Note on upper density of quasi-random hypergraphs

Vindya Bhat
Department of Mathematics and Computer Science
Emory University
Atlanta, U.S.A.
vbhat@emory.edu

Vojtěch Rödl∗
Department of Mathematics and Computer Science
Emory University
Atlanta, U.S.A.
rodl@mathcs.emory.edu

Submitted: Mar 22, 2013; Accepted: Jun 7, 2013; Published: Jun 21, 2013
Mathematics Subject Classifications: 05C65, 05C42

Abstract

In 1964, Erdős proved that for any \(\alpha > 0 \), an \(l \)-uniform hypergraph \(G \) with \(n \geq n_0(\alpha,l) \) vertices and \(\alpha(\binom{n}{l}) \) edges contains a large complete \(l \)-equipartite subgraph. This implies that any sufficiently large \(G \) with density \(\alpha > 0 \) contains a large subgraph with density at least \(l!/l^l \).

In this note we study a similar problem for \(l \)-uniform hypergraphs \(Q \) with a weak quasi-random property (i.e. with edges uniformly distributed over the sufficiently large subsets of vertices). We prove that any sufficiently large quasi-random \(l \)-uniform hypergraph \(Q \) with density \(\alpha > 0 \) contains a large subgraph with density at least \(\frac{(l-1)!}{l^{l-1}} \).

In particular, for \(l = 3 \), any sufficiently large such \(Q \) contains a large subgraph with density at least \(\frac{1}{4} \) which is the best possible lower bound.

We define jumps for quasi-random sequences of \(l \)-graphs and our result implies that every number between 0 and \(\frac{(l-1)!}{l^{l-1}} \) is a jump for quasi-random \(l \)-graphs. For \(l = 3 \) this interval can be improved based on a recent result of Glebov, Král’ and Volec. We prove that every number between \([0, 0.3192)\) is a jump for quasi-random 3-graphs.

Keywords: hypergraphs; quasi-random; density; jumps

∗Research partially supported by NSF grant DMS 1301698 and Emory University Research Committee Grant
1 Introduction

For fixed $l \geq 2$, an l-graph $G = (V, E)$ is an l-uniform hypergraph with vertex set V and edge set $E \subseteq \binom{V}{l}$, or a subset of the l-tuples of V. For $K \subseteq V$ and $|K| = k$, we denote the l-subgraph of G induced by K as $G[K] = (K, E \cap \binom{K}{l})$. The density of such an l-graph G is defined by $d(G) = |E|/\binom{|V|}{l}$.

Let $G = \{G_n\}_{n=1}^{\infty}$ be a sequence of l-graphs with $G_n = (V_n, E_n)$ such that $|V_n| \to \infty$ as $n \to \infty$. We define the density $d(G)$ of a sequence G as $d(G) = \lim_{n \to \infty} d(G_n)$ (if the limit exists). We will consider only graph sequences for which the limit $d(G_n)$ exists as $n \to \infty$.

Setting

$$\sigma_k(G) = \max_n \max_{K \in \binom{V_n}{k}} d(G_n[K]),$$

a simple averaging argument yields that $\{\sigma_k(G)\}_{k=2}^{\infty}$ is a non-increasing non-negative sequence and so the limit $\bar{d}(G) = \lim_{k \to \infty} \sigma_k(G)$ exists. We call this limit $\bar{d}(G)$ the upper density of G.

The result we present in this note are motivated by a theorem of Erdős from [2]:

Theorem 1.1. For every $\epsilon > 0, l \geq 2$ and t, there exists n such that any l-graph with n vertices and en^l edges contains a complete l-partite l-graph $K^{(l)}_{t, t, \ldots, t}$. Consequently, for any sequence G of l-graphs with $d(G) > 0$, $\bar{d}(G) \geq t!/t!$.

In this note we are interested in a similar problem if we restrict to quasi-random l-graphs.

