Note on upper density of quasi-random hypergraphs

Vindya Bhat
Department of Mathematics and Computer Science
Emory University
Atlanta, U.S.A.
vbhat@emory.edu
Vojtěch Rödl*
Department of Mathematics and Computer Science
Emory University
Atlanta, U.S.A.
rodl@mathcs.emory.edu

Submitted: Mar 22, 2013; Accepted: Jun 7, 2013; Published: Jun 21, 2013
Mathematics Subject Classifications: 05C65, 05C42

Abstract

In 1964, Erdős proved that for any $\alpha>0$, an l-uniform hypergraph G with $n \geqslant$ $n_{0}(\alpha, l)$ vertices and $\alpha\binom{n}{l}$ edges contains a large complete l-equipartite subgraph. This implies that any sufficiently large G with density $\alpha>0$ contains a large subgraph with density at least $l!/ l^{l}$.

In this note we study a similar problem for l-uniform hypergraphs Q with a weak quasi-random property (i.e. with edges uniformly distributed over the sufficiently large subsets of vertices). We prove that any sufficiently large quasi-random l-uniform hypergraph Q with density $\alpha>0$ contains a large subgraph with density at least $\frac{(l-1)!}{l^{l-1}-1}$. In particular, for $l=3$, any sufficiently large such Q contains a large subgraph with density at least $\frac{1}{4}$ which is the best possible lower bound.

We define jumps for quasi-random sequences of l-graphs and our result implies that every number between 0 and $\frac{(l-1)!}{l^{l-1}-1}$ is a jump for quasi-random l-graphs. For $l=3$ this interval can be improved based on a recent result of Glebov, Král' and Volec. We prove that every number between $[0,0.3192$) is a jump for quasi-random 3 -graphs.

Keywords: hypergraphs; quasi-random; density; jumps

[^0]
1 Introduction

For fixed $l \geqslant 2$, an l-graph $G=(V, E)$ is an l-uniform hypergraph with vertex set V and edge set $E \subseteq\binom{V}{l}$, or a subset of the l-tuples of V. For $K \subseteq V$ and $|K|=k$, we denote the l-subgraph of G induced by K as $G[K]=\left(K, E \cap\binom{K}{l}\right)$. The density of such an l-graph G is defined by $d(G)=|E| /\binom{|V|}{l}$.

Let $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ be a sequence of l-graphs with $G_{n}=\left(V_{n}, E_{n}\right)$ such that $\left|V_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. We define the density $d(\mathcal{G})$ of a sequence \mathcal{G} as $d(\mathcal{G})=\lim _{n \rightarrow \infty} d\left(G_{n}\right)$ (if the limit exists). We will consider only graph sequences for which the limit $d\left(G_{n}\right)$ exists as $n \rightarrow \infty$.

Setting

$$
\sigma_{k}(\mathcal{G})=\max _{n} \max _{K \in\binom{V_{n}}{k}} d\left(G_{n}[K]\right),
$$

a simple averaging argument yields that $\left\{\sigma_{k}(\mathcal{G})\right\}_{k=2}^{\infty}$ is a non-increasing non-negative sequence and so the limit $\bar{d}(\mathcal{G})=\lim _{k \rightarrow \infty} \sigma_{k}(\mathcal{G})$ exists. We call this limit $\bar{d}(\mathcal{G})$ the upper density of \mathcal{G}.

The result we present in this note are motivated by a theorem of Erdős from [2]:
Theorem 1.1. For every $\epsilon>0, l \geqslant 2$ and t, there exists n such that any l-graph with n vertices and ϵn^{l} edges contains a complete l-partite l-graph $K_{t, t, \ldots, t}^{(l)}$. Consequently, for any sequence \mathcal{G} of l-graphs with $d(\mathcal{G})>0, \bar{d}(\mathcal{G}) \geqslant l!/ l^{l}$.

