Note on upper density of quasi-random hypergraphs

Vindya Bhat

Department of Mathematics and Computer Science Emory University Atlanta, U.S.A.

vbhat@emory.edu

Vojtěch Rödl*

Department of Mathematics and Computer Science Emory University Atlanta, U.S.A.

rodl@mathcs.emory.edu

Submitted: Mar 22, 2013; Accepted: Jun 7, 2013; Published: Jun 21, 2013 Mathematics Subject Classifications: 05C65, 05C42

Abstract

In 1964, Erdős proved that for any $\alpha > 0$, an *l*-uniform hypergraph G with $n \ge n_0(\alpha, l)$ vertices and $\alpha \binom{n}{l}$ edges contains a large complete *l*-equipartite subgraph. This implies that any sufficiently large G with density $\alpha > 0$ contains a large subgraph with density at least $l!/l^l$.

In this note we study a similar problem for *l*-uniform hypergraphs Q with a weak quasi-random property (i.e. with edges uniformly distributed over the sufficiently large subsets of vertices). We prove that any sufficiently large quasi-random *l*-uniform hypergraph Q with density $\alpha > 0$ contains a large subgraph with density at least $\frac{(l-1)!}{l^{l-1}-1}$. In particular, for l = 3, any sufficiently large such Q contains a large subgraph with density at least $\frac{1}{4}$ which is the best possible lower bound.

We define jumps for quasi-random sequences of *l*-graphs and our result implies that every number between 0 and $\frac{(l-1)!}{l^{l-1}-1}$ is a jump for quasi-random *l*-graphs. For l = 3this interval can be improved based on a recent result of Glebov, Král' and Volec. We prove that every number between [0, 0.3192) is a jump for quasi-random 3-graphs.

Keywords: hypergraphs; quasi-random; density; jumps

^{*}Research partially supported by NSF grant DMS 1301698 and Emory University Research Committee Grant

1 Introduction

For fixed $l \ge 2$, an *l*-graph G = (V, E) is an *l*-uniform hypergraph with vertex set V and edge set $E \subseteq \binom{V}{l}$, or a subset of the *l*-tuples of V. For $K \subseteq V$ and |K| = k, we denote the *l*-subgraph of G induced by K as $G[K] = (K, E \cap \binom{K}{l})$. The density of such an *l*-graph G is defined by $d(G) = |E|/\binom{|V|}{l}$.

Let $\mathcal{G} = \{G_n\}_{n=1}^{\infty}$ be a sequence of *l*-graphs with $G_n = (V_n, E_n)$ such that $|V_n| \to \infty$ as $n \to \infty$. We define the density $d(\mathcal{G})$ of a sequence \mathcal{G} as $d(\mathcal{G}) = \lim_{n \to \infty} d(G_n)$ (if the limit exists). We will consider only graph sequences for which the limit $d(G_n)$ exists as $n \to \infty$.

Setting

$$\sigma_k(\mathcal{G}) = \max_n \max_{K \in \binom{V_n}{k}} d(G_n[K]),$$

a simple averaging argument yields that $\{\sigma_k(\mathcal{G})\}_{k=2}^{\infty}$ is a non-increasing non-negative sequence and so the limit $\overline{d}(\mathcal{G}) = \lim_{k \to \infty} \sigma_k(\mathcal{G})$ exists. We call this limit $\overline{d}(\mathcal{G})$ the upper density of \mathcal{G} .

The result we present in this note are motivated by a theorem of Erdős from [2]:

Theorem 1.1. For every $\epsilon > 0, l \ge 2$ and t, there exists n such that any l-graph with n vertices and ϵn^l edges contains a complete l-partite l-graph $K_{t,t,\dots,t}^{(l)}$. Consequently, for any sequence \mathcal{G} of l-graphs with $d(\mathcal{G}) > 0, \overline{d}(\mathcal{G}) \ge l!/l^l$.

In this note we are interested in a similar problem if we restrict to quasi-random *l*-graphs.

Definition 1.2. Given $\epsilon > 0$ and $\alpha > 0$, we define an (α, ϵ) -quasi-random hypergraph to be an *l*-graph Q = (V, E) with the property that for all $W \subseteq V$, $d(Q[W]) = \alpha(1 \pm \epsilon)$ for $|W| \ge \epsilon n$ where |V| = n. A sequence $Q = \{Q_n\}_{n=1}^{\infty}$ of (α, ϵ_n) -quasi-random *l*-graphs is quasi-random if ϵ_n is decreasing and $\epsilon_n \to 0$ as $n \to \infty$.

