On the Maximum Number of \boldsymbol{k}-Hooks of Partitions of \boldsymbol{n}

Anna R.B. Fan, Harold R.L. Yang and Rebecca T. Yu
Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
\{fanruice,yangruilong, yuting_shuxue\} @mail.nankai.edu.cn

Submitted: Dec 16, 2012; Accepted: May 28, 2012; Published: Jun 7, 2013
Mathematics Subject Classifications: 05A15, 05A17

Abstract

Let $\alpha_{k}(\lambda)$ denote the number of k-hooks in a partition λ and let $b(n, k)$ be the maximum value of $\alpha_{k}(\lambda)$ among partitions of n. Amdeberhan posed a conjecture on the generating function of $b(n, 1)$. We give a proof of this conjecture. In general, we obtain a formula that can be used to determine $b(n, k)$. This leads to a generating function formula for $b(n, k)$. We introduce the notion of nearly k-triangular partitions. We show that for any n, there is a nearly k-triangular partition which can be transformed into a partition of n that attains the maximum number of k-hooks. The operations for the transformation enable us to compute the number $b(n, k)$.

Keywords: partition; hook length; nearly k-triangular partition

1 Introduction

The objective of this paper is to derive a generating function formula for the maximum number of k-hooks in the Young diagrams of partitions of n. For $k=1$, the problem was posed by Amdeberhan [1]. Let $\alpha_{1}(\lambda)$ be the number of 1 -hooks in the partition λ, or equivalently, the number of distinct parts in λ. Let

$$
b_{n}=\max \left\{\alpha_{1}(\lambda): \lambda \in P(n)\right\}
$$

where $P(n)$ denotes the set of partitions of n.
Amdeberhan [1] posed the following conjecture.

Conjecture 1.1. We have

$$
\begin{equation*}
\sum_{n \geqslant 0} b_{n} q^{n}=\frac{1}{1-q}\left(\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}}-1\right) \tag{1.1}
\end{equation*}
$$

where $(q, q)_{\infty}=(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots$.
Following the notation $\alpha_{1}(\lambda)$ of Amdeberhan, we use $\alpha_{k}(\lambda)$ to denote the number of k-hooks in λ, and let

$$
b(n, k)=\max \left\{\alpha_{k}(\lambda): \lambda \in P(n)\right\} .
$$

The main result of this paper is the following generating function formula for $b(n, k)$.
Theorem 1.2. For $k \geqslant 1$, we have

$$
\begin{equation*}
\sum_{n \geqslant 0} b(n, k) q^{n}=\frac{1}{1-q}\left(\sum_{t \geqslant 1} q^{\binom{t}{2} k^{2}} \frac{1-q^{t k^{2}}}{1-q^{t k}}-1\right) . \tag{1.2}
\end{equation*}
$$

Clearly, Theorem 1.2 reduces to Theorem 1.1 when $k=1$. Pak [6] gave a generating function formula for the statistic $\alpha_{1}(\lambda)$, where he used $\gamma(\lambda)$ to denote $\alpha_{1}(\lambda)$:

$$
\begin{equation*}
\sum_{n \geqslant 0} \sum_{\lambda \in P(n)} \gamma(\lambda) q^{n}=\frac{q}{(1-q)(q ; q)_{\infty}} \tag{1.3}
\end{equation*}
$$

In general, the statistic $\alpha_{k}(\lambda)$ has been studied by Han [5, Eq. 1.5]. More precisely, he showed that

$$
\begin{equation*}
\sum_{n \geqslant 0} \sum_{\lambda \in P(n)} x^{\alpha_{k}(\lambda)} q^{|\lambda|}=\prod_{j \geqslant 1} \frac{\left(1+(x-1) q^{k j}\right)^{k}}{1-q^{j}} . \tag{1.4}
\end{equation*}
$$

Taking logarithms of both sides of (1.4) and differentiating with respect to x, we obtain the following relation by setting $x=1$:

$$
\begin{equation*}
\sum_{n \geqslant 0} \sum_{\lambda \in P(n)} \alpha_{k}(\lambda) q^{n}=\frac{k q^{k}}{\left(1-q^{k}\right)(q ; q)_{\infty}} \tag{1.5}
\end{equation*}
$$

It can be seen that relation (1.5) becomes (1.3) when $k=1$.
Let us recall some basic notation and terminology on partitions as used in [2]. A partition λ of a positive integer n is a finite nonincreasing sequence of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{r}=n$. The entries λ_{i} are called parts of λ. The number of parts of λ is called the length of λ, denoted by $l(\lambda)$. The weight of λ is the sum of parts, denoted $|\lambda|$.