In this note we are interested in a similar problem if we restrict to quasi-random l-graphs.
Definition 1.2. Given $\epsilon>0$ and $\alpha>0$, we define an (α, ϵ)-quasi-random hypergraph to be an l-graph $Q=(V, E)$ with the property that for all $W \subseteq V, d(Q[W])=\alpha(1 \pm \epsilon)$ for $|W| \geqslant \epsilon n$ where $|V|=n$. A sequence $\mathcal{Q}=\left\{Q_{n}\right\}_{n=1}^{\infty}$ of $\left(\alpha, \epsilon_{n}\right)$-quasi-random l-graphs is quasi-random if ϵ_{n} is decreasing and $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Note that for $l=2$ quasi-random graphs must contain arbitrarily large cliques as $\epsilon_{n} \rightarrow 0$ and thus any quasi-random sequence of 2 -graphs with $d(\mathcal{Q})>0$ necessarily satisfies $\bar{d}(\mathcal{Q})=1$. In this note we prove a related result for $l \geqslant 3$:

Theorem 1.3. For a sequence \mathcal{Q} of quasi-random l-graphs with $d(\mathcal{Q})>0$,
(i) $\bar{d}(\mathcal{Q}) \geqslant \frac{(l-1)!}{l^{l-1}-1}$ and
(ii) when $l=3$ there exists a quasi-random sequence of 3-graphs with $\bar{d}(\mathcal{Q})=\frac{1}{4}$.

For $l>3$, however, we do not know if $\bar{d}(\mathcal{Q}) \geqslant \frac{(l-1)!}{l^{l-1}-1}$ could not be replaced by a larger number. Our results for $l=3$ are shown in the Section 2.1 and a similar construction may be applied to generalize the result for all l-graphs, proving Theorem 1.3(i).

A number α is a jump if there exists a constant $c=c(\alpha)$ such that given any sequence of l-graphs $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ if $\bar{d}(\mathcal{G})>\alpha$, then $\bar{d}(\mathcal{G}) \geqslant \alpha+c$. It follows from the Erdős-Stone Theorem that all non-negative numbers less than 1 are jumps for graphs and it follows
from Theorem 1.1 that all non-negative numbers less than $\frac{l!}{l}$ are jumps for l-graphs. Erdős conjectured that, analogous to graphs, all numbers less than 1 are jumps for l-graphs as well. This conjecture was disproved by Frankl and Rödl in [5] who showed that there are an infinite number of non-jumps for all $l \geqslant 3$. However, these non-jumps were found to occur at relatively large densities. While the smallest case of determining whether $\frac{l!}{l}$ is a jump is still open and likely a difficult problem, our result shows that under the further assumption of quasi-randomness that $\frac{l!}{l l}$ is indeed a jump for all $l \geqslant 3$.

We extend the concept of jumps to sequences of quasi-random l-graphs:
Definition 1.4. A number α is a jump for quasi-random l-graphs if there exists a constant $c=c(\alpha)$ such that given any sequence of quasi-random l-graphs $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ if $\bar{d}(\mathcal{G})>\alpha$, then $\bar{d}(\mathcal{G}) \geqslant \alpha+c$.

Theorem $1.3(i)$ implies that every number between 0 and $\frac{(l-1)!}{l^{l-1}-1}$ is a jump for quasirandom l-graphs. Further we will show that for $l=3$ this interval can be improved from $\left[0, \frac{1}{4}\right)$ to $[0,0.3192)$ given the following question of Erdős [3] is answered positively:
Question 1.5. Let $c>0$ and $\mathcal{Q}=\left\{Q_{n}\right\}_{n=1}^{\infty}$ be a quasi-random sequence of 3-graphs. If $d(\mathcal{Q})=\frac{1}{4}+c$, then does each Q_{n} contain $K_{4}^{(3)}-e$ as $n \rightarrow \infty$?

More formally, we prove in Section 3:
Theorem 1.6. A positive answer to Question 1.5 implies that any quasi-random sequence \mathcal{Q} with $d(\mathcal{Q})>\frac{1}{4}$ satisfies $\bar{d}(\mathcal{Q})>0.3192$.

Very recently, Glebov, Král' and Volec in [6] proved Question 1.5 in the positive using Razborov's flag-algebra method [10]. This result confirms our assertion in Theorem 1.6.

We include our remarks and questions for future study for quasi-random l-graphs with $l>3$ and other possibilites for jumps for quasi-random 3-graphs in Section 4.