Definition 1.2. Given $\epsilon > 0$ and $\alpha > 0$, we define an (α, ϵ)-quasi-random hypergraph to be an l-graph $Q = (V, E)$ with the property that for all $W \subseteq V$, $d(Q[W]) = \alpha(1 \pm \epsilon)$ for $|W| \geq \epsilon n$ where $|V| = n$. A sequence $Q = \{Q_n\}_{n=1}^{\infty}$ of (α, ϵ_n)-quasi-random l-graphs is quasi-random if ϵ_n is decreasing and $\epsilon_n \to 0$ as $n \to \infty$.

Note that for $l = 2$ quasi-random graphs must contain arbitrarily large cliques as $\epsilon_n \to 0$ and thus any quasi-random sequence of 2-graphs with $d(Q) > 0$ necessarily satisfies $d(Q) = 1$. In this note we prove a related result for $l \geq 3$:

Theorem 1.3. For a sequence Q of quasi-random l-graphs with $d(Q) > 0$,

(i) $\bar{d}(Q) \geq \frac{(l-1)!}{l-1}$ and

(ii) when $l = 3$ there exists a quasi-random sequence of 3-graphs with $\bar{d}(Q) = \frac{1}{4}$.

For $l > 3$, however, we do not know if $\bar{d}(Q) \geq \frac{(l-1)!}{l-1}$ could not be replaced by a larger number. Our results for $l = 3$ are shown in the Section 2.1 and a similar construction may be applied to generalize the result for all l-graphs, proving Theorem 1.3(i).

A number α is a jump if there exists a constant $c = c(\alpha)$ such that given any sequence of l-graphs $G = \{G_n\}_{n=1}^{\infty}$ if $\bar{d}(G) > \alpha$, then $\bar{d}(G) \geq \alpha + c$. It follows from the Erdős-Stone Theorem that all non-negative numbers less than 1 are jumps for graphs and it follows...
from Theorem 1.1 that all non-negative numbers less than \(\frac{\alpha}{l} \) are jumps for \(l \)-graphs. Erdős conjectured that, analogous to graphs, all numbers less than 1 are jumps for \(l \)-graphs as well. This conjecture was disproved by Frankl and Rödl in [5] who showed that there are an infinite number of non-jumps for all \(l \geq 3 \). However, these non-jumps were found to occur at relatively large densities. While the smallest case of determining whether \(\frac{\alpha}{l} \) is a jump is still open and likely a difficult problem, our result shows that under the further assumption of quasi-randomness that \(\frac{\alpha}{l} \) is indeed a jump for all \(l \geq 3 \).

We extend the concept of jumps to sequences of quasi-random \(l \)-graphs:

Definition 1.4. A number \(\alpha \) is a jump for quasi-random \(l \)-graphs if there exists a constant \(c = c(\alpha) \) such that given any sequence of quasi-random \(l \)-graphs \(\mathcal{G} = \{G_n\}_{n=1}^{\infty} \) if \(\overline{d}(\mathcal{G}) > \alpha \), then \(\overline{d}(\mathcal{G}) \geq \alpha + c \).

Theorem 1.3(i) implies that every number between 0 and \(\frac{(l-1)!}{l^l} \) is a jump for quasi-random \(l \)-graphs. Further we will show that for \(l = 3 \) this interval can be improved from \([0, \frac{1}{4}] \) to \([0, 0.3192) \) given the following question of Erdős [3] is answered positively:

Question 1.5. Let \(c > 0 \) and \(\mathcal{Q} = \{Q_n\}_{n=1}^{\infty} \) be a quasi-random sequence of 3-graphs. If \(d(\mathcal{Q}) = \frac{1}{4} + c \), then does each \(Q_n \) contain \(K_{4(3)}^4 - e \) as \(n \to \infty \)?

More formally, we prove in Section 3:

Theorem 1.6. A positive answer to Question 1.5 implies that any quasi-random sequence \(\mathcal{Q} \) with \(d(\mathcal{Q}) > \frac{1}{4} \) satisfies \(\overline{d}(\mathcal{Q}) > 0.3192 \).

Very recently, Glebov, Král’ and Volec in [6] proved Question 1.5 in the positive using Razborov’s flag-algebra method [10]. This result confirms our assertion in Theorem 1.6.