A partition can be represented by a Young diagram. For each cell u in the Young diagram of λ, we define the hook length $h_{u}(\lambda)$ of u by the number of cells v in the Young

Figure 1.1: A 3-hook and the three cells of hook length 3.
diagram of λ such that $v=u$, or v appears below u in the same column, or v lies to the right of u in the same row. A hook of length k is called a k-hook, see Figure 1.1.

To prove Theorem 1.2, we introduce a class of partitions, called nearly k-triangular partitions.

Definition 1.3. For fixed $m \geqslant 0$ and $k \geqslant 1$, let $m=s k+r$, where $s \geqslant 0$ and $0 \leqslant r \leqslant k-1$. Let $T_{m}^{(k)}$ denote the nearly k-triangular partition with m parts as given by

$$
T_{m}^{(k)}=(\underbrace{(s+1) k, \ldots,(s+1) k}_{r}, \underbrace{s k, \ldots, s k}_{k}, \ldots, \underbrace{2 k, \ldots, 2 k}_{k}, \underbrace{k, \ldots, k}_{k}) .
$$

It can be checked that in each row of the Young diagram of $T_{m}^{(k)}$, there is exactly one cell of hook length k. We use the symbol $*$ to mark cells in $T_{m}^{(k)}$ of hook length k. Figure 1.2 gives a nearly 3 -triangular partition with eight parts.

Figure 1.2: A nearly 3-triangular partition $T_{8}^{(3)}$.

This paper is organized as follows. In Section 2, we give the range of n such that $b_{n}=m$, which can be used to determine b_{n} of Conjecture 1.1. We then derive the generating function of b_{n}. In Section 3, we define two operations D_{i} and P_{i} on Young diagrams. Using these operations one can transform a partition λ with $m k$-hooks into a nearly k-triangular partition $T_{s}^{(k)}$, where $s \geqslant m$. This leads to a proof of Theorem 3.1. In Section 4, we define an operation Q_{j} on Young diagrams. We obtain a formula for $b(n, k)$ as well as a formula for the generating function.

2 Proof of Conjecture 1.1

In this section, we give a proof of Conjecture 1.1.
Theorem 2.1. Assume that m is a nonnegative integer and n is an integer such that $\binom{m+1}{2} \leqslant n \leqslant\binom{ m+2}{2}-1$. Then we have $b_{n}=m$.

Proof. Recall that $\alpha_{1}(\lambda)$ is the number of distinct parts of λ and b_{n} is the maximum value of $\alpha_{1}(\lambda)$ when λ ranges over partitions of n. We claim that $b_{n}<m+1$ if $1 \leqslant n<\binom{m+2}{2}$. Assume that λ is a partition with $m+1$ distinct parts. It is clear that

$$
|\lambda| \geqslant 1+2+\cdots+(m+1)=\binom{m+2}{2} .
$$

In other words, if $1 \leqslant n<\binom{m+2}{2}$ then we have $b_{n}<m+1$. So the claim is verified.
Next we show that $b_{n} \geqslant m$ if $n \geqslant\binom{ m+1}{2}$. Let

$$
\lambda=\left(m, m-1, \cdots, 2,1^{n-\binom{m+1}{2}+1}\right) .
$$

Clearly, λ has m distinct parts and $|\lambda|=n$. Thus $b_{n} \geqslant m$ if $n \geqslant\binom{ m+1}{2}$. So we reach the conclusion that $b_{n}=m$ for $\binom{m+1}{2} \leqslant n \leqslant\binom{ m+2}{2}-1$. This completes the proof.

We are ready to prove Conjecture 1.1 with the aid of Theorem 2.1.
Proof of Conjecture 1.1. First, we may express the generating function of b_{n} in terms of the generating function of $b_{n+1}-b_{n}$. More precisely,

$$
\begin{equation*}
(1-q) \sum_{n \geqslant 0} b_{n} q^{n}=\sum_{n \geqslant 0}\left(b_{n+1}-b_{n}\right) q^{n+1} . \tag{2.1}
\end{equation*}
$$

To compute $b_{n+1}-b_{n}$, we denote the interval $\left[\binom{c+1}{2},\binom{m+2}{2}-1\right]$ by I_{m}. By Theorem 2.1, we see that b_{n} is determined by the interval which n lies in. There are two cases:

Case 1: n and $n+1$ lie in the same interval I_{m}. Then we have $b_{n+1}=b_{n}=m$. It follows $b_{n+1}-b_{n}=0$.

Case 2: n and $n+1$ lie in two consecutive intervals I_{m} and I_{m+1}. So we have $n=\binom{m+2}{2}-1$. It follows that $b_{n}=m$ and $b_{n+1}=m+1$. Hence $b_{n+1}-b_{n}=1$.