2 Proof of Theorem 1.3

2.1 The lower bound

Our proof is based on the following lemma proved in [1] and [9]:
Lemma 2.1. For all $\alpha>0$ and $\epsilon>0$, there exists $\delta>0, m>0$ and $n_{0}>0$ such that if $Q=(V, E)$ is an (α, δ)-quasi-random l-graph with $|V|=n \geqslant n_{0}$ vertices then $Q[M]$ is (α, ϵ)-quasi-random for at least $\frac{1}{2}\binom{n}{m}$ m-sets $M \in\binom{n}{m}$.

Going forward in this subsection, we restrict to $l=3$ for simplicity. Essentially the same statements may be applied to general l-graphs.

Given a 3-graph $F, \alpha>0$ and $\epsilon>0$, we write $(\alpha, \epsilon) \rightarrow F$ to denote the fact that every (α, ϵ)-quasi-random 3 -graph R contains F. Let F and H be 3 -graphs. For F, H, and $v \in V(F)$, we define F_{H}^{v} to be the 3-graph as follows:
(i) $V\left(F_{H}^{v}\right)=V(F) \cup V(H)-v$ and
(ii) $E\left(F_{H}^{v}\right)=E(F-v) \cup E(H) \cup \bigcup_{u \in V(H)}\{\{a, b, u\}:\{a, b, v\} \in E(F)\}$

In other words, to obtain F_{H}^{v} from F, replace v with $V(H)$ and add all the edges in H as well as the edges of type $\{a, b, u\}$ where $u \in V(H)$ and $\{a, b, v\} \in E(F)$. In this construction we will assume that F and H are vertex disjoint and thus $\left|V\left(F_{H}^{v}\right)\right|=|V(F)|+|V(H)|-1$ and $\left|E\left(F_{H}^{v}\right)\right|=|E(F)|+|E(H)|+|V(H)-1||\{e \in E(F), v \in e\}|$.

Using the notation stated above, we observe the following:
Lemma 2.2. For all $\alpha>0, \epsilon>0, \gamma>0$ and 3-graphs F and H, there exists $\delta=\delta(\alpha, \epsilon, \gamma)>$ 0 such that if $(\alpha, \epsilon) \rightarrow F$ and $(\alpha, \gamma) \rightarrow H$, then $(\alpha, \delta) \rightarrow F_{H}^{v}$.

Proof. Let $|V(F)|=f$ and let $v \in V(F)$. Given $\alpha>0$ and $\epsilon>0$ such that $(\alpha, \epsilon) \rightarrow F$, let $\delta_{L(2.1)}$ and $m=m(\alpha, \epsilon)$ be the constants ensured by Lemma 2.1. Consider an (α, δ) -quasi-random hypergraph Q on n vertices. Set $\delta \leqslant \min \left(\delta_{L(2.1)}, \frac{\gamma}{2 m^{f}}\right)$. We want to show that Q must contain F_{H}^{v}. By Lemma 2.1, $R=Q[M]$ is (α, ϵ)-quasi-random for at least $\frac{1}{2}\binom{n}{m} M$'s. By assumption $((\alpha, \epsilon) \rightarrow F)$ each such (α, ϵ)-quasi-random $Q[M]$ contains a copy of F. Consequently, the number of $Q[M]$'s with each containing a copy of F is at least $\frac{1}{2}\binom{n}{m}$. On the other hand, each copy of F is in at most $\binom{n-f}{m-f}$ different $Q[M]$'s. Thus, we have at least $\frac{1}{2}\binom{n}{m} /\binom{n-f}{m-f}=\frac{\binom{n}{f}}{2\binom{m}{f}}>\frac{1}{2}\left(\frac{n}{m}\right)^{f}=c n^{f}$ distinct copies of F in Q, where $c=c(m(\alpha, \epsilon), f)=\frac{1}{2 m^{f}}$. Set $V(F)=\left\{u_{1}, u_{2}, \ldots, u_{f-1}, v\right\}$ and let $F^{c o p y}=F^{c}$ be a copy of F in Q with $V\left(F^{c}\right)=\left\{u_{1}^{c}, u_{2}^{c}, \ldots, u_{f-1}^{c}, v^{c}\right\}$ so that $u_{i} \rightarrow u_{i}^{c}$ for $i=1,2, \ldots, f-1$ and $v \rightarrow v^{c}$ is an isomorphism.

