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Abstract

Let αk(λ) denote the number of k-hooks in a partition λ and let b(n, k) be the

maximum value of αk(λ) among partitions of n. Amdeberhan posed a conjecture on

the generating function of b(n, 1). We give a proof of this conjecture. In general, we

obtain a formula that can be used to determine b(n, k). This leads to a generating

function formula for b(n, k). We introduce the notion of nearly k-triangular parti-

tions. We show that for any n, there is a nearly k-triangular partition which can

be transformed into a partition of n that attains the maximum number of k-hooks.

The operations for the transformation enable us to compute the number b(n, k).

Keywords: partition; hook length; nearly k-triangular partition

1 Introduction

The objective of this paper is to derive a generating function formula for the maximum

number of k-hooks in the Young diagrams of partitions of n. For k = 1, the problem

was posed by Amdeberhan [1]. Let α1(λ) be the number of 1-hooks in the partition λ, or

equivalently, the number of distinct parts in λ. Let

bn = max{α1(λ) : λ ∈ P (n)},

where P (n) denotes the set of partitions of n.

Amdeberhan [1] posed the following conjecture.
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Conjecture 1.1. We have∑
n>0

bnq
n =

1

1− q

(
(q2; q2)2

∞
(q; q)∞

− 1

)
, (1.1)

where (q, q)∞ = (1− q)(1− q2)(1− q3) · · · .

Following the notation α1(λ) of Amdeberhan, we use αk(λ) to denote the number of

k-hooks in λ, and let

b(n, k) = max{αk(λ) : λ ∈ P (n)}.

The main result of this paper is the following generating function formula for b(n, k).

Theorem 1.2. For k > 1, we have

∑
n>0

b(n, k)qn =
1

1− q

(∑
t>1

q(
t
2)k2 1− qtk2

1− qtk
− 1

)
. (1.2)

Clearly, Theorem 1.2 reduces to Theorem 1.1 when k = 1. Pak [6] gave a generating

function formula for the statistic α1(λ), where he used γ(λ) to denote α1(λ):∑
n>0

∑
λ∈P (n)

γ(λ)qn =
q

(1− q)(q; q)∞
. (1.3)

In general, the statistic αk(λ) has been studied by Han [5, Eq. 1.5]. More precisely, he

showed that ∑
n>0

∑
λ∈P (n)

xαk(λ)q|λ| =
∏
j>1

(1 + (x− 1)qkj)k

1− qj
. (1.4)

Taking logarithms of both sides of (1.4) and differentiating with respect to x, we obtain

the following relation by setting x = 1:∑
n>0

∑
λ∈P (n)

αk(λ)qn =
kqk

(1− qk)(q; q)∞
. (1.5)

It can be seen that relation (1.5) becomes (1.3) when k = 1.

Let us recall some basic notation and terminology on partitions as used in [2]. A

partition λ of a positive integer n is a finite nonincreasing sequence of positive integers

λ = (λ1, λ2, . . . , λr) such that λ1 + λ2 + · · · + λr = n. The entries λi are called parts of

λ. The number of parts of λ is called the length of λ, denoted by l(λ). The weight of λ is

the sum of parts, denoted |λ|.

A partition can be represented by a Young diagram. For each cell u in the Young

diagram of λ, we define the hook length hu(λ) of u by the number of cells v in the Young
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*

*

*

Figure 1.1: A 3-hook and the three cells of hook length 3.

diagram of λ such that v = u, or v appears below u in the same column, or v lies to the

right of u in the same row. A hook of length k is called a k-hook, see Figure 1.1.

To prove Theorem 1.2, we introduce a class of partitions, called nearly k-triangular

partitions.

Definition 1.3. For fixed m > 0 and k > 1, let m = sk+r, where s > 0 and 0 6 r 6 k−1.

Let T
(k)
m denote the nearly k-triangular partition with m parts as given by

T (k)
m = ((s+ 1)k, . . . , (s+ 1)k︸ ︷︷ ︸

r

, sk, . . . , sk︸ ︷︷ ︸
k

, . . . , 2k, . . . , 2k︸ ︷︷ ︸
k

, k, . . . , k︸ ︷︷ ︸
k

).