We include our remarks and questions for future study for quasi-random \(l \)-graphs with \(l > 3 \) and other possibilities for jumps for quasi-random 3-graphs in Section 4.

2 Proof of Theorem 1.3

2.1 The lower bound

Our proof is based on the following lemma proved in [1] and [9]:

Lemma 2.1. For all \(\alpha > 0 \) and \(\epsilon > 0 \), there exists \(\delta > 0 \), \(m > 0 \) and \(n_0 > 0 \) such that if \(Q = (V, E) \) is an \((\alpha, \delta)\)-quasi-random \(l \)-graph with \(|V| = n \geq n_0 \) vertices then \(Q[M] \) is \((\alpha, \epsilon)\)-quasi-random for at least \(\frac{1}{2} \binom{n}{m} \) \(m \)-sets \(M \in \binom{V}{m} \).

Going forward in this subsection, we restrict to \(l = 3 \) for simplicity. Essentially the same statements may be applied to general \(l \)-graphs.

Given a 3-graph \(F \), \(\alpha > 0 \) and \(\epsilon > 0 \), we write \((\alpha, \epsilon) \to F \) to denote the fact that every \((\alpha, \epsilon)\)-quasi-random 3-graph \(R \) contains \(F \). Let \(F \) and \(H \) be 3-graphs. For \(F \), \(H \), and \(v \in V(F) \), we define \(F_H^v \) to be the 3-graph as follows:
(i) \(V(F_H^w) = V(F) \cup V(H) - v \) and

(ii) \(E(F_H^w) = E(F - v) \cup E(H) \cup \bigcup_{u \in V(H)} \{\{a, b, u\} : \{a, b, v\} \in E(F)\} \)

In other words, to obtain \(F_H^w \) from \(F \), replace \(v \) with \(V(H) \) and add all the edges in \(H \) as well as the edges of type \(\{a, b, u\} \) where \(u \in V(H) \) and \(\{a, b, v\} \in E(F) \). In this construction we will assume that \(F \) and \(H \) are vertex disjoint and thus \(|V(F_H^w)| = |V(F)| \) and \(|E(F_H^w)| = |E(F)| \) and \(|V(H)| - 1\{v \in E(F), v \in e\} \).

Using the notation stated above, we observe the following:

Lemma 2.2. For all \(\alpha > 0 \), \(\epsilon > 0 \), \(\gamma > 0 \) and 3-graphs \(F \) and \(H \), there exists \(\delta = \delta(\alpha, \epsilon, \gamma) > 0 \) such that if \((\alpha, \epsilon) \to F \) and \((\alpha, \gamma) \to H \), then \((\alpha, \delta) \to F_H^w \).

Proof. Let \(|V(F)| = f \) and let \(v \in V(F) \). Given \(\alpha > 0 \) and \(\epsilon > 0 \) such that \((\alpha, \epsilon) \to F \), let \(\delta_{L(2,1)} \) and \(m = m(\alpha, \epsilon) \) be the constants ensured by Lemma 2.1. Consider an \((\alpha, \delta)\)-quasi-random hypergraph \(Q \) on \(n \) vertices. Set \(\delta \leq \min(\delta_{L(2,1)}, \frac{\gamma}{2m}) \). We want to show that \(Q \) must contain \(F_H^w \). By Lemma 2.1, \(R = Q[M] \) is \((\alpha, \epsilon)\)-quasi-random for at least \(\frac{1}{2}(\frac{n}{m})^{M} \)'s. By assumption \(((\alpha, \epsilon) \to F)\) each such \((\alpha, \epsilon)\)-quasi-random \(Q[M] \) contains a copy of \(F \). Consequently, the number of \(Q[M] \)'s with each containing a copy of \(F \) is at least \(\frac{1}{2}(\frac{n}{m})^{f} \). On the other hand, each copy of \(F \) is in at most \((\frac{n-f}{m}) \) different \(Q[M] \)'s. Thus, we have at least \(\frac{1}{2}(\frac{n}{m})^{f} \geq \frac{1}{2}(\frac{n}{m})^{f} > \frac{1}{2}(\frac{n}{m})^{f} = cn^{f} \) distinct copies of \(F \) in \(Q \), where \(c = c(m(\alpha, \epsilon), f) = \frac{1}{2m} \). Set \(V(F) = \{u_1, u_2, \ldots, u_{f-1}, v\} \) and let \(F^\text{copy} = F^c \) be a copy of \(F \) in \(Q \) with \(V(F^c) = \{u^c_1, u^c_2, \ldots, u^c_{f-1}, v^c\} \) so that \(u_i \to u^c_i \) for \(i = 1, 2, \ldots, f-1 \) and \(v \to v^c \) is an isomorphism.

