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Abstract

New formulas for the multiplicative partition function are developed. Besides
giving a fast algorithm for generating these partitions, new identities for additive
partitions and the Riemann zeta function are also produced.
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1 Introduction

A phenomenal amount of research has been conducted on the (additive) partition func-
tion over the last 100 years, with striking classical results due to Hardy, Ramanujan,
and others. In contrast, the topic of multiplicative partitions — sometimes referred to
as “factorisatio numerorum” — has received little attention. Counting the number of
multiplicative partitions is a natural question since it lies between the two most common
questions concerning primes: “Is n prime?” and “What is the prime factorization of n?”

Let an denote the number of multiplicative partitions of the natural number n. For
example, a12 = 4 since

12 = 2 · 6 = 2 · 2 · 3 = 3 · 4.

The sequence {an} is listed in Sloane A001055. The Dirichlet generating function for this
sequence is

f(s) =
∞∏
k=2

1

1− k−s
=
∞∑
n=1

an
ns
. (1)

For special choices of n, the value of an can be determined in closed form. If n = pk

where p is a prime, then an = p(k), the number of additive partitions of the number k.
If n = p1p2 · · · pk, a product of k distinct primes, then an = B(k), the kth Bell number.
Lastly, it is important to note that if n = pe11 p

e2
2 · · · p

ek
k where p1, p2, · · · , pk are distinct

primes, then an depends only on e1, e2, . . . , ek. More on multiplicative partitions, including
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results on bounds and asymptotics of an and algorithms for calculating the values, can
be found in [5], [7], [9], and [12].

The goal of this paper is to exploit the generating function (1) to determine new
identities involving an. One of the new formulas can be implemented recursively to per-
form quick calculations. Moreover, connections are made to additive partitions and the
Riemann zeta function.

2 Generating Function

It will be useful to consider the reciprocal of the generating function f(s). Define

g(s) =
∞∏
k=2

(
1− k−s

)
=
∞∑
n=1

bn
ns
.

The product f(s)g(s) produces ∑
d|n

adbn/d = δn,1 (2)

where δ is the Kronecker delta function. An important auxiliary sequence is defined as
mn = σ(r)/r where r = gcd(e1, e2, . . . , ek), n = pe11 p

e2
2 · · · p

ek
k , and σ is the sum of divisors

function. For example, m36 = 3/2 since 36 = 22 ·32. We now offer several theorems which
shed light on the generating function f(s).

Theorem 1. If <s > 1, then

log f(s) =
∞∑
n=2

mn

ns
. (3)

Proof.

log f(s) = −
∞∑
k=2

log(1− k−s)

=
∞∑
k=2

(
k−s +

k−2s

2
+
k−3s

3
+ · · ·

)
=

1

2s
+

1

3s
+

1

4s

(
1 +

1

2

)
+

1

5s
+

1

6s
+

1

7s

+
1

8s

(
1 +

1

3

)
+

1

9s

(
1 +

1

2

)
+

1

10s
+ · · ·

=
∞∑
n=2

(∑
d|r

1

d

)
1

ns

=
∞∑
n=2

(
1

r

∑
d|r

d

)
1

ns

=
∞∑
n=2

mn

ns
.
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Equation (3) can be used to produce a more sophisticated relationship connecting an
and bn than equation (2). If p is a prime, let νp(n) denote the number of powers of p in
the number n.

Theorem 2. For any prime p and natural number n,

νp(n)mn =
∑
d|n

νp(d)adbn/d. (4)

Proof.

(log f(s))′ = f ′(s) · 1

f(s)

= −

(
∞∑
n=2

an log n

ns

)(
∞∑
n=1

bn
ns

)

= −
∞∑
n=2

1

ns

∑
d|n

(log d)adbn/d.

Integrating with respect to s and noting that the constant of integration must be zero by
considering the terms as s tends to infinity, one finds

log f(s) =
∞∑
n=2

1

ns

∑
d|n

(
log d

log n

)
adbn/d.

Using equation (3), one has

(log n)mn =
∑
d|n

(log d)adbn/d.

Writing n as its prime decomposition and applying νp, the linear independence of any
finite subset of {log(p) : p prime} implies

νp(n)mn =
∑
d|n

νp(d)adbn/d.

There are now two formulas which relate an and bn. For computational reasons, it
would be useful to have a formula with only an terms.

Theorem 3. For any prime p, one has

νp(n)an =
∑
d|n

νp(d)mdan/d. (5)
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Proof. The proof involves both convolution and deconvolution. Starting with Theorem 2,

∞∑
n=1

1

ns
νp(n)mn =

∞∑
n=1

1

ns

∑
d|n

νp(d)adbn/d

=

(
∞∑
n=1

νp(n)an
ns

)(
∞∑
n=1

bn
ns

)

=
1

f(s)

∞∑
n=1

νp(n)an
ns

.