It can be checked that in each row of the Young diagram of T
(k)
m , there is exactly one

cell of hook length k. We use the symbol ∗ to mark cells in T
(k)
m of hook length k. Figure

1.2 gives a nearly 3-triangular partition with eight parts.

*

*

*

*

*

*

*

*

Figure 1.2: A nearly 3-triangular partition T
(3)
8 .

This paper is organized as follows. In Section 2, we give the range of n such that

bn = m, which can be used to determine bn of Conjecture 1.1. We then derive the

generating function of bn. In Section 3, we define two operations Di and Pi on Young

diagrams. Using these operations one can transform a partition λ with m k-hooks into a

nearly k-triangular partition T
(k)
s , where s > m. This leads to a proof of Theorem 3.1. In

Section 4, we define an operation Qj on Young diagrams. We obtain a formula for b(n, k)

as well as a formula for the generating function.
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2 Proof of Conjecture 1.1

In this section, we give a proof of Conjecture 1.1.

Theorem 2.1. Assume that m is a nonnegative integer and n is an integer such that(
m+1

2

)
6 n 6

(
m+2

2

)
− 1. Then we have bn = m.

Proof. Recall that α1(λ) is the number of distinct parts of λ and bn is the maximum value

of α1(λ) when λ ranges over partitions of n. We claim that bn < m+ 1 if 1 6 n <
(
m+2

2

)
.

Assume that λ is a partition with m+ 1 distinct parts. It is clear that

|λ| > 1 + 2 + · · ·+ (m+ 1) =

(
m+ 2

2

)
.

In other words, if 1 6 n <
(
m+2

2

)
then we have bn < m+ 1. So the claim is verified.

Next we show that bn > m if n >
(
m+1

2

)
. Let

λ = (m,m− 1, · · · , 2, 1n−(m+1
2 )+1).

Clearly, λ has m distinct parts and |λ| = n. Thus bn > m if n >
(
m+1

2

)
. So we reach the

conclusion that bn = m for
(
m+1

2

)
6 n 6

(
m+2

2

)
− 1. This completes the proof.

We are ready to prove Conjecture 1.1 with the aid of Theorem 2.1.

Proof of Conjecture 1.1. First, we may express the generating function of bn in terms of

the generating function of bn+1 − bn. More precisely,

(1− q)
∑
n>0

bnq
n =

∑
n>0

(bn+1 − bn)qn+1. (2.1)

To compute bn+1 − bn, we denote the interval [
(
m+1

2

)
,
(
m+2

2

)
− 1] by Im. By Theorem 2.1,

we see that bn is determined by the interval which n lies in. There are two cases:

Case 1: n and n+ 1 lie in the same interval Im. Then we have bn+1 = bn = m. It follows

bn+1 − bn = 0.

Case 2: n and n+1 lie in two consecutive intervals Im and Im+1. So we have n =
(
m+2

2

)
−1.

It follows that bn = m and bn+1 = m+ 1. Hence bn+1 − bn = 1.

Combining the above two cases, we find that∑
n>0

(bn+1 − bn)qn+1 =
∑
m>0

q(
m+2

2 ) =
∑
m>0

q(
m+1

2 ) − 1.

By Gauss’ identity [3, Eq. 1.4.10]

∞∑
n=0

q(
n+1
2 ) =

(q2; q2)∞
(q; q2)∞

, (2.2)
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we obtain that

(1− q)
∑
n>0

bnq
n =

∑
m>0

q(
m+1

2 ) − 1 =
(q2; q2)2

∞
(q; q)∞

− 1. (2.3)

Thus, identity (1.1) can be deduced from (2.3) by dividing both sides by (1 − q). This

completes the proof.

3 Nearly k-triangular partitions

In this section, we introduce the structure of nearly k-triangular partitions, and we show

that such a partition has minimum weight given the number of k-hooks. This property

will be used in the next section to determine b(n, k).

For m > 0 and k > 1, the weight of the nearly k-triangular partition T
(k)
m is given by

∆(m, k) = m
(⌊m

k

⌋
+ 1
)
k −

(
bm
k
c+ 1

2

)
k2. (3.1)

It can be seen that in each row of T
(k)
m there is exactly one cell of hook length k. Hence

T
(k)
m is a partition with m k-hooks. The following theorem states that T

(k)
m has minimum

weight among partitions with m k-hooks.