For each of the \(cn^{f} \) copies \(F^c \) of \(F \), consider an ordered \((f-1)\)-tuple \((u^c_1, u^c_2, \ldots, u^c_{f-1})\). Since the total number of \((f-1)\)-tuples of vertices of \(Q \) is bounded by \(n(n-1) \ldots (n-(f-1)) \leq n^{f-1} \) we infer that there exists an \((f-1)\)-tuple of vertices \(\bar{u}_1, \bar{u}_2, \ldots, \bar{u}_{f-1} \) of \(Q \) contained in \(cn^{f}/n^{f-1} \sim cn \) copies \(F^c \) of \(F \). Consider a set \(S, |S| = cn = \frac{n}{cm} \) of vertices \(\bar{v} \) each of which together with \(\bar{u}_1, \bar{u}_2, \ldots, \bar{u}_{f-1} \) induces a copy \(F^c \) of \(F \). Due to the \((\alpha, \delta)\)-quasi-randomness of \(Q \) and the fact that \(\delta \leq \frac{\gamma}{2m} = c\gamma \), \(Q[S] \) is \((\alpha, \gamma)\)-quasi-random and, therefore, due to the assumption of Lemma 2.2, contains a copy of \(H \) with vertex set \(V(H) = \{v_1, \ldots, v_{|V(H)|}\} \). Since each \(v_i \) \((1 \leq i \leq |V(H)|)\) together with \(\bar{u}_1, \bar{u}_2, \ldots, \bar{u}_{f-1} \) span a copy \(F^c \) of \(F \), we infer that \(\{\bar{u}_1, \bar{u}_2, \ldots, \bar{u}_{f-1}, v_1, \ldots, v_{|V(H)|}\} \) spans a copy of \(F_H^w \). Thus, \((\alpha, \delta) \to F_H^w \). \(\square \)

Before we prove Theorem 1.3(1) for \(l = 3 \), we construct an auxiliary sequence of 3-graphs \(\mathcal{G} = \{G_l\}_{l=1}^{\infty} \) with density tending to \(\frac{1}{4} \). We will then show that \(G_l \) is in \(Q_n \) for \(n \) large enough. Let \(G_1 \) be a 3-graph with three vertices and one edge. For \(i > 1 \), let \(G_i \) be the 3-graph obtained by taking 3 vertex disjoint copies of \(G_{i-1} \), and adding all edges with exactly one vertex in each copy. For instance, \(G_2 \) has 9 vertices and 3 + 3² = 30 edges.
b) Set $F = F_1$ in three applications of Lemma 2.2 as shown in Figure 1. We will construct hypergraphs F, F', F'', and F''' to obtain graphs G, G', G'', and G''', respectively. This will be achieved based on density calculations of G, G', G'', and G'''. Consider an arbitrary sequence of (α, δ_n)-quasi-random 3-graphs $Q = \{Q_n\}_{n=1}^{\infty}$ with $d(Q_n) = \alpha(1 \pm \delta_n) > 0$ where $\delta_n \in (0, 1)$, δ_n is decreasing and $\delta_n \to 0$ as $n \to \infty$. We will show that for each $n < n_3$ such that for $n \geq n_i$, Q_n contains G_i. Based on our density calculation of G_i above, $d(Q) \geq \frac{1}{4}$. Since Q_n contains G_i whenever $\delta_n < \alpha$, it remains to show the following claim by induction on i:

Claim 2.3. Assuming $(\alpha, \delta_n_i) \to G_i$, there exists n_{i+1} such that $(\alpha, \delta_{n_{i+1}}) \to G_{i+1}$