Combining the above two cases, we find that

$$
\sum_{n \geqslant 0}\left(b_{n+1}-b_{n}\right) q^{n+1}=\sum_{m \geqslant 0} q^{\binom{m+2}{2}}=\sum_{m \geqslant 0} q^{\binom{m+1}{2}}-1 .
$$

By Gauss' identity [3, Eq. 1.4.10]

$$
\begin{equation*}
\sum_{n=0}^{\infty} q^{\binom{n+1}{2}}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \tag{2.2}
\end{equation*}
$$

we obtain that

$$
\begin{equation*}
(1-q) \sum_{n \geqslant 0} b_{n} q^{n}=\sum_{m \geqslant 0} q^{\binom{m+1}{2}}-1=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}}-1 . \tag{2.3}
\end{equation*}
$$

Thus, identity (1.1) can be deduced from (2.3) by dividing both sides by $(1-q)$. This completes the proof.

3 Nearly k-triangular partitions

In this section, we introduce the structure of nearly k-triangular partitions, and we show that such a partition has minimum weight given the number of k-hooks. This property will be used in the next section to determine $b(n, k)$.

For $m \geqslant 0$ and $k \geqslant 1$, the weight of the nearly k-triangular partition $T_{m}^{(k)}$ is given by

$$
\begin{equation*}
\Delta(m, k)=m\left(\left\lfloor\frac{m}{k}\right\rfloor+1\right) k-\binom{\left\lfloor\frac{m}{k}\right\rfloor+1}{2} k^{2} . \tag{3.1}
\end{equation*}
$$

It can be seen that in each row of $T_{m}^{(k)}$ there is exactly one cell of hook length k. Hence $T_{m}^{(k)}$ is a partition with $m k$-hooks. The following theorem states that $T_{m}^{(k)}$ has minimum weight among partitions with $m k$-hooks.

Theorem 3.1. For $m \geqslant 0$ and $k \geqslant 1$, if λ is a partition with m-hooks, then we have $|\lambda| \geqslant \Delta(m, k)$.

To prove Theorem 3.1, we introduce two operations D_{i} and P_{i} defined on Young diagrams. They can also be considered as operations on partitions. We shall show that one can transform a partition λ with $m k$-hooks into a nearly k-triangular partition $T_{m}^{(k)}$ by applying the operations D_{i} and P_{i}.

The operations D_{i} and P_{i} are defined as follows. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ be a partition. The operation D_{i} means to remove the i-th row of the Young diagram of λ. The operation P_{i} applies to partitions λ for which $\lambda_{i}>\lambda_{i+1}$. More precisely, $P_{i}(\lambda)$ is obtained from λ via the following steps. Assume that the cells of hook length k are marked by $*$.
Step 1. Remove the last cell u from the i-th row of the Young diagram of λ, and denote the resulting partition by μ. If the Young diagram of λ contains no marked cell in the column occupied by u, then we set $P_{i}(\lambda)=\mu$;
Step 2. In this step, there is a cell of hook length k in the column of λ that contains u. Denote this marked cell by w_{1} and assume that it is in the j-th row of λ. Evidently, the marked cell w_{1} in λ has hook length $k-1$ in μ. There are two cases:
Case 1: $\mu_{j}=\mu_{j-1}$. Notice that the cell w_{1}^{\prime} above w_{1} is of hook length k in μ. In other words, w_{1}^{\prime} is a marked cell in μ. In this case, we set $P_{i}(\lambda)=\mu$; see Figure 3.3.

Figure 3.3: The case $\mu_{j}=\mu_{j-1}$.

Case 2: $\mu_{j}<\mu_{j-1}$. We add a cell v at the end of the j-th row in μ and denote the resulting partition by ν. Clearly, w_{1} is also a marked cell in ν. If the Young diagram of μ contains no marked cell in the $\left(\mu_{j}+1\right)$-th column, then we set $P_{i}(\lambda)=\nu$; see Figure 3.4. Otherwise, go to the next step.

Figure 3.4: The case $\mu_{j}<\mu_{j-1}$.
Step 3. There is a marked cell in the $\left(\mu_{j}+1\right)$-th column of μ. Let w_{2} denote this marked cell and suppose that it is in the h-th row. Evidently, the cell w_{2} has hook length $k+1$ in ν. There are two cases:

Case 1: $\nu_{k}=\nu_{k+1}$. Notice that the cell w_{2}^{\prime} below w_{2} is of hook length k in ν. In this case, we set $P_{i}(\lambda)=\nu$;

Case 2: $\nu_{k}>\nu_{k+1}$. We remove the last cell u^{\prime} in the h-th row of ν and denote the resulting partition by μ^{\prime}. Now, w_{2} is also a marked cell in μ^{\prime}. If the Young diagram of ν contains no marked cell in the column occupied by u^{\prime}, we set $P_{i}(\lambda)=\mu^{\prime}$. Otherwise, we set $u=u^{\prime}$, $\lambda=\nu, \mu=\mu^{\prime}$ and go back to Step 2.