Theorem 3.1. For m > 0 and k > 1, if λ is a partition with m k-hooks, then we have

|λ| > ∆(m, k).

To prove Theorem 3.1, we introduce two operations Di and Pi defined on Young dia-

grams. They can also be considered as operations on partitions. We shall show that one

can transform a partition λ with m k-hooks into a nearly k-triangular partition T
(k)
m by

applying the operations Di and Pi.

The operations Di and Pi are defined as follows. Let λ = (λ1, λ2, . . . , λr) be a partition.

The operation Di means to remove the i-th row of the Young diagram of λ. The operation

Pi applies to partitions λ for which λi > λi+1. More precisely, Pi(λ) is obtained from λ

via the following steps. Assume that the cells of hook length k are marked by ∗.

Step 1. Remove the last cell u from the i-th row of the Young diagram of λ, and denote

the resulting partition by µ. If the Young diagram of λ contains no marked cell in the

column occupied by u, then we set Pi(λ) = µ;

Step 2. In this step, there is a cell of hook length k in the column of λ that contains u.

Denote this marked cell by w1 and assume that it is in the j-th row of λ. Evidently, the

marked cell w1 in λ has hook length k − 1 in µ. There are two cases:

Case 1: µj = µj−1. Notice that the cell w′1 above w1 is of hook length k in µ. In other

words, w′1 is a marked cell in µ. In this case, we set Pi(λ) = µ; see Figure 3.3.
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λ :

∗
∗

∗

u

-
Step 1

µ :

w1

w′
1 µ4

µ5

∗
-

Step 2

∗

∗
µ :

Figure 3.3: The case µj = µj−1.

Case 2: µj < µj−1. We add a cell v at the end of the j-th row in µ and denote the

resulting partition by ν. Clearly, w1 is also a marked cell in ν. If the Young diagram of µ

contains no marked cell in the (µj + 1)-th column, then we set Pi(λ) = ν; see Figure 3.4.

Otherwise, go to the next step.

λ :

u

*
*

*
*

*

-
Step 1

*
*

*

µ :

µ4

µ5w1

-
Step 2

ν :

µ4

µ5
*

*

*

v

Figure 3.4: The case µj < µj−1.

Step 3. There is a marked cell in the (µj + 1)-th column of µ. Let w2 denote this marked

cell and suppose that it is in the h-th row. Evidently, the cell w2 has hook length k + 1

in ν. There are two cases:

Case 1: νk = νk+1. Notice that the cell w′2 below w2 is of hook length k in ν. In this case,

we set Pi(λ) = ν;

Case 2: νk > νk+1. We remove the last cell u′ in the h-th row of ν and denote the resulting

partition by µ′. Now, w2 is also a marked cell in µ′. If the Young diagram of ν contains

no marked cell in the column occupied by u′, we set Pi(λ) = µ′. Otherwise, we set u = u′,

λ = ν, µ = µ′ and go back to Step 2.

Figure 3.5 gives an illustration of the operation Pi, where the cells with the symbol −
are the removed cells and the cells with the symbol + are the added cells.

The following property of the operation Pi is easy to verify, and hence the proof is

omitted. Recall that for given k and for any partition λ = (λ1, λ2, . . . , λr), there is at

most one marked cell in each row of the Young diagram of λ. We use αk(λ, i) to denote

the number of marked cells in the i-th row of the Young diagram of λ, which takes the

value 0 or 1.
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− ui

∗
w1

+ vj

∗
w2

− u′h

∗

Figure 3.5: The operation Pi.

Lemma 3.2. Assume that k > 1. Let λ = (λ1, λ2, . . . , λr) be a partition such that

λi > λi+1. Then we have |λ| > |Pi(λ)| and

αk(λ)− αk(λ, i) 6 αk(Pi(λ))− αk(Pi(λ), i).

We are now in a position to present a proof of Theorem 3.1 with the aid of the operations

Pi and Di.