Rearranging, one has

∞∑
n=1

νp(n)an
ns

= f(s)
∞∑
n=1

1

ns
νp(n)mn

=

(
∞∑
n=1

an
ns

)(
∞∑
n=1

1

ns
νp(n)mn

)

=
∞∑
n=1

1

ns

∑
d|n

νp(d)an/dmd.

Extracting the coefficients in the generating functions implies

νp(n)an =
∑
d|n

νp(d)mdan/d.

The generating function f(s), particularly when written in product form, bears an
obvious resemblance to the Riemann zeta function. With this in view, it is natural to
look for parallels. The following result resembles the Selberg identity (see [2, p.46]).

Theorem 4. For any natural number n,

mn(log n)2 =
∑
d|n

adbn/d(log d)2 −
∑
d|n

mdmn/d(log d)(log n/d). (6)

Proof.

(log f(s))′′ =
f ′′(s)

f(s)
−
(
f ′(s)

f(s)

)2

=

(
∞∑
n=1

an(log n)2

ns

)(
∞∑
n=1

bn
ns

)
−

(
∞∑
n=1

mn log n

ns

)2

=
∞∑
n=1

1

ns

∑
d|n

adbn/d(log d)2 −
∞∑
n=1

1

ns

∑
d|n

mdmn/d(log d)(log n/d).
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Integrating with respect to s, noting the constants of integration equal zero by considering
the functions as s approaches infinity, and extracting coefficients in the power series yields
the desired result.

3 Formulas for Additive Partitions

It was noted earlier that if n = pk for some prime k, then an = p(k) where p(k) is the
number of additive partitions of the number k. While this paper’s fundamental objective
is to explore multiplicative partitions, the formulas of the last section enable one to derive
identities for the additive partition.

Lemma 5. If n = pk for some prime p, then bn = tk where tk is the coefficient of xk in
the function

∑∞
j=−∞(−1)jxj(3j+1)/2 =

∏∞
j=1 (1− xj).

Proof. Equation (2) can be written as

0 =
k∑
j=0

p(k − j)bpj .

A basic result of additive partitions [1] states

0 =
∞∑
j=0

p(k − j)tj.

An inductive argument using these two equations proves that bpj = tj.

Theorem 6. The following equations hold for all natural numbers k:

k · p(k) =
k∑
j=1

σ(j)p(k − j) (7)

σ(k) =
k∑
j=1

j · p(j)tk−j (8)

k · σ(k) =
k∑
j=1

j2p(j)tk−j −
k−1∑
j=1

σ(j)σ(k − j) (9)

Proof. Let n = pk for some prime p. This forces νp(n) = k and mn = σ(k)/k. Since
the divisors of n take the form d = pj, j = 0, . . . , k, one has νp(d) = j, ad = p(j), and
Lemma 5 implies bn/d = tk−j. Substituting these values into equations (4), (5) and (6),
one produces the three desired equations.

Equation (7) is well-known in the theory of partitions, equation (8) is essentially
derived in [13], while equation (9) appears to be new.

the electronic journal of combinatorics 20(2) (2013), #P57 5



4 Connections to the Riemann zeta function

The relationship between the generating functions f(s) and ζ(s) is more than just a meta
comparison. Let µ(n) denote the Möbius function.

Theorem 7. If <s > 1, then

ζ(s) = 1 +
∞∑
n=1

µ(n)

n
log f(ns). (10)

Proof. Starting with work seen in the proof of equation (2), one has

log f(s) =
∞∑
k=2

∞∑
n=1

1

n · (ks)n

=
∞∑
n=1

1

n
(ζ(ns)− 1).

Applying Möbius inversion concludes the proof.

This new formula converges quickly. For large s,

log f(ns) = log

(
1 +

1

2ns
+

1

3ns
+ · · ·

)
=

1

2ns
+ · · ·

Comparing successive terms in equation (10) — assuming the Möbius function is non-zero
— their ratio approaches 1/2s as s → ∞. This implies that larger choices of s require
fewer terms in the series to achieve the same accuracy. The formulas usually used to
compute approximations of ζ(s) when s is odd (see [6]) are due to Ramanujan and the
terms in the series have a ratio of 1/e2π. The ratio from equation (10) is smaller for
s > 10. For an extensive article on computing ζ(s), see [4].