Note that for l = 2 quasi-random graphs must contain arbitrarily large cliques as $\epsilon_n \to 0$ and thus any quasi-random sequence of 2-graphs with $d(\mathcal{Q}) > 0$ necessarily satisfies $\overline{d}(\mathcal{Q}) = 1$. In this note we prove a related result for $l \ge 3$:

Theorem 1.3. For a sequence Q of quasi-random *l*-graphs with d(Q) > 0,

- (i) $\overline{d}(\mathcal{Q}) \ge \frac{(l-1)!}{l^{l-1}-1}$ and
- (ii) when l = 3 there exists a quasi-random sequence of 3-graphs with $\overline{d}(\mathcal{Q}) = \frac{1}{4}$.

For l > 3, however, we do not know if $\overline{d}(\mathcal{Q}) \ge \frac{(l-1)!}{l^{l-1}-1}$ could not be replaced by a larger number. Our results for l = 3 are shown in the Section 2.1 and a similar construction may be applied to generalize the result for all *l*-graphs, proving Theorem 1.3(i).

A number α is a *jump* if there exists a constant $c = c(\alpha)$ such that given any sequence of *l*-graphs $\mathcal{G} = \{G_n\}_{n=1}^{\infty}$ if $\overline{d}(\mathcal{G}) > \alpha$, then $\overline{d}(\mathcal{G}) \ge \alpha + c$. It follows from the Erdős-Stone Theorem that all non-negative numbers less than 1 are jumps for graphs and it follows from Theorem 1.1 that all non-negative numbers less than $\frac{l!}{l^{l}}$ are jumps for *l*-graphs. Erdős conjectured that, analogous to graphs, all numbers less than 1 are jumps for *l*-graphs as well. This conjecture was disproved by Frankl and Rödl in [5] who showed that there are an infinite number of non-jumps for all $l \ge 3$. However, these non-jumps were found to occur at relatively large densities. While the smallest case of determining whether $\frac{l!}{l^{l}}$ is a jump is still open and likely a difficult problem, our result shows that under the further assumption of quasi-randomness that $\frac{l!}{l^{l}}$ is indeed a jump for all $l \ge 3$.

We extend the concept of jumps to sequences of quasi-random l-graphs:

Definition 1.4. A number α is a *jump for quasi-random l-graphs* if there exists a constant $c = c(\alpha)$ such that given any sequence of quasi-random *l*-graphs $\mathcal{G} = \{G_n\}_{n=1}^{\infty}$ if $\overline{d}(\mathcal{G}) > \alpha$, then $\overline{d}(\mathcal{G}) \ge \alpha + c$.

Theorem 1.3(*i*) implies that every number between 0 and $\frac{(l-1)!}{l^{l-1}-1}$ is a jump for quasirandom *l*-graphs. Further we will show that for l = 3 this interval can be improved from $[0, \frac{1}{4})$ to [0, 0.3192) given the following question of Erdős [3] is answered positively:

Question 1.5. Let c > 0 and $\mathcal{Q} = \{Q_n\}_{n=1}^{\infty}$ be a quasi-random sequence of 3-graphs. If $d(\mathcal{Q}) = \frac{1}{4} + c$, then does each Q_n contain $K_4^{(3)} - e$ as $n \to \infty$?

More formally, we prove in Section 3:

Theorem 1.6. A positive answer to Question 1.5 implies that any quasi-random sequence \mathcal{Q} with $d(\mathcal{Q}) > \frac{1}{4}$ satisfies $\overline{d}(\mathcal{Q}) > 0.3192$.

Very recently, Glebov, Král' and Volec in [6] proved Question 1.5 in the positive using Razborov's flag-algebra method [10]. This result confirms our assertion in Theorem 1.6.

We include our remarks and questions for future study for quasi-random l-graphs with l > 3 and other possibilities for jumps for quasi-random 3-graphs in Section 4.