Figure 3.5 gives an illustration of the operation P_{i}, where the cells with the symbol are the removed cells and the cells with the symbol + are the added cells.

The following property of the operation P_{i} is easy to verify, and hence the proof is omitted. Recall that for given k and for any partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$, there is at most one marked cell in each row of the Young diagram of λ. We use $\alpha_{k}(\lambda, i)$ to denote the number of marked cells in the i-th row of the Young diagram of λ, which takes the value 0 or 1 .

Figure 3.5: The operation P_{i}.

Lemma 3.2. Assume that $k \geqslant 1$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ be a partition such that $\lambda_{i}>\lambda_{i+1}$. Then we have $|\lambda| \geqslant\left|P_{i}(\lambda)\right|$ and

$$
\alpha_{k}(\lambda)-\alpha_{k}(\lambda, i) \leqslant \alpha_{k}\left(P_{i}(\lambda)\right)-\alpha_{k}\left(P_{i}(\lambda), i\right) .
$$

We are now in a position to present a proof of Theorem 3.1 with the aid of the operations P_{i} and D_{i}.

Proof of Theorem 3.1. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ be a partition having $m k$-hooks. We shall give a procedure to transform λ into $T_{s}^{(k)}$, where $s \geqslant m$, by using the operations D_{i} and P_{i}. Notice that D_{i} decreases the weight of a partition and P_{i} either preserves the weight or decreases the weight by one. Moreover, it can be seen that D_{i} preserves the number of k-hooks and P_{i} does not decrease the number of k-hooks. Hence we arrive at the conclusion that $|\lambda| \geqslant \Delta(s, k) \geqslant \Delta(m, k)$.

Clearly, we have $r \geqslant m$. We aim to construct a sequence $\beta^{(r)}, \beta^{(r-1)}, \ldots, \beta^{(1)}, \beta^{(0)}$ of nearly k-triangular partitions starting with $T_{r}^{(k)}$ and ending with $T_{s}^{(k)}$, where $s \geqslant m$. In the construction of $T_{s}^{(k)}$ from λ, we denote the intermediate partitions by $\lambda^{(r)}, \lambda^{(r-1)}$, $\ldots, \lambda^{(1)}, \lambda^{(0)}$ with $\lambda^{(r)}=\lambda$ and $\lambda^{(0)}=T_{s}^{(k)}$. We compare the partitions $\beta^{(i)}$ and $\lambda^{(i)}$ to construct $\beta^{(i-1)}$ and $\lambda^{(i-1)}$ by the following process, where $\beta^{(i)}$ and $\lambda^{(i)}$ have the same number of parts and $\beta^{(i)}$ and $\lambda^{(i)}$ differ only in the first i rows.

First, we compare the last entry of $\lambda^{(r)}$ with the last entry of $\beta^{(r)}$. Recall that $\lambda^{(r)}=\lambda$ and $\beta^{(r)}=T_{r}^{(k)}$. There are two cases:
Case 1: The r-th entry of $\lambda^{(r)}$ is equal to the r-th entry of $\beta^{(r)}$. Then we set $\beta^{(r-1)}=T_{r}^{(k)}$ and $\lambda^{(r-1)}=\lambda^{(r)}$.

Case 2: The r-th entry of $\lambda^{(r)}$ is not equal to the r-th entry of $\beta^{(r)}$. There are two subcases:

Case 2.1: $\lambda_{r}^{(r)}<\beta_{r}^{(r)}=k$. It is apparent that there are no cells of hook length k in the r-th row of the Young diagram of $\lambda^{(r)}$. Applying the operation P_{r} to $\lambda^{(r)}$, the r-th entry of $\lambda^{(r)}$ decreases by one. In view of Lemma 3.2, we have $\alpha_{k}\left(P_{r}\left(\lambda^{(r)}\right)\right) \geqslant \alpha_{k}(\lambda)$ and $\left|P_{r}\left(\lambda^{(r)}\right)\right| \leqslant|\lambda|$. Applying the operation $P_{r} \lambda_{r}^{(r)}$ times to $\lambda^{(r)}$, we obtain a partition μ with $r-1$ parts. It is clear that $\alpha_{k}(\mu) \geqslant \alpha_{k}\left(\lambda^{(r)}\right)$ and $|\mu| \leqslant\left|\lambda^{(r)}\right|$. We set $\beta^{(r-1)}=T_{r-1}^{(k)}$ and $\lambda^{(r-1)}=\mu$.
Case 2.2: $\lambda_{r}^{(r)}>\beta_{r}^{(r)}=k$. Let $d=\lambda_{r}^{(r)}-k$. Evidently, there is a cell of hook length k in the r-th row of $\lambda^{(r)}$. Applying the operation $P_{r} d$ times to $\lambda^{(r)}$, we obtain a partition μ. It is easily seen that the r-th entry of μ equals the r-th entry of $\beta^{(r)}$. By Lemma 3.2, we find that $\alpha_{k}(\mu) \geqslant \alpha_{k}\left(\lambda^{(r)}\right)$ and $|\mu| \leqslant\left|\lambda^{(r)}\right|$. We set $\beta^{(r-1)}=T_{r}^{(k)}$ and $\lambda^{(r-1)}=\mu$.