Proof. Our goal is to find n_{i+1} so that $(\alpha, \delta_n) \to G_{i+1}$ for all $n \geq n_{i+1}$. This will be achieved in three applications of Lemma 2.2 as shown in Figure 1. We will construct hypergraphs F', F'', F''' with $G_i \subseteq F' \subseteq F'' \subseteq F''' = G_{i+1}$ and n', n'', n''' with $n_i < n' < n'' < n''' = n_{i+1}$ such that

$$(\alpha, \delta_n) \to F^{(i)}(n) \quad \text{for all } n \geq n^{(i)}$$

Set $V(G_1) = \{a, b, c\}$, $H = G_i$, and $\gamma = \delta_n$. Below we will describe appropriate choices of F, ϵ and v to obtain graphs $F^{(i)}$, $i = 1, 2, 3$ satisfying (*).

a) Set $F = G_1$, $\epsilon = \delta_1$ and $v = a$. Since $(\alpha, \delta_1) \to G_1$ and $(\alpha, \delta_{n_i}) \to G_i$, by Lemma 2.2 there exists $\delta' = \delta(\alpha, \delta_1, \delta_{n_i})$ such that $(\alpha, \delta') \to F_{G_1}^a$.

b) Set $F' = F_{G_i}^a$, $\epsilon = \delta'$ and $v = b$. Since $(\alpha, \delta') \to F'$ and $(\alpha, \delta_{n_i}) \to G_i$, by Lemma 2.2 there exists $\delta'' = \delta(\alpha, \delta', \delta_{n_i})$ such that $(\alpha, \delta'') \to F_{G_i}^b$.

c) Set $F'' = F_{G_i}^b$, $\epsilon = \delta''$ and $v = c$. Since $(\alpha, \delta'') \to F''$ and $(\alpha, \delta_{n_i}) \to G_i$, by Lemma 2.2 there exists $\delta''' = \delta(\alpha, \delta'', \delta_{n_i})$ such that $(\alpha, \delta''') \to F_{G_i}^{mc}$.

Observe that $F''' = F_{G_i}^{mc} = G_{i+1}$. Consequently $(\alpha, \delta_n) \to G_{i+1}$ for all n with $\delta_n \leq \delta'''$. □
In a similar way to Claim 2.3 one can show a slightly more general fact stated below as Proposition 2.5. First we define the lexicographic product of two 3-graphs:

Definition 2.4. The lexicographic product of two 3-graphs F and H with vertex set U and W respectively is a 3-graph $F \cdot H$ with vertex set $U \times W$ and with $\{(u_1, w_1), (u_2, w_2), (u_3, w_3)\} \in E(F \cdot H)$ if $\{u_1, u_2, u_3\} \in E(F)$ or if $u_1 = u_2 = u_3$ and $\{w_1, w_2, w_3\} \in E(H)$.

Proposition 2.5. For all $\alpha > 0$, $\epsilon > 0$, $\gamma > 0$ and 3-graphs F and H there exists $\delta = \delta(\alpha, \epsilon, \gamma) > 0$ such that $(\alpha, \epsilon) \to F$ and $(\alpha, \gamma) \to F$ implies $(\alpha, \delta) \to F \cdot H$.

2.2 The upper bound for $l=3$

It remains to show there exists a sequence of quasi-random 3-graphs with upper density $\frac{1}{4}$.

Proof. Consider a random tournament T_n on n vertices in which pairs are assigned arc direction with probability $\frac{1}{2}$. Let R_n be a 3-graph with $V(R_n) = V(T_n)$ and $E(R_n)$ consisting of vertex sets of all directed 3-cycles (this 3-graph was first considered by Erdős and Hajnal in [4] in the context of Ramsey theory).