For each of the $c n^{f}$ copies F^{c} of F, consider an ordered $(f-1)$-tuple $\left(u_{1}^{c}, u_{2}^{c}, \ldots, u_{f-1}^{c}\right)$. Since the total number of $(f-1)$-tuples of vertices of Q is bounded by $n(n-1) \ldots(n-$ $(f-1)) \leqslant n^{f-1}$ we infer that there exists an $(f-1)$-tuple of vertices $\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{f-1}$ of Q contained in $c n^{f} / n^{f-1} \sim c n$ copies F^{c} of F. Consider a set $S,|S|=c n=\frac{n}{c m^{f}}$, of vertices \bar{v} each of which together with $\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{f-1}$ induces a copy F^{c} of F. Due to the (α, δ)-quasi-randomness of Q and the fact that $\delta \leqslant \frac{\gamma}{2 m^{f}}=c \gamma, Q[S]$ is (α, γ)-quasi-random and, therefore, due to the assumption of Lemma 2.2, contains a copy of H with vertex set $V(H)=\left\{v_{1}, \ldots, v_{|V(H)|}\right\}$. Since each $v_{i}(1 \leqslant i \leqslant|V(H)|)$ together with $\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{f-1}$ span a copy F^{c} of F, we infer that $\left\{\bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{f-1}, v_{1}, \ldots, v_{|V(H)|}\right\}$ spans a copy of F_{H}^{v}. Thus, $(\alpha, \delta) \rightarrow F_{H}^{v}$.

Before we prove Theorem $1.3(i)$ for $l=3$, we construct an auxilliary sequence of 3 graphs $\mathcal{G}=\left\{G_{i}\right\}_{i=1}^{\infty}$ with density tending to $\frac{1}{4}$. We will then show that G_{i} is in Q_{n} for n large enough. Let G_{1} be a 3 -graph with three vertices and one edge. For $i>1$, let G_{i} be the 3 -graph obtained by taking 3 vertex disjoint copies of G_{i-1}, and adding all edges with exactly one vertex in each copy. For instance, G_{2} has 9 vertices and $3+3^{3}=30$ edges.

Figure 1: Three applications of Lemma 2.2 prove Claim 2.3

Since $\left|V\left(G_{i}\right)\right|=3\left|V\left(G_{i-1}\right)\right|=3^{i}$ and $\left|E\left(G_{i}\right)\right|=\left|V\left(G_{i-1}\right)\right|^{3}+3\left|E\left(G_{i-1}\right)\right|=3^{3(i-1)}\left(1+\frac{1}{9}+\right.$ $\left.\cdots \frac{1}{9^{i-1}}\right)=3^{i-1} \frac{\left(3^{i}-1\right)\left(3^{i}+1\right)}{8}$, the density of G_{i} as $i \rightarrow \infty$ is

$$
\lim _{i \rightarrow \infty} d\left(G_{i}\right)=\lim _{i \rightarrow \infty} \frac{3^{i-1 \frac{\left(3^{i}-1\right)\left(3^{i}+1\right)}{8}}}{\binom{3^{i}}{3}}=\lim _{i \rightarrow \infty} \frac{1}{4}\left(\frac{3^{i}+1}{3^{i}-2}\right)=\frac{1}{4} .
$$

Consider an arbitrary sequence of (α, δ_{n})-quasi-random 3 -graphs $\mathcal{Q}=\left\{Q_{n}\right\}_{n=1}^{\infty}$ with $d\left(Q_{n}\right)=\alpha\left(1 \pm \delta_{n}\right)>0$ where $\delta_{n} \in(0,1), \delta_{n}$ is decreasing and $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$. We will show that there exists $n_{1}<n_{2}<n_{3}<\ldots$ such that for $n \geqslant n_{i}, Q_{n}$ contains G_{i}. Based on our density calculation of G_{i} above, $\bar{d}(\mathcal{Q}) \geqslant \frac{1}{4}$.