We now proceed to compare the i-th entry of $\lambda^{(i)}$ with the i-th entry of $\beta^{(i)}$ for $r-1 \geqslant$ $i \geqslant 1$, where we assume that $\lambda^{(i)}$ and $\beta^{(i)}$ have been constructed by the above procedure. Assume that $\lambda^{(i)}$ has t parts and $\beta^{(i)}=T_{t}^{(k)}$. There are two cases:

Case 1: The i-th entry of $\lambda^{(i)}$ is equal to the i-th entry of $\beta^{(i)}$. Then we set $\beta^{(i-1)}=T_{t}^{(k)}$ and $\lambda^{(i-1)}=\lambda^{(i)}$.
Case 2: The i-th entry of $\lambda^{(i)}$ is not equal to the i-th entry of $\beta^{(i)}$. There are three subcases:
Case 2.1: $i \equiv t(\bmod k)$ and $\lambda_{i}^{(i)}-\lambda_{i+1}^{(i)}<k$. In this case, let $d=\lambda_{i}^{(i)}-\lambda_{i+1}^{(i)}$. Clearly, there are no cells of hook length k in the i-th row of the Young diagram of $\lambda^{(i)}$, see Figure 3.6. Applying the operation $P_{i} d$ times to $\lambda^{(i)}$, we obtain a partition μ with $\mu_{i}=\mu_{i+1}$, which contains no marked cells in the i-th row. By Lemma 3.2, we see that $\alpha_{k}(\mu) \geqslant \alpha_{k}\left(\lambda^{(i)}\right)$ and $|\mu| \leqslant\left|\lambda^{(i)}\right|$.

Next, we apply the operation D_{i} to μ to generate a partition ν with $t-1$ parts. Since there are no marked cells in the area A of μ, namely, $\left\{(p, q): 1 \leqslant p \leqslant i-1,1 \leqslant q \leqslant \mu_{i}\right\}$, see Figure 3.6. The positions of the marked cells of μ stay unchanged in ν with respect to the operation D_{i}. It follows that $\alpha_{k}(\nu)=\alpha_{k}(\mu)$ and $|\nu|<|\mu|$. This implies that $\alpha_{k}(\nu) \geqslant \alpha_{k}\left(\lambda^{(i)}\right)$ and $|\nu|<\left|\lambda^{(i)}\right|$. Notice that the partitions ν and $T_{t-1}^{(k)}$ differ only in the first $i-1$ rows. We set $\beta^{(i-1)}=T_{t-1}^{(k)}$ and $\lambda^{(i-1)}=\nu$.

Figure 3.6: The case for $i \equiv t(\bmod k)$ and $\lambda_{i}^{(i)}-\lambda_{i+1}^{(i)}<k$.

Case 2.2: $i \equiv t(\bmod k)$ and $\lambda_{i}^{(i)}-\lambda_{i+1}^{(i)}>k$. Let $d=\lambda_{i}^{(i)}-\lambda_{i+1}^{(i)}-k$. Evidently, there is a cell of hook length k in the i-th row of $\lambda^{(i)}$, see Figure 3.7. Let μ be the partition obtained from $\lambda^{(i)}$ by applying the operation $P_{i} d$ times. Note that there is also a marked cell in the i-th row of μ. By Lemma 3.2, we see that $\alpha_{k}(\mu) \geqslant \alpha_{k}\left(\lambda^{(i)}\right)$ and $|\mu| \leqslant\left|\lambda^{(i)}\right|$. Now the partitions μ and $T_{t}^{(k)}$ differ only in the first $i-1$ rows. We set $\beta^{(i-1)}=T_{t}^{(k)}$ and $\lambda^{(i-1)}=\mu$.

Figure 3.7: The case for $i \equiv t(\bmod k)$ and $\lambda_{i}^{(i)}-\lambda_{i+1}^{(i)}>k$.
Case 2.3: $i \not \equiv t(\bmod k)$. In this case, we have $\lambda_{i}^{(i)}-\lambda_{i+1}^{(i)}>0$, see Figure 3.8. Let $d=\lambda_{i}^{(i)}-\lambda_{i+1}^{(i)}$. Applying the operation $P_{i} d$ times to $\lambda^{(i)}$, we obtain a partition μ for which there is a marked cell in the i-th row. By Lemma 3.2, we deduce that $\alpha_{k}(\mu) \geqslant \alpha_{k}\left(\lambda^{(i)}\right)$ and $|\mu| \leqslant\left|\lambda^{(i)}\right|$. Now, the partitions μ and $T_{t}^{(k)}$ differ only in the first $i-1$ rows. We set $\beta^{(i-1)}=T_{t}^{(k)}$ and $\lambda^{(i-1)}=\mu$.

