).
Thus Lemma 3.2 items (iii) and (iv) imply

Fk(x
2) 6 Ek−1(G(x2) + Ck) 6 Ek−1(G(x)/2) 6 Ek−1(G(x))1/2

and similarly
1

1− x
Fk(x

3) 6
1

1− x
Ek−1(G(x))1/3 6 Ek−1(G(x))1/2
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provided that x < 1 is sufficiently close to 1. Hence, we obtain

logFk+1(x) 6
∑
m>1

1

m
Fk(x

m)

= Fk(x) +
1

2
Fk(x

2) +O

(
1

1− x
Fk(x

3)

)
6 Ek−1(G(x) + Ck) +O

(
Ek−1(G(x))1/2

)
6 Ek−1(G(x) + Ck)

(
1 +O

(
Ek−1(G(x) + Ck)

−1/2))
6 Ek−1(G(x) + Ck+1).

which is equivalent to (2) for k + 1.

Corollary 4.5. For every k > 2 there exists x1(k) < 1 such that

Lk−1(Fk(x)) 6
π2

6 log(1/x)
(3)

for x1(k) 6 x < 1.

Proof. Since
π2

6(1− x)
=

π2

6 log(1/x)
+O(1)

and log(1−x)→ −∞ (as x→ 1−), it immediately follows that (3) holds for x1(k) 6 x < 1,
if x1(k) < 1 is large enough.

We finish the proof of the main result by verifying the upper bound.

Theorem 4.6. For every k > 3 we have for n→∞

[xn]Fk(x) 6
π2

6
· n

Lk−2(n)

(
1 +O

(
L2(n)

log nL2(n) · · ·Lk−3(n)Lk−2(n)

))
.

Proof. We use the trivial inequality fk(n)xn 6 Fk(x) (for 0 6 x < 1) to obtain an upper
bound for fk(n) = [xn]Fk(x). To this end, x has to be chosen in a proper way, namely by
the relation

log(1/x) =
π2

6Lk−2(n/(log n)2))

With this value we have by (3) the inequality Lk−1(Fk(x)) 6 Lk−2(n/(log n)2), and
consequently logFk(x) 6 n/(log n)2. Furthermore, since

π2

6Lk−2(n/(log n)2)
=

π2

6Lk−2(n)

(
1 +O

(
L2(n)

log nL2(n) · · ·Lk−2(n)

))
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we obtain the estimation

log fk(n) 6 logFk(x) + n log(1/x)

6
n

(log n)2
+
π2

6
· n

Lk−2(n/(log n)2)

=
π2

6
· n

Lk−2(n)

(
1 +O

(
L2(n)

log nL2(n) · · ·Lk−3(n)Lk−2(n)

))
which completes the proof.
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