Since Q_{n} contains G_{1} whenever $\delta_{n}<\alpha$, it remains to show the following claim by induction on i :

Claim 2.3. Assuming $\left(\alpha, \delta_{n_{i}}\right) \rightarrow G_{i}$, there exists n_{i+1} such that $\left(\alpha, \delta_{n_{i+1}}\right) \rightarrow G_{i+1}$
Proof. Our goal is to find n_{i+1} so that $\left(\alpha, \delta_{n}\right) \rightarrow G_{i+1}$ for all $n \geqslant n_{i+1}$. This will be achieved in three applications of Lemma 2.2 as shown in Figure 1. We will construct hypergraphs F^{\prime}, $F^{\prime \prime}, F^{\prime \prime \prime}$ with $G_{i} \subseteq F^{\prime} \subseteq F^{\prime \prime} \subseteq F^{\prime \prime \prime}=G_{i+1}$ and $n^{\prime}, n^{\prime \prime}, n^{\prime \prime \prime}$ with $n_{i}<n^{\prime}<n^{\prime \prime}<n^{\prime \prime \prime}=n_{i+1}$ such that

$$
\begin{equation*}
\left(\alpha, \delta_{n}\right) \rightarrow F^{(i)} \text { for all } n \geqslant n^{(i)} \tag{*}
\end{equation*}
$$

Set $V\left(G_{1}\right)=\{a, b, c\}, H=G_{i}$, and $\gamma=\delta_{n_{i}}$. Below we will describe appropriate choices of F, ϵ and v to obtain graphs $F^{(i)}, i=1,2,3$ satisfying $\left({ }^{*}\right)$.
a) Set $F=G_{1}, \epsilon=\delta_{1}$ and $v=a$. Since $\left(\alpha, \delta_{1}\right) \rightarrow G_{1}$ and $\left(\alpha, \delta_{n_{i}}\right) \rightarrow G_{i}$, by Lemma 2.2 there exists $\delta^{\prime}=\delta\left(\alpha, \delta_{1}, \delta_{n_{i}}\right)$ such that $\left(\alpha, \delta^{\prime}\right) \rightarrow F_{G_{i}}^{a}$.
b) Set $F^{\prime}=F_{G_{i}}^{a}, \epsilon=\delta^{\prime}$ and $v=b$. Since $\left(\alpha, \delta^{\prime}\right) \rightarrow F^{\prime}$ and $\left(\alpha, \delta_{n_{i}}\right) \rightarrow G_{i}$, by Lemma 2.2 there exists $\delta^{\prime \prime}=\delta\left(\alpha, \delta^{\prime}, \delta_{n_{i}}\right)$ such that $\left(\alpha, \delta^{\prime \prime}\right) \rightarrow F_{G_{i}}^{\prime b}$.
c) Set $F^{\prime \prime}=F_{G_{i}}^{\prime \prime}, \epsilon=\delta^{\prime \prime}$ and $v=c$. Since $\left(\alpha, \delta^{\prime \prime}\right) \rightarrow F^{\prime \prime}$ and $\left(\alpha, \delta_{n_{i}}\right) \rightarrow G_{i}$, by Lemma 2.2 there exists $\delta^{\prime \prime \prime}=\delta\left(\alpha, \delta^{\prime \prime}, \delta_{n_{i}}\right)$ such that $\left(\alpha, \delta^{\prime \prime \prime}\right) \rightarrow F_{G_{i}}^{\prime \prime c}$.

Observe that $F^{\prime \prime \prime}=F_{G_{i}}^{\prime \prime c}=G_{i+1}$. Consequently $\left(\alpha, \delta_{n}\right) \rightarrow G_{i+1}$ for all n with $\delta_{n} \leqslant \delta^{\prime \prime \prime}$.

In a similar way to Claim 2.3 one can show a slightly more general fact stated below as Proposition 2.5. First we define the lexicographic product of two 3 -graphs:

Definition 2.4. The lexicographic product of two 3 -graphs F and H with vertex set U and W respectively is a 3 -graph $F \cdot H$ with vertex set $U \times W$ and with $\left\{\left(u_{1}, w_{1}\right),\left(u_{2}, w_{2}\right),\left(u_{3}, w_{3}\right)\right\} \in$ $E(F \cdot H)$ if $\left\{u_{1}, u_{2}, u_{3}\right\} \in E(F)$ or if $u_{1}=u_{2}=u_{3}$ and $\left\{w_{1}, w_{2}, w_{3}\right\} \in E(H)$.