2 Proof of Theorem 1.3

2.1 The lower bound

Our proof is based on the following lemma proved in [1] and [9]:

Lemma 2.1. For all $\alpha > 0$ and $\epsilon > 0$, there exists $\delta > 0$, m > 0 and $n_0 > 0$ such that if Q = (V, E) is an (α, δ) -quasi-random *l*-graph with $|V| = n \ge n_0$ vertices then Q[M] is (α, ϵ) -quasi-random for at least $\frac{1}{2} {n \choose m}$ m-sets $M \in {n \choose m}$.

Going forward in this subsection, we restrict to l = 3 for simplicity. Essentially the same statements may be applied to general *l*-graphs.

Given a 3-graph F, $\alpha > 0$ and $\epsilon > 0$, we write $(\alpha, \epsilon) \to F$ to denote the fact that every (α, ϵ) -quasi-random 3-graph R contains F. Let F and H be 3-graphs. For F, H, and $v \in V(F)$, we define F_H^v to be the 3-graph as follows: (i) $V(F_H^v) = V(F) \cup V(H) - v$ and

(ii)
$$E(F_H^v) = E(F - v) \cup E(H) \cup \bigcup_{u \in V(H)} \{\{a, b, u\} \colon \{a, b, v\} \in E(F)\}$$

In other words, to obtain F_H^v from F, replace v with V(H) and add all the edges in H as well as the edges of type $\{a, b, u\}$ where $u \in V(H)$ and $\{a, b, v\} \in E(F)$. In this construction we will assume that F and H are vertex disjoint and thus $|V(F_H^v)| = |V(F)| + |V(H)| - 1$ and $|E(F_H^v)| = |E(F)| + |E(H)| + |V(H) - 1||\{e \in E(F), v \in e\}|.$

Using the notation stated above, we observe the following:

Lemma 2.2. For all $\alpha > 0$, $\epsilon > 0$, $\gamma > 0$ and 3-graphs F and H, there exists $\delta = \delta(\alpha, \epsilon, \gamma) > 0$ such that if $(\alpha, \epsilon) \to F$ and $(\alpha, \gamma) \to H$, then $(\alpha, \delta) \to F_H^v$.

Proof. Let |V(F)| = f and let $v \in V(F)$. Given $\alpha > 0$ and $\epsilon > 0$ such that $(\alpha, \epsilon) \to F$, let $\delta_{L(2,1)}$ and $m = m(\alpha, \epsilon)$ be the constants ensured by Lemma 2.1. Consider an (α, δ) quasi-random hypergraph Q on n vertices. Set $\delta \leq \min(\delta_{L(2,1)}, \frac{\gamma}{2m^f})$. We want to show that Q must contain F_H^v . By Lemma 2.1, R = Q[M] is (α, ϵ) -quasi-random for at least $\frac{1}{2} \binom{n}{m}$ M's. By assumption $((\alpha, \epsilon) \to F)$ each such (α, ϵ) -quasi-random Q[M] contains a copy of F. Consequently, the number of Q[M]'s with each containing a copy of F is at least $\frac{1}{2} \binom{n}{m}$. On the other hand, each copy of F is in at most $\binom{n-f}{m-f}$ different Q[M]'s. Thus, we have at least $\frac{1}{2} \binom{n}{m} / \binom{n-f}{m-f} = \frac{\binom{n}{f}}{2\binom{m}{f}} > \frac{1}{2} \binom{n}{m} f = cn^f$ distinct copies of F in Q, where $c = c(m(\alpha, \epsilon), f) = \frac{1}{2m^f}$. Set $V(F) = \{u_1, u_2, \dots, u_{f-1}, v\}$ and let $F^{copy} = F^c$ be a copy of Fin Q with $V(F^c) = \{u_1^c, u_2^c, \dots, u_{f-1}^c, v^c\}$ so that $u_i \to u_i^c$ for $i = 1, 2, \dots, f - 1$ and $v \to v^c$ is an isomorphism.