Using equation (3), one can construct a formula for ζ(s) which is independent of the
multiplicative partitions:

ζ(s) = 1 +
∞∑
n=1

µ(n)

n
log f(ns)

= 1 +
∞∑
n=1

µ(n)

n

∞∑
k=2

mk

kns

= 1 +
∞∑
k=2

mk

∞∑
n=1

µ(n)

n

1

kns
.

When s > 1 is an integer, a closed form expression for f(ns) can be found.
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Theorem 8. If n > 1 is a natural number, then

f(n) =
n−1∏
j=1

Γ(2− ωj)

where Γ(z) is the Gamma function and ω = exp(2πi/n).

Proof. Starting with equation (1), repeated use of Γ(x+ 1) = xΓ(x) produces

f(n) = lim
N→∞

N∏
k=2

kn

kn − 1

= lim
N→∞

N∏
k=2

n∏
j=1

k

k − ωj

= lim
N→∞

n∏
j=1

Γ(N + 1)Γ(2− ωj)
Γ(N + 1− ωj)

=
n−1∏
j=1

Γ(2− ωj) lim
N→∞

n∏
j=1

Γ(N + 1)

Γ(N + 1− ωj)

To evaluate the limit, one uses the lesser-known identity [3]

lim
n→∞

nb−a
Γ(n+ a)

Γ(n+ b)
= 1.

Then

lim
N→∞

n∏
j=1

Γ(N + 1)

Γ(N + 1− ωj)
= lim

N→∞

(
n∏
j=1

1

N−ωj

)(
n∏
j=1

N−ω
j
Γ(N + 1)

Γ(N + 1− ωj)

)

= lim
N→∞

1

N−ω−ω2−···−ωn−1−1 · 1
= 1.

When s > 1 is an integer, Theorem 8 may be used in conjunction with equation (10)
to yield

ζ(s) = 1 +
∞∑
n=1

µ(n)

n

ns−1∑
j=1

log Γ(2− ωj). (11)

where ω = exp(2πi/ns).
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5 Numerical Explorations

Values of an for small n can be found in Sloane A001055. Hughs and Shallit [8] built a
recursive formula for an which employs the finer multiplicative partitions an,m, the number
of partitions of n with all elements bounded by m. This approach was programmed by
Knopfmacher and Mays [11] in Mathematica.

Using equation 5, we implemented a recursive algorithm which appears significantly
faster than the previous approach. Two important features in the implementation should
be mentioned. First, the recursive nature of this approach implies that the procedure to
calculate an may be called many times for the same value of n, particularly if n is small. To
avoid this duplication in calculations, the procedures which calculate an and mn employed
Maple’s remember option which caches values and will not redo a calculation. Indeed,
instead of using Maple’s built-in function for νp(n), we constructed our own which also
caches the values. Secondly, we took advantage of the observation that an depends only
on the exponents in the prime decomposition of n. To calculate an, the value of n was
replaced by the smallest number which had the same exponents (for some n, the new value
is no smaller). These two features worked in tandem to blitz through the calculations:
using Maple 14 on a Mac Book Pro, all the values of an for n < 2, 000, 000 were calculated
in 141 CPU seconds.

As is evident from earlier formulas, an understanding of the sequence {an} is bolstered
by more insight into the sequence {bn}. Continuing the metaphorical comparison of f(s)
to the Riemann zeta function, one compares bn to the Möbius function µ(n). Initial
calculations yield the following values for bn:

Form of n 1 p1 p21 p1p2 p31 p21p2 p1p2p3 p41 p31p2 p21p
2
2 p21p2p3

bn 1 -1 -1 0 0 1 1 0 1 1 1

Just as the Möbius function takes only the values {−1, 0, 1}, the table suggests the
values of bn are similarly restricted. Lemma 5 extends this list to infinitely many cases,
all with bn = ±1. One more piece of evidence is of a combinatorial nature. Let den denote
the number of multiplicative partitions of n into an even number of distinct parts and don
the number of multiplicative partitions of n into an odd number of distinct parts. For
example, since 12 = 2 · 6 = 2 · 2 · 3 = 3 · 4, de12 = 2 and d012 = 1.

Theorem 9. For all natural numbers n, bn = den − don.

Proof.

∞∑
n=1

bn
ns

=
∞∏
k=2

(
1− k−s

)
=

(
1− 2−s

) (
1− 3−s

) (
1− 4−s

)
· · ·

=
∞∑
n=1

den
ns
−
∞∑
n=1

don
ns
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Since one would expect a balance between the even and odd partitions, having bn ∈
{−1, 0, 1} seems reasonable. However, one finds (see [10]) that b360 = −2. Indeed, using
the two million values of an which were computed with equation (2) found wilder extremes:
the minimum value of bn is -29 and the maximum value is 87. Alas, it seems the tight
structure of the Möbius function does not extend to bn.
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