Proposition 2.5. For all $\alpha>0, \epsilon>0, \gamma>0$ and 3-graphs F and H there exists $\delta=$ $\delta(\alpha, \epsilon, \gamma)>0$ such that $(\alpha, \epsilon) \rightarrow F$ and $(\alpha, \gamma) \rightarrow F$ implies $(\alpha, \delta) \rightarrow F \cdot H$.

2.2 The upper bound for $l=3$

It remains to show there exists a sequence of quasi-random 3 -graphs with upper density $\frac{1}{4}$.
Proof. Consider a random tournament T_{n} on n vertices in which pairs are assigned arc direction with probability $\frac{1}{2}$. Let R_{n} be a 3-graph with $V\left(R_{n}\right)=V\left(T_{n}\right)$ and $E\left(R_{n}\right)$ consisting of vertex sets of all directed 3-cycles (this 3-graph was first considered by Erdős and Hajnal in [4] in the context of Ramsey theory).

It is well known (see [3]) that R_{n} is $\left(\frac{1}{4}, \delta_{n}\right)$-quasi-random with $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$. On the other hand it follows from the well known result of Kendall and Babington Smith [7] that any tournament on n vertices has at most $\frac{1}{24}\left(n^{3}-n\right)$ directed 3 -cycles (cf. [8]) and so no subgraph of any R_{n} has density larger than $\frac{1}{4}+o(1)$. Thus the upper density of the sequence $\mathcal{R}=\left\{R_{n}\right\}_{n=1}^{\infty}$ is at most $\frac{1}{4}+o(1)$ establishing (ii) of Theorem 1.3.

3 Proof of Theorem 1.6

For $l=3$, Theorem $1.3(i)$ implies that every number in $\left[0, \frac{1}{4}\right)$ is a jump for quasi-random 3 -graphs. In this section, we prove that $\frac{1}{4}$ is a jump as well and, more precisely, any number in $\left[\frac{1}{4}, 0.3192\right)$ is a jump for quasi-random 3 -graphs given Question 1.5 is answered positively. To this end, we use a recent result of Glebov, Král' and Volec who in [6] confirmed Question 1.5 using a computer aided proof based on Razborov's flag-algebra method [10].

Proof. Given a sequence of quasi-random 3-graphs $\mathcal{Q}=\left\{Q_{n}\right\}_{n=1}^{\infty}$ with $\bar{d}(\mathcal{Q})>\frac{1}{4}$, any Q_{n} with $n \geqslant n_{0}$ contains $K_{4}^{(3)}-e$ by [6]. In a way similar to the proof of Theorem 1.3(i) we will first construct a sequence of 3 -graphs $\mathcal{F}=\left\{F_{n}\right\}_{n=1}^{\infty}$ such that $F_{n} \subseteq Q_{n}$ and $\lim _{n \rightarrow \infty} d\left(F_{n}\right)=\frac{3}{10}$. Subsequently we will alter it to a sequence of 3-graphs $\mathcal{G}=\left\{G_{n}\right\}_{n=1}^{\infty}$ in which $\lim _{n \rightarrow \infty} d\left(G_{n}\right) \approx$ 0.3192 .