For each of the cn^f copies F^c of F, consider an ordered (f-1)-tuple $(u_1^c, u_2^c, \ldots, u_{f-1}^c)$. Since the total number of (f-1)-tuples of vertices of Q is bounded by $n(n-1) \ldots (n-(f-1)) \leq n^{f-1}$ we infer that there exists an (f-1)-tuple of vertices $\overline{u}_1, \overline{u}_2, \ldots, \overline{u}_{f-1}$ of Q contained in $cn^f/n^{f-1} \sim cn$ copies F^c of F. Consider a set S, $|S| = cn = \frac{n}{cm^f}$, of vertices \overline{v} each of which together with $\overline{u}_1, \overline{u}_2, \ldots, \overline{u}_{f-1}$ induces a copy F^c of F. Due to the (α, δ) -quasi-randomness of Q and the fact that $\delta \leq \frac{\gamma}{2m^f} = c\gamma$, Q[S] is (α, γ) -quasi-random and, therefore, due to the assumption of Lemma 2.2, contains a copy of H with vertex set $V(H) = \{v_1, \ldots, v_{|V(H)|}\}$. Since each v_i $(1 \leq i \leq |V(H)|)$ together with $\overline{u}_1, \overline{u}_2, \ldots, \overline{u}_{f-1}$ span a copy F^c of F, we infer that $\{\overline{u}_1, \overline{u}_2, \ldots, \overline{u}_{f-1}, v_1, \ldots, v_{|V(H)|}\}$ spans a copy of F_H^v .

Before we prove Theorem 1.3(*i*) for l = 3, we construct an auxilliary sequence of 3graphs $\mathcal{G} = \{G_i\}_{i=1}^{\infty}$ with density tending to $\frac{1}{4}$. We will then show that G_i is in Q_n for nlarge enough. Let G_1 be a 3-graph with three vertices and one edge. For i > 1, let G_i be the 3-graph obtained by taking 3 vertex disjoint copies of G_{i-1} , and adding all edges with exactly one vertex in each copy. For instance, G_2 has 9 vertices and $3 + 3^3 = 30$ edges.

Figure 1: Three applications of Lemma 2.2 prove Claim 2.3

Since $|V(G_i)| = 3|V(G_{i-1})| = 3^i$ and $|E(G_i)| = |V(G_{i-1})|^3 + 3|E(G_{i-1})| = 3^{3(i-1)}(1 + \frac{1}{9} + \dots + \frac{1}{9^{i-1}}) = 3^{i-1}\frac{(3^{i-1})(3^i+1)}{8}$, the density of G_i as $i \to \infty$ is

$$\lim_{i \to \infty} d(G_i) = \lim_{i \to \infty} \frac{3^{i-1} \frac{(3^i-1)(3^i+1)}{8}}{\binom{3^i}{3}} = \lim_{i \to \infty} \frac{1}{4} \left(\frac{3^i+1}{3^i-2}\right) = \frac{1}{4}.$$

Consider an arbitrary sequence of (α, δ_n) -quasi-random 3-graphs $\mathcal{Q} = \{Q_n\}_{n=1}^{\infty}$ with $d(Q_n) = \alpha(1 \pm \delta_n) > 0$ where $\delta_n \in (0, 1)$, δ_n is decreasing and $\delta_n \to 0$ as $n \to \infty$. We will show that there exists $n_1 < n_2 < n_3 < \ldots$ such that for $n \ge n_i$, Q_n contains G_i . Based on our density calculation of G_i above, $\overline{d}(\mathcal{Q}) \ge \frac{1}{4}$.

Since Q_n contains G_1 whenever $\delta_n < \alpha$, it remains to show the following claim by induction on i:

Claim 2.3. Assuming $(\alpha, \delta_{n_i}) \to G_i$, there exists n_{i+1} such that $(\alpha, \delta_{n_{i+1}}) \to G_{i+1}$

Proof. Our goal is to find n_{i+1} so that $(\alpha, \delta_n) \to G_{i+1}$ for all $n \ge n_{i+1}$. This will be achieved in three applications of Lemma 2.2 as shown in Figure 1. We will construct hypergraphs F', F'', F''' with $G_i \subseteq F' \subseteq F'' \subseteq F'' \subseteq F''' = G_{i+1}$ and n', n'', n''' with $n_i < n' < n'' < n''' = n_{i+1}$ such that

$$(\alpha, \delta_n) \to F^{(i)} \text{ for all } n \ge n^{(i)}$$
 (*)

Set $V(G_1) = \{a, b, c\}, H = G_i$, and $\gamma = \delta_{n_i}$. Below we will describe appropriate choices of F, ϵ and v to obtain graphs $F^{(i)}$, i = 1, 2, 3 satisfying (*).