Figure 3.8: The case for $i \not \equiv t(\bmod k)$.
Repeating the above process, we eventually obtain a nearly k-triangular partition $\lambda^{(0)}=$ $\beta^{(0)}=T_{s}^{(k)}$. From the construction of $\lambda^{(0)}$ from $\lambda^{(r)}$, we deduce that

$$
m=\alpha_{k}\left(\lambda^{(r)}\right) \leqslant \cdots \leqslant \alpha_{k}\left(\lambda^{(i)}\right) \leqslant \alpha_{k}\left(\lambda^{(i-1)}\right) \leqslant \cdots \leqslant \alpha_{k}\left(\lambda^{(0)}\right)=s
$$

and

$$
|\lambda|=\left|\lambda^{(r)}\right| \geqslant \cdots \geqslant\left|\lambda^{(i)}\right| \geqslant\left|\lambda^{(i-1)}\right| \geqslant \cdots \geqslant\left|\lambda^{(0)}\right|=\Delta(s, k) .
$$

Since $s \geqslant m$, we have $|\lambda| \geqslant\left|\lambda^{(0)}\right|=\Delta(s, k) \geqslant \Delta(m, k)$. This completes the proof.

As a consequence of Theorem 3.1, we obtain the following upper bound on $b(n, k)$. Together with the lower bound given in the next section, we can determine the range of n for which $b(n, k)=m$.

Corollary 3.3. Assume $m \geqslant 0$ and $k>0$, If n is a nonnegative integer such that $n<\Delta(m+1, k)$, then $b(n, k) \leqslant m$.

Figure 3.9 illustrates the transformation from $\lambda=(10,7,4,3,3,3,3)$ to a nearly 3 triangular partition $T_{5}^{(3)}=(6,6,3,3,3)$. It can be checked that both λ and $T_{5}^{(3)}$ have five 3 -hooks and $|\lambda|>\Delta(5,3)=21$.

Figure 3.9: $\quad \lambda=(10,7,4,3,3,3,3)$ and $T_{5}^{(3)}=(6,6,3,3,3)$.

4 Proof of Theorem 1.2

In this section, we show that the number $b(n, k)$ can be determined by the number $\Delta(m, k)$, namely, the weight of the nearly k-triangular partition $T_{m}^{(k)}$. In the previous section, we have obtained an upper bound on $b(n, k)$. To determine $b(n, k)$, we give a lower bound on $b(n, k)$.

Theorem 4.1. Assume that $m \geqslant 0$ and $k>0$. If n is an integer such that $n \geqslant \Delta(m, k)$, then we have $b(n, k) \geqslant m$.

To prove Theorem 4.1, we introduce an operation Q_{j} defined on Young diagrams. In fact, Q_{j} differs from the operation P_{j} only in the first step. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ be a partition. The operation Q_{j} applies to partitions λ for which $\lambda_{j-1}>\lambda_{j}$. More precisely, $Q_{j}(\lambda)$ is constructed via the following steps.
Step 1. Add a cell v at the end of the j-th row of the Young diagram of λ, and denote the resulting partition by μ. If the Young diagram of λ contains no marked cells in the $\left(\lambda_{j}+1\right)$-th column of λ, then we set $Q_{j}(\lambda)=\mu$;
Step 2. In this step, there is one cell of hook length k in the $\left(\lambda_{j}+1\right)$-th column of λ. Denote this marked cell by w and assume that it is in the h-th row of λ. Note that the marked cell w in λ is of hook length $k+1$ in μ. There are two cases:

Case 1: $\mu_{h}=\mu_{h+1}$. Now that the cell w^{\prime} below w is of hook length k in μ, we set $Q_{j}(\lambda)=\mu$.
Case 2: $\mu_{h}>\mu_{h+1}$. We apply the operation P_{h} to μ and denote the resulting partition by ν. It is easily seen that the h-th entry of μ decreases by one. Consequently, w has hook length k in ν. We set $Q_{j}(\lambda)=\nu$.

For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$, we regard the $(r+1)$-th entry as 0 when we apply Q_{r+1} to λ. Under this convention, Q_{r+1} increases the number of parts of λ by one.

The following property of the operation Q_{j} is similar to Lemma 3.2. The proof is omitted.