Let $F_{1}=K_{4}^{(3)}-e$ with $V\left(F_{1}\right)=\left\{a_{1}, a_{2}, a_{3}, b\right\}$ and $E\left(F_{1}\right)=\left\{\left\{a_{1}, a_{2}, b\right\},\left\{a_{1}, a_{3}, b\right\}\right.$, $\left.\left\{a_{2}, a_{3}, b\right\}\right\}$. Let $A_{i}(1 \leqslant i \leqslant 3)$ and B be copies of $K_{4}^{(3)}-e$. We obtain F_{2} by taking four vertex disjoint copies of F_{1}, with vertex set $A_{i}, 1 \leqslant i \leqslant 3$, and B and adding edges of type $\left\{a_{i}, a_{j}, b\right\}$ where $a_{i} \in A_{i}, a_{j} \in A_{j}, b \in B, 1 \leqslant i<j \leqslant 3$. Note that $\left|V\left(F_{2}\right)\right|=4^{2}=16$ and $\left|E\left(F_{2}\right)\right|=3(4)+4^{3}(3)$. In other words $F_{2}=F_{1} \cdot F_{1}$ is the lexicographic product of two copies of F_{1}. We continue in this fashion to construct the sequence \mathcal{F}. For $i>1$,
let $F_{i}=F_{1} \cdot F_{i-1}$ be the 3-graph obtained by taking four vertex disjoint copies of F_{i-1}, and adding edges in a similar way as described above. Since $\left|V\left(F_{i}\right)\right|=4 \mid V\left(F_{i-1} \mid=4^{i}\right.$ and $\left|E\left(F_{i}\right)\right|=3\left|V\left(F_{i-1}\right)\right|+4^{3}\left|E\left(F_{i-1}\right)\right|=3 \cdot 4^{i-1}\left(1+4^{2}+\ldots+4^{2(i-1)}\right)=\frac{4^{i-1}}{5}\left(16^{i}-1\right)$, the density of F_{i} as $i \rightarrow \infty$ is

$$
\lim _{i \rightarrow \infty} d\left(F_{i}\right)=\lim _{i \rightarrow \infty} \frac{\frac{4^{i-1}}{5}\left(16^{i}-1\right)}{\binom{4^{i}}{3}}=\frac{3}{10} .
$$

In a similar way as in the proof of Theorem 1.3(i), one can show that for all i there exists n such that F_{i} is contained in Q_{n}. Thus, every number between 0 and $\frac{3}{10}$ is a jump for quasi-random 3-graphs.

One can improve $\frac{3}{10}$ to 0.3192 by considering conveniently chosen "blow ups" of F_{i}. We will describe this in more detail now. Setting $V\left(F_{i}\right)=\left\{1,2, \ldots, \nu_{i}\right\}$, we first observe (similarly as in Lemma 2.2) that for each i, there exists an n_{i} so that 3 -graphs $Q_{n}, n \geqslant n_{i}$, contain $c_{i}\left|V\left(Q_{n}\right)\right|^{\nu_{i}}$ copies of F_{i}. Hence by Theorem 1.1, Q_{n} contains a t-blowup $F_{i} * t$ of F_{i}, more precisely, a graph with vertex set $\bigcup_{j=1}^{\nu_{i}} W_{j},\left|W_{1}\right|=\cdots=\left|W_{\nu_{i}}\right|=t$ and $\{\widetilde{a}, \widetilde{b}, \widetilde{c}\} \in$ $E\left(F_{i} * t\right)$ if $\{a, b, c\} \in E\left(F_{i}\right)$. In order to maximize the density, we consider graphs F_{i} with different vertices "blown up" to sets of different cardinalities.

More precisely, set $\alpha=\frac{2}{5}(4 \sqrt{6}-9) \approx 0.2154$ and to each vertex $\bar{x}=\left(x_{1}, \ldots, x_{i}\right) \in V\left(F_{i}\right)$ assign a weight $w(\bar{x})=(1-3 \alpha)^{j} \alpha^{i-j}$ where j represents the number of b 's among entries of \bar{x} and for t large consider a blow-up G_{i} of F_{i} with each vertex \bar{x} "blown-up" by $w(\bar{x}) * t$ vertices. Using this iterated construction, one can calculate that every number between 0 and $\frac{1}{19}(9-2 \sqrt{6}) \approx 0.3192$, where $\frac{1}{19}(9-2 \sqrt{6})=\lim _{i \rightarrow \infty} d\left(G_{i}\right)$, is a jump for quasi-random 3 -graphs.