Proof of Theorem 3.1. Let λ = (λ1, λ2, . . . , λr) be a partition having m k-hooks. We

shall give a procedure to transform λ into T
(k)
s , where s > m, by using the operations Di

and Pi. Notice that Di decreases the weight of a partition and Pi either preserves the

weight or decreases the weight by one. Moreover, it can be seen that Di preserves the

number of k-hooks and Pi does not decrease the number of k-hooks. Hence we arrive at

the conclusion that |λ| > ∆(s, k) > ∆(m, k).

Clearly, we have r > m. We aim to construct a sequence β(r), β(r−1), . . . , β(1), β(0)

of nearly k-triangular partitions starting with T
(k)
r and ending with T

(k)
s , where s > m.

In the construction of T
(k)
s from λ, we denote the intermediate partitions by λ(r), λ(r−1),

. . . , λ(1), λ(0) with λ(r) = λ and λ(0) = T
(k)
s . We compare the partitions β(i) and λ(i) to

construct β(i−1) and λ(i−1) by the following process, where β(i) and λ(i) have the same

number of parts and β(i) and λ(i) differ only in the first i rows.

First, we compare the last entry of λ(r) with the last entry of β(r). Recall that λ(r) = λ

and β(r) = T
(k)
r . There are two cases:

Case 1: The r-th entry of λ(r) is equal to the r-th entry of β(r). Then we set β(r−1) = T
(k)
r

and λ(r−1) = λ(r).

Case 2: The r-th entry of λ(r) is not equal to the r-th entry of β(r). There are two

subcases:
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Case 2.1: λ
(r)
r < β

(r)
r = k. It is apparent that there are no cells of hook length k in

the r-th row of the Young diagram of λ(r). Applying the operation Pr to λ(r), the r-th

entry of λ(r) decreases by one. In view of Lemma 3.2, we have αk(Pr(λ
(r))) > αk(λ) and

|Pr(λ(r))| 6 |λ|. Applying the operation Pr λ
(r)
r times to λ(r), we obtain a partition µ with

r − 1 parts. It is clear that αk(µ) > αk(λ
(r)) and |µ| 6 |λ(r)|. We set β(r−1) = T

(k)
r−1 and

λ(r−1) = µ.

Case 2.2: λ
(r)
r > β

(r)
r = k. Let d = λ

(r)
r − k. Evidently, there is a cell of hook length k in

the r-th row of λ(r). Applying the operation Pr d times to λ(r), we obtain a partition µ.

It is easily seen that the r-th entry of µ equals the r-th entry of β(r). By Lemma 3.2, we

find that αk(µ) > αk(λ
(r)) and |µ| 6 |λ(r)|. We set β(r−1) = T

(k)
r and λ(r−1) = µ.

We now proceed to compare the i-th entry of λ(i) with the i-th entry of β(i) for r− 1 >
i > 1, where we assume that λ(i) and β(i) have been constructed by the above procedure.

Assume that λ(i) has t parts and β(i) = T
(k)
t . There are two cases:

Case 1: The i-th entry of λ(i) is equal to the i-th entry of β(i). Then we set β(i−1) = T
(k)
t

and λ(i−1) = λ(i).

Case 2: The i-th entry of λ(i) is not equal to the i-th entry of β(i). There are three

subcases:

Case 2.1: i≡t (mod k) and λ
(i)
i −λ

(i)
i+1 < k. In this case, let d = λ

(i)
i −λ

(i)
i+1. Clearly, there

are no cells of hook length k in the i-th row of the Young diagram of λ(i), see Figure 3.6.

Applying the operation Pi d times to λ(i), we obtain a partition µ with µi = µi+1, which

contains no marked cells in the i-th row. By Lemma 3.2, we see that αk(µ) > αk(λ
(i))

and |µ| 6 |λ(i)|.

Next, we apply the operation Di to µ to generate a partition ν with t− 1 parts. Since

there are no marked cells in the area A of µ, namely, {(p, q) : 1 6 p 6 i− 1, 1 6 q 6 µi},
see Figure 3.6. The positions of the marked cells of µ stay unchanged in ν with respect

to the operation Di. It follows that αk(ν) = αk(µ) and |ν| < |µ|. This implies that

αk(ν) > αk(λ
(i)) and |ν| < |λ(i)|. Notice that the partitions ν and T

(k)
t−1 differ only in the

first i− 1 rows. We set β(i−1) = T
(k)
t−1 and λ(i−1) = ν.