Lemma 4.2. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ be a partition such that $\lambda_{j}<\lambda_{j-1}$. Then we have

$$
\begin{equation*}
\alpha_{k}(\lambda)-\alpha_{k}(\lambda, j) \leqslant \alpha_{k}\left(Q_{j}(\lambda)\right)-\alpha_{k}\left(Q_{j}(\lambda), j\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|\lambda| \leqslant\left|Q_{j}(\lambda)\right| \leqslant|\lambda|+1 \tag{4.2}
\end{equation*}
$$

We are now ready to prove Theorem 4.1 by using the operation Q_{j}.
Proof of Theorem 4.1. Assume that $n \geqslant \Delta(m, k)$. It suffices to show that there exists a partition λ of n with at least $m k$-hooks. We proceed by induction on n.

First, when $n=\Delta(m, k)$, the nearly k-triangular partition $T_{m}^{(k)}$ is a partition of $\Delta(m, k)$ with $m k$-hooks. So the theorem holds for $n=\Delta(m, k)$.

We now assume that there is a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ of N with $s k$-hooks, where $N \geqslant \Delta(m, k)$ and $s \geqslant m$. The following procedure gives the construction of a partition of $N+1$ with at least $s k$-hooks.

Apply Q_{r+1} to λ and denote the resulting partition by $\mu^{(1)}$. By Lemma 4.2, we see that $\alpha_{k}\left(\mu^{(1)}\right) \geqslant s$ and $|\lambda| \leqslant\left|\mu^{(1)}\right| \leqslant|\lambda|+1$. There are two cases:

Case 1: $\left|\mu^{(1)}\right|=|\lambda|+1=N+1$. Then $\mu^{(1)}$ is a partition of $N+1$ with at least $s k$-hooks.

Case 2: $\left|\mu^{(1)}\right|=|\lambda|=N$. We continue to construct a sequence of partitions

$$
\mu^{(2)}=Q_{r+2}\left(\mu^{(1)}\right), \ldots, \mu^{(i+1)}=Q_{r+i+1}\left(\mu^{(i)}\right), \ldots, \mu^{(k-1)}=Q_{r+k-1}\left(\mu^{(k-2)}\right)
$$

It is clear that $\mu^{(i)}$ has $r+i$ parts and contains at least i parts equal to one. It follows from (4.1) that $\alpha_{k}\left(\mu^{(i)}\right) \geqslant s$ for $2 \leqslant i \leqslant k-1$. There are two subcases:
Case 2.1: There exists a partition $\mu^{(i)}$ such that $\left|\mu^{(i)}\right|=N+1$, where $2 \leqslant i \leqslant k-1$. Then $\mu^{(i)}$ is a partition of $N+1$ with at least $s k$-hooks.
Case 2.2: $\left|\mu^{(i)}\right|=N$ for $2 \leqslant i \leqslant k-1$. Now, we construct a partition $\mu^{(k)}$ from $\mu^{(k-1)}$. Recall that $\mu^{(k-1)}$ contains at least $k-1$ parts equal to one and it has at least $s k$-hooks. Set $\mu^{(k)}$ to be the partition obtained from $\mu^{(k-1)}$ by adding 1 as a new part. Now, we have $\left|\mu^{(k)}\right|=N+1$. Moreover, there are at least k parts equal one and there is a cell of hook length k in the first column of $\mu^{(k)}$. Meanwhile, the positions of the marked cells in other columns of $\mu^{(k-1)}$ stay unchanged in $\mu^{(k)}$. This implies that $\alpha_{k}\left(\mu^{(k)}\right) \geqslant \alpha_{k}\left(\mu^{(k-1)}\right) \geqslant s$. Thus $\mu^{(k)}$ is a partition of $N+1$ with at least $s k$-hooks. This completes the proof.

Combining Corollary 3.3 and Theorem 4.1, we obtain the following Theorem which can be used to compute $b(n, k)$.

Theorem 4.3. Assume $m \geqslant 0$ and $k \geqslant 1$. If n is an integer such that $\Delta(m, k) \leqslant n \leqslant$ $\Delta(m+1, k)-1$, then we have $b(n, k)=m$.

Using the construction in Theorem 4.1, for any integer n and fixed k, we can transform a suitable nearly k-triangular partition into a partition λ of n. Theorem 4.3 implies that the partition λ attains the maximum number of k-hooks among partitions of n. Figure 4.10 gives an illustration of the construction of a partition of 12 with three 3-hooks from the nearly 3 -triangular partition with three parts.

Figure 4.10: The construction of a partition of 12 with three 3-hooks.