4 Other remarks and questions

In Section 2.2 we considered $\mathcal{R}=\left\{R_{n}\right\}_{n=1}^{\infty}$, a sequence of quasi-random 3-graphs formed by random tournaments T_{n}, and observed that $d(\mathcal{R})=\bar{d}(\mathcal{R})=\frac{1}{4}$. There are other quasirandom sequences of 3 -graphs with density equal to upper density. Consider the quasirandom sequences $\mathcal{Q}=\left\{Q_{n}\right\}_{n=1}^{\infty}$ described in [11]: Let χ be a random $(k-1)$-coloring of pairs of $\{1, \ldots, n\}$ and define the edges of Q_{n} to be all triples $\{i, u, v\}$ such that $\chi(\{i, u\}) \neq$ $\chi(\{i, v\})$. It can be shown that $d(\mathcal{Q})=\bar{d}(\mathcal{Q})=1-\frac{1}{k-1}$. In summary, if $\alpha \in\left\{\frac{1}{4}, \frac{1}{2}, \frac{2}{3}, \ldots\right\}$, then there is a sequence of quasi-random 3-graphs with $d(\mathcal{Q})=\bar{d}(\mathcal{Q})$. Are there any others?

We proved that a sequence of quasi-random l-graphs \mathcal{Q} with $d(\mathcal{Q})>0$ has $\bar{d}(\mathcal{Q}) \geqslant \frac{(l-1)!}{l^{l-1}-1}$. In particular, we showed that this bound is the best possible when $l=3$. For $l=4$, it is not clear to the authors if there exists a quasi-random sequence of 4 -graphs with upper density equal to $\frac{3!}{4^{3}-1}=\frac{2}{21}$.

Theorem 1.3(i) implies that every quasi-random sequence of l-graphs with positive density has upper density at least $\frac{(l-1)!}{l^{l-1}-1}$. For $l=3$ this is the best possible, but we were
unable to show an analogous fact for $l>3$. One can observe that $\frac{(l-1)!}{l-1-1}$ cannot be replaced by a number larger than $\frac{(l-1)!}{(l-1)^{l-1}}$. In order to see this, consider the quasi-random sequence $\mathcal{Q}=\left\{Q_{n}\right\}_{n=1}^{\infty}$ with vertex set $V\left(Q_{n}\right)=\{1, \ldots, n\}=[n]$. Let χ be a random ($l-1$)-coloring of pairs of $[n]$. Define the edge set $\left\{i, v_{1}, \ldots, v_{l-1}\right\} \in E\left(Q_{n}\right)$ if and only if all pairs $\left\{i, v_{1}\right\}$, $\ldots,\left\{i, v_{l-1}\right\}$ have different color. One can observe that $d(\mathcal{Q})=\bar{d}(\mathcal{Q})=\frac{(l-1)!}{(l-1)^{l-1}}$.

Acknowledgements

We would like to thank an anonymous referee for his comments and suggestions.

References

[1] N. Alon, W. de la Vega, R. Kannan, and M. Karpinski. Random sampling and approximation of MAX-CSP problems. In Proceedings of the 34th annual ACM symposium on Theory of computing, pages 232-239. ACM Press, 2002.
[2] P. Erdős. On extremal problems of graphs and generalized graphs. Israel Journal of Mathematics, 2:183-190, 1964.
[3] P. Erdős. Problems and results on graphs and hypergraphs: Similarities and differences. In J. Nešetřil and V. Rödl, editors, Mathematics of Ramsey Theory, pages 223-233. Springer-Verlag, 1990.
[4] P. Erdős and A. Hajnal. On Ramsey like theorems. Proceedings: Conference in Combinatorial Mathematics, Mathematics Institute, Oxford University, pages 123-140, 1972.
[5] P. Frankl and V. Rödl. Hypergraphs do not jump. Combinatorica, 4(2):149-159, 1984.
[6] R. Glebov, D. Král', and J. Volec. A problem of Erdős and Sós on 3-graphs. Submitted.
[7] M.G. Kendall and B. Babington Smith. On the method of paired comparisons. Biometrika, 31:324-345, 1940.
[8] J. W. Moon. Topics on Tournaments. Holt, Rhinehart and Winston, 1968.
[9] D. Mubayi and V. Rödl. Uniform edge distribution in hypergraphs is hereditary. Electronic Journal of Combinatorics, 11:\#R55, 2004.
[10] A. Razborov. Flag algebras. J. Symbolic Logic, 72(4):1239-1282, 2007.
[11] V. Rödl. On universality of graphs with uniformly distributed edges. Discrete Mathematics, 59(1-2):125-134, 1986.

[^0]: *Research partially supported by NSF grant DMS 1301698 and Emory University Research Committee Grant