∗
∗
∗

������������������

A

the i-th row

Figure 3.6: The case for i≡t (mod k) and λ
(i)
i − λ

(i)
i+1 < k.
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Case 2.2: i≡t (mod k) and λ
(i)
i − λ

(i)
i+1 > k. Let d = λ

(i)
i − λ

(i)
i+1 − k. Evidently, there

is a cell of hook length k in the i-th row of λ(i), see Figure 3.7. Let µ be the partition

obtained from λ(i) by applying the operation Pi d times. Note that there is also a marked

cell in the i-th row of µ. By Lemma 3.2, we see that αk(µ) > αk(λ
(i)) and |µ| 6 |λ(i)|.

Now the partitions µ and T
(k)
t differ only in the first i− 1 rows. We set β(i−1) = T

(k)
t and

λ(i−1) = µ.

∗
∗
∗

��������������������������∗ the i-th row

Figure 3.7: The case for i≡t (mod k) and λ
(i)
i − λ

(i)
i+1 > k.

Case 2.3: i 6≡ t (mod k). In this case, we have λ
(i)
i − λ

(i)
i+1 > 0, see Figure 3.8. Let

d = λ
(i)
i −λ

(i)
i+1. Applying the operation Pi d times to λ(i), we obtain a partition µ for which

there is a marked cell in the i-th row. By Lemma 3.2, we deduce that αk(µ) > αk(λ
(i))

and |µ| 6 |λ(i)|. Now, the partitions µ and T
(k)
t differ only in the first i− 1 rows. We set

β(i−1) = T
(k)
t and λ(i−1) = µ.

∗

∗
∗
∗

������������������������������ the i-th row

Figure 3.8: The case for i 6≡ t (mod k).

Repeating the above process, we eventually obtain a nearly k-triangular partition λ(0) =

β(0) = T
(k)
s . From the construction of λ(0) from λ(r), we deduce that

m = αk(λ
(r)) 6 · · · 6 αk(λ

(i)) 6 αk(λ
(i−1)) 6 · · · 6 αk(λ

(0)) = s

and

|λ| = |λ(r)| > · · · > |λ(i)| > |λ(i−1)| > · · · > |λ(0)| = ∆(s, k).

Since s > m, we have |λ| > |λ(0)| = ∆(s, k) > ∆(m, k). This completes the proof.
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As a consequence of Theorem 3.1, we obtain the following upper bound on b(n, k).

Together with the lower bound given in the next section, we can determine the range of

n for which b(n, k) = m.

Corollary 3.3. Assume m > 0 and k > 0, If n is a nonnegative integer such that

n < ∆(m+ 1, k), then b(n, k) 6 m.

Figure 3.9 illustrates the transformation from λ = (10, 7, 4, 3, 3, 3, 3) to a nearly 3-

triangular partition T
(3)
5 = (6, 6, 3, 3, 3). It can be checked that both λ and T

(3)
5 have five

3-hooks and |λ| > ∆(5, 3) = 21.

*
*

*

*
*

|λ(4)| = 33

l(λ(4)) = 7
α3(λ(4)) = 5

-
D4

Case 2.1

*
*

*

*
*

|λ(3)| = 30

l(λ(3)) = 6
α3(λ(3)) = 5

?

P3

D3
Case 2.1

*
*

*
*

*

|λ(2)| = 26

l(λ(2)) = 5
α3(λ(2)) = 5

�
P2

Case 2.2

*
*

*
*

*

|λ(1)| = 25

l(λ(1)) = 5
α3(λ(1)) = 5

�
(P1)4

Case 2.3

*
*

*
*

*
|λ(0)| = 21

l(λ(0)) = 5
α3(λ(0)) = 5

Figure 3.9: λ = (10, 7, 4, 3, 3, 3, 3) and T
(3)
5 = (6, 6, 3, 3, 3).

4 Proof of Theorem 1.2

In this section, we show that the number b(n, k) can be determined by the number ∆(m, k),

namely, the weight of the nearly k-triangular partition T
(k)
m . In the previous section, we

have obtained an upper bound on b(n, k). To determine b(n, k), we give a lower bound

on b(n, k).