Note that Theorem 4.3 reduces to Theorem 2.1 when $k=1$. We conclude this paper with a proof of Theorem 1.2 on the generating function of $b(n, k)$.
Proof of Theorem 1.2. First, write (1.2) in the following form

$$
\begin{equation*}
(1-q) \sum_{n \geqslant 0} b(n, k) q^{n}=\sum_{t \geqslant 1} q^{\binom{t}{2} k^{2}} \frac{1-q^{t k^{2}}}{1-q^{t k}}-1 . \tag{4.3}
\end{equation*}
$$

The left hand side of (4.3) can be rewritten as

$$
\begin{equation*}
(1-q) \sum_{n \geqslant 0} b(n, k) q^{n}=\sum_{n \geqslant 0}(b(n+1, k)-b(n, k)) q^{n+1} . \tag{4.4}
\end{equation*}
$$

To compute $b(n+1, k)-b(n, k)$, we denote the interval $[\Delta(m, k), \Delta(m+1, k)-1]$ by $I_{m}^{(k)}$. By Theorem 4.3, we see that $b(n, k)$ is determined by the interval containing n. We consider two cases:

Case 1: n and $n+1$ belong to the same interval $I_{m}^{(k)}$. By Theorem 4.3, we have $b(n+1, k)=$ $b(n, k)=m$, and so $b(n+1, k)-b(n, k)=0$.
Case 2: n and $n+1$ lie in two consecutive intervals $I_{m}^{(k)}$ and $I_{m+1}^{(k)}$. It follows that $n=\Delta(m+1, k)-1$. By Theorem 4.3, we obtain that $b(n, k)=m$ and $b(n+1, k)=m+1$. So we have $b(n+1, k)-b(n, k)=1$.

Combining the above two cases, we deduce that

$$
\sum_{n \geqslant 0}(b(n+1, k)-b(n, k)) q^{n+1}=\sum_{m \geqslant 0} q^{\Delta(m+1, k)}=\sum_{m \geqslant 0} q^{\Delta(m, k)}-1 .
$$

Consequently,

$$
\begin{equation*}
(1-q) \sum_{n \geqslant 0} b(n, k) q^{n}=\sum_{m \geqslant 0} q^{\Delta(m, k)}-1 . \tag{4.5}
\end{equation*}
$$

Recall that

$$
\Delta(m, k)=m\left(\left\lfloor\frac{m}{k}\right\rfloor+1\right) k-\binom{\left\lfloor\frac{m}{k}\right\rfloor+1}{2} k^{2} .
$$

Write $m=s k+r$, where $s \geqslant 0$ and $0 \leqslant r \leqslant k-1$. Then we have

$$
\begin{align*}
\Delta(s k+r, k) & =(s k+r)(s+1) k-\binom{s+1}{2} k^{2} \\
& =\binom{s+1}{2} k^{2}+r(s+1) k \tag{4.6}
\end{align*}
$$

Substituting (4.6) into (4.5), we find that

$$
\begin{aligned}
\sum_{m \geqslant 0} q^{\Delta(m, k)}-1 & =\sum_{s \geqslant 0} \sum_{r=0}^{k-1} q^{\binom{s+1}{2} k^{2}+r(s+1) k}-1 \\
& =\sum_{s \geqslant 0} q^{\binom{s+1}{2} k^{2}} \frac{1-q^{(s+1) k^{2}}}{1-q^{(s+1) k}}-1 .
\end{aligned}
$$

In view of (4.5), we obtain that

$$
(1-q) \sum_{n \geqslant 0} b(n, k) q^{n}=\sum_{t \geqslant 1} q^{\binom{t}{2} k^{2}} \frac{1-q^{t k^{2}}}{1-q^{t k}}-1 .
$$

This completes our proof.
Using the Jacobi triple product identity [4, Eq. 1.6.1], we may express the generating function $\sum_{n \geqslant 0} b(n, k) q^{n}$ in the following form:

$$
\frac{1}{1-q}\left(\frac{\left(q^{2 k^{2}} ; q^{2 k^{2}}\right)_{\infty}}{\left(q^{k^{2}} ; q^{2 k^{2}}\right)_{\infty}}+\frac{1}{2} \sum_{r=1}^{k-1}\left(-q^{r k} ; q^{k^{2}}\right)_{\infty}\left(-q^{k^{2}-r k} ; q^{k^{2}}\right)_{\infty}\left(q^{k^{2}} ; q^{k^{2}}\right)_{\infty}-\frac{k+1}{2}\right) .
$$

Acknowledgments. We wish to thank the referee for helpful suggestions. This work was supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

[1] T. Amdeberhan, Theorems, problems and conjectures, arXiv:math.CO/1207.4045.
[2] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[3] G.E. Andrews and B.C. Berndt, Ramanujan's Lost Notebook, Part II, SpringerVerlag, New York, 2005.
[4] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge Univerity Press, Cambridge, 1990.
[5] G.N. Han, The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Ann. Inst. Fourier (Grenoble), 60 (2010) 1-29.
[6] I. Pak, Partition bijections: A survey, Ramanujan J., 12 (2006) 5-75.