- a) Set $F = G_1$, $\epsilon = \delta_1$ and v = a. Since $(\alpha, \delta_1) \to G_1$ and $(\alpha, \delta_{n_i}) \to G_i$, by Lemma 2.2 there exists $\delta' = \delta(\alpha, \delta_1, \delta_{n_i})$ such that $(\alpha, \delta') \to F_{G_i}^a$.
- b) Set $F' = F_{G_i}^a$, $\epsilon = \delta'$ and v = b. Since $(\alpha, \delta') \to F'$ and $(\alpha, \delta_{n_i}) \to G_i$, by Lemma 2.2 there exists $\delta'' = \delta(\alpha, \delta', \delta_{n_i})$ such that $(\alpha, \delta'') \to F_{G_i}^{\prime b}$.
- c) Set $F'' = F'^b_{G_i}$, $\epsilon = \delta''$ and v = c. Since $(\alpha, \delta'') \to F''$ and $(\alpha, \delta_{n_i}) \to G_i$, by Lemma 2.2 there exists $\delta''' = \delta(\alpha, \delta'', \delta_{n_i})$ such that $(\alpha, \delta''') \to F''_{G_i}$.

Observe that $F''' = F''_{G_i} = G_{i+1}$. Consequently $(\alpha, \delta_n) \to G_{i+1}$ for all n with $\delta_n \leq \delta'''$. \Box

In a similar way to Claim 2.3 one can show a slightly more general fact stated below as Proposition 2.5. First we define the lexicographic product of two 3-graphs:

Definition 2.4. The *lexicographic product* of two 3-graphs F and H with vertex set U and W respectively is a 3-graph $F \cdot H$ with vertex set $U \times W$ and with $\{(u_1, w_1), (u_2, w_2), (u_3, w_3)\} \in E(F \cdot H)$ if $\{u_1, u_2, u_3\} \in E(F)$ or if $u_1 = u_2 = u_3$ and $\{w_1, w_2, w_3\} \in E(H)$.

Proposition 2.5. For all $\alpha > 0$, $\epsilon > 0$, $\gamma > 0$ and 3-graphs F and H there exists $\delta = \delta(\alpha, \epsilon, \gamma) > 0$ such that $(\alpha, \epsilon) \to F$ and $(\alpha, \gamma) \to F$ implies $(\alpha, \delta) \to F \cdot H$.

2.2 The upper bound for l=3

It remains to show there exists a sequence of quasi-random 3-graphs with upper density $\frac{1}{4}$.

Proof. Consider a random tournament T_n on n vertices in which pairs are assigned arc direction with probability $\frac{1}{2}$. Let R_n be a 3-graph with $V(R_n) = V(T_n)$ and $E(R_n)$ consisting of vertex sets of all directed 3-cycles (this 3-graph was first considered by Erdős and Hajnal in [4] in the context of Ramsey theory).

It is well known (see [3]) that R_n is $(\frac{1}{4}, \delta_n)$ -quasi-random with $\delta_n \to 0$ as $n \to \infty$. On the other hand it follows from the well known result of Kendall and Babington Smith [7] that any tournament on n vertices has at most $\frac{1}{24}(n^3 - n)$ directed 3-cycles (cf. [8]) and so no subgraph of any R_n has density larger than $\frac{1}{4} + o(1)$. Thus the upper density of the sequence $\mathcal{R} = \{R_n\}_{n=1}^{\infty}$ is at most $\frac{1}{4} + o(1)$ establishing *(ii)* of Theorem 1.3.

3 Proof of Theorem 1.6

For l = 3, Theorem 1.3(*i*) implies that every number in $[0, \frac{1}{4})$ is a jump for quasi-random 3-graphs. In this section, we prove that $\frac{1}{4}$ is a jump as well and, more precisely, any number in $[\frac{1}{4}, 0.3192)$ is a jump for quasi-random 3-graphs given Question 1.5 is answered positively. To this end, we use a recent result of Glebov, Král' and Volec who in [6] confirmed Question 1.5 using a computer aided proof based on Razborov's flag-algebra method [10].

Proof. Given a sequence of quasi-random 3-graphs $\mathcal{Q} = \{Q_n\}_{n=1}^{\infty}$ with $\overline{d}(\mathcal{Q}) > \frac{1}{4}$, any Q_n with $n \ge n_0$ contains $K_4^{(3)} - e$ by [6]. In a way similar to the proof of Theorem 1.3(*i*) we will first construct a sequence of 3-graphs $\mathcal{F} = \{F_n\}_{n=1}^{\infty}$ such that $F_n \subseteq Q_n$ and $\lim_{n\to\infty} d(F_n) = \frac{3}{10}$. Subsequently we will alter it to a sequence of 3-graphs $\mathcal{G} = \{G_n\}_{n=1}^{\infty}$ in which $\lim_{n\to\infty} d(G_n) \approx 0.3192$.