Theorem 4.1. Assume that m > 0 and k > 0. If n is an integer such that n > ∆(m, k),

then we have b(n, k) > m.
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To prove Theorem 4.1, we introduce an operation Qj defined on Young diagrams. In

fact, Qj differs from the operation Pj only in the first step. Let λ = (λ1, λ2, . . . , λr) be a

partition. The operation Qj applies to partitions λ for which λj−1 > λj. More precisely,

Qj(λ) is constructed via the following steps.

Step 1. Add a cell v at the end of the j-th row of the Young diagram of λ, and denote

the resulting partition by µ. If the Young diagram of λ contains no marked cells in the

(λj + 1)-th column of λ, then we set Qj(λ) = µ;

Step 2. In this step, there is one cell of hook length k in the (λj + 1)-th column of λ.

Denote this marked cell by w and assume that it is in the h-th row of λ. Note that the

marked cell w in λ is of hook length k + 1 in µ. There are two cases:

Case 1: µh = µh+1. Now that the cell w′ below w is of hook length k in µ, we set

Qj(λ) = µ.

Case 2: µh > µh+1. We apply the operation Ph to µ and denote the resulting partition by

ν. It is easily seen that the h-th entry of µ decreases by one. Consequently, w has hook

length k in ν. We set Qj(λ) = ν.

For a partition λ = (λ1, λ2, . . . , λr), we regard the (r+ 1)-th entry as 0 when we apply

Qr+1 to λ. Under this convention, Qr+1 increases the number of parts of λ by one.

The following property of the operation Qj is similar to Lemma 3.2. The proof is

omitted.

Lemma 4.2. Let λ = (λ1, λ2, . . . , λr) be a partition such that λj < λj−1. Then we have

αk(λ)− αk(λ, j) 6 αk(Qj(λ))− αk(Qj(λ), j) (4.1)

and

|λ| 6 |Qj(λ)| 6 |λ|+ 1. (4.2)

We are now ready to prove Theorem 4.1 by using the operation Qj.

Proof of Theorem 4.1. Assume that n > ∆(m, k). It suffices to show that there exists a

partition λ of n with at least m k-hooks. We proceed by induction on n.

First, when n = ∆(m, k), the nearly k-triangular partition T
(k)
m is a partition of ∆(m, k)

with m k-hooks. So the theorem holds for n = ∆(m, k).

We now assume that there is a partition λ = (λ1, λ2, . . . , λr) of N with s k-hooks,

where N > ∆(m, k) and s > m. The following procedure gives the construction of a

partition of N + 1 with at least s k-hooks.

Apply Qr+1 to λ and denote the resulting partition by µ(1). By Lemma 4.2, we see

that αk(µ
(1)) > s and |λ| 6 |µ(1)| 6 |λ|+ 1. There are two cases:

Case 1: |µ(1)| = |λ|+ 1 = N + 1. Then µ(1) is a partition of N + 1 with at least s k-hooks.
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Case 2: |µ(1)| = |λ| = N . We continue to construct a sequence of partitions

µ(2) = Qr+2(µ(1)), . . . , µ(i+1) = Qr+i+1(µ(i)), . . . , µ(k−1) = Qr+k−1(µ(k−2)).

It is clear that µ(i) has r + i parts and contains at least i parts equal to one. It follows

from (4.1) that αk(µ
(i)) > s for 2 6 i 6 k − 1. There are two subcases:

Case 2.1: There exists a partition µ(i) such that |µ(i)| = N +1, where 2 6 i 6 k−1. Then

µ(i) is a partition of N + 1 with at least s k-hooks.

Case 2.2: |µ(i)| = N for 2 6 i 6 k − 1. Now, we construct a partition µ(k) from µ(k−1).

Recall that µ(k−1) contains at least k− 1 parts equal to one and it has at least s k-hooks.

Set µ(k) to be the partition obtained from µ(k−1) by adding 1 as a new part. Now, we have

|µ(k)| = N + 1. Moreover, there are at least k parts equal one and there is a cell of hook

length k in the first column of µ(k). Meanwhile, the positions of the marked cells in other

columns of µ(k−1) stay unchanged in µ(k). This implies that αk(µ
(k)) > αk(µ

(k−1)) > s.