It is well known (see [3]) that R_n is $(\frac{1}{4}, \delta_n)$-quasi-random with $\delta_n \to 0$ as $n \to \infty$. On the other hand it follows from the well known result of Kendall and Babington Smith [7] that any tournament on n vertices has at most $\frac{1}{24}(n^3 - n)$ directed 3-cycles (cf. [8]) and so no subgraph of any R_n has density larger than $\frac{1}{4} + o(1)$. Thus the upper density of the sequence $\mathcal{R} = \{R_n\}_{n=1}^{\infty}$ is at most $\frac{1}{4} + o(1)$ establishing (ii) of Theorem 1.3. \qed

3 Proof of Theorem 1.6

For $l = 3$, Theorem 1.3(i) implies that every number in $[0, \frac{1}{4})$ is a jump for quasi-random 3-graphs. In this section, we prove that $\frac{1}{4}$ is a jump as well and, more precisely, any number in $[\frac{1}{4}, 0.3192)$ is a jump for quasi-random 3-graphs given Question 1.5 is answered positively. To this end, we use a recent result of Glebov, Král’ and Volec who in [6] confirmed Question 1.5 using a computer aided proof based on Razborov’s flag-algebra method [10].

Proof. Given a sequence of quasi-random 3-graphs $Q = \{Q_n\}_{n=1}^{\infty}$ with $\mathcal{Q}(Q) > \frac{1}{4}$, any Q_n with $n \geq n_0$ contains $K_4^{(3)} - e$ by [6]. In a way similar to the proof of Theorem 1.3(i) we will first construct a sequence of 3-graphs $\mathcal{F} = \{F_n\}_{n=1}^{\infty}$ such that $F_n \subseteq Q_n$ and $\lim_{n \to \infty} d(F_n) = \frac{3}{10}$. Subsequently we will alter it to a sequence of 3-graphs $\mathcal{G} = \{G_n\}_{n=1}^{\infty}$ in which $\lim_{n \to \infty} d(G_n) \approx 0.3192$.

Let $F_1 = K_4^{(3)} - e$ with $V(F_1) = \{a_1, a_2, a_3, b\}$ and $E(F_1) = \{\{a_1, a_2, b\}, \{a_1, a_3, b\}, \{a_2, a_3, b\}\}$. Let A_i ($1 \leq i \leq 3$) and B be copies of $K_4^{(3)} - e$. We obtain F_2 by taking four vertex disjoint copies of F_1, with vertex set A_i, $1 \leq i \leq 3$, and B and adding edges of type $\{a_i, a_j, b\}$ where $a_i \in A_i, a_j \in A_j, b \in B, 1 \leq i < j \leq 3$. Note that $|V(F_2)| = 4^2 = 16$ and $|E(F_2)| = 3(4) + 4^3(3)$. In other words $F_2 = F_1 \cdot F_1$ is the lexicographic product of two copies of F_1. We continue in this fashion to construct the sequence \mathcal{F}. For $i > 1$, we continue with...
let $F_i = F_1 \cdot F_{i-1}$ be the 3-graph obtained by taking four vertex disjoint copies of F_{i-1}, and adding edges in a similar way as described above. Since $|V(F_i)| = 4|V(F_{i-1})| = 4^i$ and $|E(F_i)| = 3|V(F_{i-1})| + 4^i|E(F_{i-1})| = 3 \cdot 4^{i-1}(1 + 4^2 + \ldots + 4^{2(i-1)}) = \frac{4^{i-1}}{5}(16^i - 1)$, the density of F_i as $i \to \infty$ is

$$\lim_{i \to \infty} d(F_i) = \lim_{i \to \infty} \frac{4^{i-1}/5(16^i - 1)}{(4^i)} = \frac{3}{10}. $$

In a similar way as in the proof of Theorem 1.3(i), one can show that for all i there exists n such that F_i is contained in Q_n. Thus, every number between 0 and $\frac{3}{10}$ is a jump for quasi-random 3-graphs.