Let $F_1 = K_4^{(3)} - e$ with $V(F_1) = \{a_1, a_2, a_3, b\}$ and $E(F_1) = \{\{a_1, a_2, b\}, \{a_1, a_3, b\}, \{a_2, a_3, b\}\}$. Let A_i $(1 \leq i \leq 3)$ and B be copies of $K_4^{(3)} - e$. We obtain F_2 by taking four vertex disjoint copies of F_1 , with vertex set A_i , $1 \leq i \leq 3$, and B and adding edges of type $\{a_i, a_j, b\}$ where $a_i \in A_i, a_j \in A_j, b \in B, 1 \leq i < j \leq 3$. Note that $|V(F_2)| = 4^2 = 16$ and $|E(F_2)| = 3(4) + 4^3(3)$. In other words $F_2 = F_1 \cdot F_1$ is the lexicographic product of two copies of F_1 . We continue in this fashion to construct the sequence \mathcal{F} . For i > 1,

let $F_i = F_1 \cdot F_{i-1}$ be the 3-graph obtained by taking four vertex disjoint copies of F_{i-1} , and adding edges in a similar way as described above. Since $|V(F_i)| = 4|V(F_{i-1})| = 4^i$ and $|E(F_i)| = 3|V(F_{i-1})| + 4^3|E(F_{i-1})| = 3 \cdot 4^{i-1}(1 + 4^2 + \ldots + 4^{2(i-1)}) = \frac{4^{i-1}}{5}(16^i - 1)$, the density of F_i as $i \to \infty$ is

$$\lim_{i \to \infty} d(F_i) = \lim_{i \to \infty} \frac{\frac{4^{i-1}}{5} (16^i - 1)}{\binom{4^i}{3}} = \frac{3}{10}.$$

In a similar way as in the proof of Theorem 1.3(i), one can show that for all *i* there exists *n* such that F_i is contained in Q_n . Thus, every number between 0 and $\frac{3}{10}$ is a jump for quasi-random 3-graphs.

One can improve $\frac{3}{10}$ to 0.3192 by considering conveniently chosen "blow ups" of F_i . We will describe this in more detail now. Setting $V(F_i) = \{1, 2, \ldots, \nu_i\}$, we first observe (similarly as in Lemma 2.2) that for each *i*, there exists an n_i so that 3-graphs $Q_n, n \ge n_i$, contain $c_i |V(Q_n)|^{\nu_i}$ copies of F_i . Hence by Theorem 1.1, Q_n contains a *t*-blowup $F_i * t$ of F_i , more precisely, a graph with vertex set $\bigcup_{j=1}^{\nu_i} W_j$, $|W_1| = \cdots = |W_{\nu_i}| = t$ and $\{\tilde{a}, \tilde{b}, \tilde{c}\} \in E(F_i * t)$ if $\{a, b, c\} \in E(F_i)$. In order to maximize the density, we consider graphs F_i with different vertices "blown up" to sets of different cardinalities.

More precisely, set $\alpha = \frac{2}{5}(4\sqrt{6}-9) \approx 0.2154$ and to each vertex $\overline{x} = (x_1, \ldots, x_i) \in V(F_i)$ assign a weight $w(\overline{x}) = (1-3\alpha)^j \alpha^{i-j}$ where j represents the number of b's among entries of \overline{x} and for t large consider a blow-up G_i of F_i with each vertex \overline{x} "blown-up" by $w(\overline{x}) * t$ vertices. Using this iterated construction, one can calculate that every number between 0 and $\frac{1}{19}(9-2\sqrt{6}) \approx 0.3192$, where $\frac{1}{19}(9-2\sqrt{6}) = \lim_{i\to\infty} d(G_i)$, is a jump for quasi-random 3-graphs.