Thus µ(k) is a partition of N + 1 with at least s k-hooks. This completes the proof.

Combining Corollary 3.3 and Theorem 4.1, we obtain the following Theorem which

can be used to compute b(n, k).

Theorem 4.3. Assume m > 0 and k > 1. If n is an integer such that ∆(m, k) 6 n 6
∆(m+ 1, k)− 1, then we have b(n, k) = m.

Using the construction in Theorem 4.1, for any integer n and fixed k, we can transform

a suitable nearly k-triangular partition into a partition λ of n. Theorem 4.3 implies that

the partition λ attains the maximum number of k-hooks among partitions of n. Figure

4.10 gives an illustration of the construction of a partition of 12 with three 3-hooks from

the nearly 3-triangular partition with three parts.

*
*

* -
Q4n = 9

α3 = 3

*
*

*

+
−

+
-
Q5

*
*

*

+

−
+ -

Q6

*
*

*

+

-
*

*

*

n = 12

α3 = 3

Figure 4.10: The construction of a partition of 12 with three 3-hooks.

Note that Theorem 4.3 reduces to Theorem 2.1 when k = 1. We conclude this paper

with a proof of Theorem 1.2 on the generating function of b(n, k).

Proof of Theorem 1.2. First, write (1.2) in the following form

(1− q)
∑
n>0

b(n, k)qn =
∑
t>1

q(
t
2)k2 1− qtk2

1− qtk
− 1. (4.3)
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The left hand side of (4.3) can be rewritten as

(1− q)
∑
n>0

b(n, k)qn =
∑
n>0

(b(n+ 1, k)− b(n, k)) qn+1. (4.4)

To compute b(n + 1, k) − b(n, k), we denote the interval [∆(m, k),∆(m+ 1, k)− 1] by

I
(k)
m . By Theorem 4.3, we see that b(n, k) is determined by the interval containing n. We

consider two cases:

Case 1: n and n+1 belong to the same interval I
(k)
m . By Theorem 4.3, we have b(n+1, k) =

b(n, k) = m, and so b(n+ 1, k)− b(n, k) = 0.

Case 2: n and n + 1 lie in two consecutive intervals I
(k)
m and I

(k)
m+1. It follows that

n = ∆(m+1, k)−1. By Theorem 4.3, we obtain that b(n, k) = m and b(n+1, k) = m+1.

So we have b(n+ 1, k)− b(n, k) = 1.

Combining the above two cases, we deduce that∑
n>0

(b(n+ 1, k)− b(n, k))qn+1 =
∑
m>0

q∆(m+1,k) =
∑
m>0

q∆(m,k) − 1.

Consequently,

(1− q)
∑
n>0

b(n, k)qn =
∑
m>0

q∆(m,k) − 1. (4.5)

Recall that

∆(m, k) = m
(⌊m

k

⌋
+ 1
)
k −

(
bm
k
c+ 1

2

)
k2.

Write m = sk + r, where s > 0 and 0 6 r 6 k − 1. Then we have

∆(sk + r, k) = (sk + r) (s+ 1) k −
(
s+ 1

2

)
k2

=

(
s+ 1

2

)
k2 + r(s+ 1)k. (4.6)

Substituting (4.6) into (4.5), we find that

∑
m>0

q∆(m,k) − 1 =
∑
s>0

k−1∑
r=0

q(
s+1
2 )k2+r(s+1)k − 1

=
∑
s>0

q(
s+1
2 )k2 1− q(s+1)k2

1− q(s+1)k
− 1.

In view of (4.5), we obtain that

(1− q)
∑
n>0

b(n, k)qn =
∑
t>1

q(
t
2)k2 1− qtk2

1− qtk
− 1.
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This completes our proof.

Using the Jacobi triple product identity [4, Eq. 1.6.1], we may express the generating

function
∑

n>0 b(n, k)qn in the following form:

1

1− q

(
(q2k2 ; q2k2)∞
(qk2 ; q2k2)∞

+
1

2

k−1∑
r=1

(−qrk; qk2)∞(−qk2−rk; qk2)∞(qk
2

; qk
2

)∞ −
k + 1

2

)
.
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