One can improve $\frac{3}{10}$ to 0.3192 by considering conveniently chosen “blow ups” of F_i. We will describe this in more detail now. Setting $V(F_i) = \{1, 2, \ldots, \nu_i\}$, we first observe (similarly as in Lemma 2.2) that for each i, there exists an n_i so that 3-graphs Q_n, $n \geq n_i$, contain $c_i|V(Q_n)|^{\nu_i}$ copies of F_i. Hence by Theorem 1.1, Q_n contains a t-blowup $F_i \cdot t$ of F_i, more precisely, a graph with vertex set $\bigcup_{j=1}^{\nu_i} W_j$, $|W_1| = \cdots = |W_{\nu_i}| = t$ and $\{\tilde{a}, \tilde{b}, \tilde{c}\} \in E(F_i \cdot t)$ if $\{a, b, c\} \in E(F_i)$. In order to maximize the density, we consider graphs F_i with different vertices “blown up” to sets of different cardinalities.

More precisely, set $\alpha = \frac{3}{10}(4\sqrt{6} - 9) \approx 0.2154$ and to each vertex $\pi = (x_1, \ldots, x_i) \in V(F_i)$ assign a weight $w(\pi) = (1 - 3\alpha)^j\alpha^{i-j}$ where j represents the number of b’s among entries of π and for t large consider a blow-up G_i of F_i with each vertex π “blown-up” by $w(\pi) \cdot t$ vertices. Using this iterated construction, one can calculate that every number between 0 and $\frac{1}{19}(9 - 2\sqrt{6}) \approx 0.3192$, where $\frac{1}{19}(9 - 2\sqrt{6}) = \lim_{i \to \infty} d(G_i)$, is a jump for quasi-random 3-graphs.

4 Other remarks and questions

In Section 2.2 we considered $\mathcal{R} = \{R_n\}_{n=1}^{\infty}$, a sequence of quasi-random 3-graphs formed by random tournaments T_n, and observed that $d(\mathcal{R}) = \overline{d}(\mathcal{R}) = \frac{1}{4}$. There are other quasi-random sequences of 3-graphs with density equal to upper density. Consider the quasi-random sequences $\mathcal{Q} = \{Q_n\}_{n=1}^{\infty}$ described in [11]: Let χ be a random $(k - 1)$-coloring of pairs of $\{1, \ldots, n\}$ and define the edges of Q_n to be all triples $\{i, u, v\}$ such that $\chi(\{i, u\}) \neq \chi(\{i, v\})$. It can be shown that $d(\mathcal{Q}) = \overline{d}(\mathcal{Q}) = 1 - \frac{1}{k-1}$. In summary, if $\alpha \in \{\frac{1}{4}, \frac{1}{2}, \frac{2}{3}, \ldots\}$, then there is a sequence of quasi-random 3-graphs with $d(\mathcal{Q}) = \overline{d}(\mathcal{Q})$. Are there any others?

We proved that a sequence of quasi-random l-graphs \mathcal{Q} with $d(\mathcal{Q}) > 0$ has $\overline{d}(\mathcal{Q}) \geq \frac{l(l-1)!}{l^l - 1}$. In particular, we showed that this bound is the best possible when $l = 3$. For $l = 4$, it is not clear to the authors if there exists a quasi-random sequence of 4-graphs with upper density equal to $\frac{3!}{4^3 - 1} = \frac{2}{21}$.

Theorem 1.3(i) implies that every quasi-random sequence of l-graphs with positive density has upper density at least $\frac{l(l-1)!}{l^l - 1}$. For $l = 3$ this is the best possible, but we were
unable to show an analogous fact for \(l > 3 \). One can observe that \(\frac{(l-1)!}{l-1} \) cannot be replaced by a number larger than \(\frac{(l-1)!}{(l-1)^2} \). In order to see this, consider the quasi-random sequence \(\mathcal{Q} = \{Q_n\}_{n=1}^{\infty} \) with vertex set \(V(Q_n) = \{1, \ldots, n\} = [n] \). Let \(\chi \) be a random \((l-1)\)-coloring of pairs of \([n]\). Define the edge set \(\{i, v_1, \ldots, v_{l-1}\} \in E(Q_n) \) if and only if all pairs \(\{i, v_1\}, \ldots, \{i, v_{l-1}\} \) have different color. One can observe that \(d(\mathcal{Q}) = \overline{d}(\mathcal{Q}) = \frac{(l-1)!}{(l-1)^2} \).

Acknowledgements

We would like to thank an anonymous referee for his comments and suggestions.

References