4 Other remarks and questions

In Section 2.2 we considered $\mathcal{R} = \{R_n\}_{n=1}^{\infty}$, a sequence of quasi-random 3-graphs formed by random tournaments T_n , and observed that $d(\mathcal{R}) = \overline{d}(\mathcal{R}) = \frac{1}{4}$. There are other quasirandom sequences of 3-graphs with density equal to upper density. Consider the quasirandom sequences $\mathcal{Q} = \{Q_n\}_{n=1}^{\infty}$ described in [11]: Let χ be a random (k-1)-coloring of pairs of $\{1, \ldots, n\}$ and define the edges of Q_n to be all triples $\{i, u, v\}$ such that $\chi(\{i, u\}) \neq$ $\chi(\{i, v\})$. It can be shown that $d(\mathcal{Q}) = \overline{d}(\mathcal{Q}) = 1 - \frac{1}{k-1}$. In summary, if $\alpha \in \{\frac{1}{4}, \frac{1}{2}, \frac{2}{3}, \ldots\}$, then there is a sequence of quasi-random 3-graphs with $d(\mathcal{Q}) = \overline{d}(\mathcal{Q})$. Are there any others?

We proved that a sequence of quasi-random *l*-graphs \mathcal{Q} with $d(\mathcal{Q}) > 0$ has $\overline{d}(\mathcal{Q}) \ge \frac{(l-1)!}{l^{l-1}-1}$. In particular, we showed that this bound is the best possible when l = 3. For l = 4, it is not clear to the authors if there exists a quasi-random sequence of 4-graphs with upper density equal to $\frac{3!}{4^3-1} = \frac{2}{21}$.

Theorem 1.3(*i*) implies that every quasi-random sequence of *l*-graphs with positive density has upper density at least $\frac{(l-1)!}{l^{l-1}-1}$. For l = 3 this is the best possible, but we were

unable to show an analogous fact for l > 3. One can observe that $\frac{(l-1)!}{l^{l-1}-1}$ cannot be replaced by a number larger than $\frac{(l-1)!}{(l-1)^{l-1}}$. In order to see this, consider the quasi-random sequence $\mathcal{Q} = \{Q_n\}_{n=1}^{\infty}$ with vertex set $V(Q_n) = \{1, \ldots, n\} = [n]$. Let χ be a random (l-1)-coloring of pairs of [n]. Define the edge set $\{i, v_1, \ldots, v_{l-1}\} \in E(Q_n)$ if and only if all pairs $\{i, v_1\}, \ldots, \{i, v_{l-1}\}$ have different color. One can observe that $d(\mathcal{Q}) = \overline{d}(\mathcal{Q}) = \frac{(l-1)!}{(l-1)^{l-1}}$.

Acknowledgements

We would like to thank an anonymous referee for his comments and suggestions.

References

- N. Alon, W. de la Vega, R. Kannan, and M. Karpinski. Random sampling and approximation of MAX-CSP problems. In *Proceedings of the 34th annual ACM symposium on Theory of computing*, pages 232–239. ACM Press, 2002.
- [2] P. Erdős. On extremal problems of graphs and generalized graphs. Israel Journal of Mathematics, 2:183–190, 1964.
- [3] P. Erdős. Problems and results on graphs and hypergraphs: Similarities and differences. In J. Nešetřil and V. Rödl, editors, *Mathematics of Ramsey Theory*, pages 223–233. Springer-Verlag, 1990.
- [4] P. Erdős and A. Hajnal. On Ramsey like theorems. Proceedings: Conference in Combinatorial Mathematics, Mathematics Institute, Oxford University, pages 123–140, 1972.
- [5] P. Frankl and V. Rödl. Hypergraphs do not jump. Combinatorica, 4(2):149–159, 1984.
- [6] R. Glebov, D. Král', and J. Volec. A problem of Erdős and Sós on 3-graphs. Submitted.
- [7] M.G. Kendall and B. Babington Smith. On the method of paired comparisons. *Biometrika*, 31:324–345, 1940.
- [8] J. W. Moon. Topics on Tournaments. Holt, Rhinehart and Winston, 1968.
- [9] D. Mubayi and V. Rödl. Uniform edge distribution in hypergraphs is hereditary. *Electronic Journal of Combinatorics*, 11:#R55, 2004.
- [10] A. Razborov. Flag algebras. J. Symbolic Logic, 72(4):1239–1282, 2007.
- [11] V. Rödl. On universality of graphs with uniformly distributed edges. Discrete Mathematics, 59(1-2):125–134, 1986.