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Abstract

Symmetrizations of tensors by irreducible characters of the symmetric group
serve as natural analogues of symmetric and skew-symmetric tensors. The question
of when a symmetrized decomposable tensor is non-zero is intimately related to the
rank partition of a matroid extracted from the tensor. In this paper we characterize
the non-vanishing of the symmetrization of certain partially symmetrized decompos-
able tensors. Our answers are phrased in terms of rank partitions of matroids.
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1 Introduction

Let V be a finite dimensional complex vector space. Consider the (left) action of the
symmetric group Sn on the n-fold tensor power V ⊗n by permuting tensor factors,

σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

Given a partition λ ` n, let Tλ ∈ C[Sn] denote the projector of the symmetric group
algebra C[Sn] to its isotypic component indexed by λ.

The image of a decomposable tensor v⊗ := v1 ⊗ · · · ⊗ vn under Tλ is called a sym-
metrized decomposable tensor. These are closely related to irreducible character
immanants of positive semi-definite matrices [7, Chapters 6–7]. A fundamental question
is when a symmetrized decomposable tensor is zero. This question was first answered by
Gamas [4] and later characterized in terms of the matroid of the vectors v1, . . . , vn, as we
now describe.

We will let v = (v1, . . . , vn) denote a configuration of n vectors in V , and M(v) the
corresponding matroid. Given any matroid M , the rank partition of M is the sequence
of numbers ρ(M) = (ρ1, ρ2, . . . ) determined by the condition that its kth partial sum is
the size of the largest union of k independent sets of M .
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Theorem 1 ([2, Theorem A′]). The symmetrized decomposable tensor Tλv
⊗ is non-zero

if and only if λt 6 ρ(M(v)).

Here, λt denotes the conjugate partition of λ, and 6 denotes dominance order on the
set of partitions of size n.

The main result of the current paper is a generalization of this result, where one first
partially symmetrizes v⊗.

Theorem 2. Let λ and µ be partitions of n.

(1) Then there is a permutation π ∈ Sn such that

Tλ
(
(vπ(1) ∧ · · · ∧ vπ(µ1))⊗ · · · ⊗ (vπ(n−µr+1) ∧ · · · ∧ vπ(n))

)
6= 0

if and only if µ 6 λt 6 ρ(M(v)).

(2) Dually, there is a permutation π ∈ Sn such that

Tλ
(
(vπ(1) · · · · · vπ(µ1))⊗ · · · ⊗ (vπ(n−µr+1) · · · · · vπ(n))

)
6= 0

if and only if µ 6 λ and λt 6 ρ(M(v)).

Here we are viewing the tensor product of the exterior and symmetric powers of V as
subspaces of V ⊗n.

The outline of this paper is as follows: We first present some background on represen-
tations of the symmetric group and matroids. Then we consider the notion of compatible
pairs of tableaux. With these preliminaries, we next prove Theorem 2. We end with a
brief discussion of a conjecture that motivated the theorem.

2 Background

In this section we review some relevant notions from representation theory, and matroid
theory.

2.1 Representation theory

We refer to the book of James and Kerber [5] for a thorough treatment of the represen-
tation theory of the symmetric group.

The group of permutations of the set [n] := {1, 2, . . . , n} is denoted Sn. The irreducible
representations of Sn are parametrized by partitions λ = (λ1 > λ2 > . . . λ` > 0) of n;∑

i λi = n. We construct these representations as follows.
A tableau is a filling T of the Young diagram of λ with the numbers in [n], each

number being used exactly once. A tableau is said to be standard if the numbers in the
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filling increase across rows and columns. Given a tableau T , define two elements of the
group algebra C[Sn] by

pT =
∑

σ∈Row(T )

σ, nT =
∑

σ∈Col(T )

sign(σ)σ.

Here, Row(T ) is the group of permutations that take each row of T into itself, and
Col(T ) is likewise defined for the columns of T . These elements are, respectively, the row
symmetrizer and column anti-symmetrizer of T .

The product pTnT is called a Young symmetrizer, and we will call the product nTpT
a dual Young symmetrizer. It is a theorem that the left ideal in C[Sn] generated by a
(dual) Young symmetrizer is an irreducible representations of Sn. Further, if S and T are
two tableaux, then the representations generated by pSnS and pTnT are isomorphic if and
only if the shape of S equals the shape of T . We say that an irreducible representation
of Sn has shape λ if it is isomorphic to the ideal generated by some pTnT for a tableau T
of shape λ. It is a fact that pTnT and nTpT generate isomorphic representations.

The projection of C[Sn] onto its isotypic component of shape λ is denoted Tλ. It is
fact that

Tλ =
χλ(1)

n!

∑
σ∈Sn

χ(σ)σ ∈ C[Sn],

and that Tλ is a scalar multiple of
∑

T pTnT =
∑

T nTpT , the sum over all tableaux of
shape λ. Indeed, Pλ :=

∑
T pTnT is central since σpTnTσ

−1 = pσTnσT , and hence Schur’s
lemma implies that Pλ acts on each irreducible representation of Sn by a scalar determined
only by the isomorphism type. Since Pλ annihilates Young symmetrizers of shapes other
than λ and it is non-zero in the group algebra, it must act on an irreducible of shape
λ by a non-zero scalar. In particular, this means Pλ is essentially idempotent. Similar
reasoning shows that

∑
T pTnT satisfies these properties too.

Let V be a finite dimensional complex vector space. The symmetric group Sn acts on
the left of V ⊗n via permutation of tensor factors, as in the introduction. We conclude
that Tλ acts on V ⊗n as projection to its isotypic component of shape λ; the image of Tλ is
referred to as a symmetry class of tensors of shape λ. Such tensors are important from
the point of view of representation theory of the general linear group, invariant theory
and algebraic geometry [3, Chapters 8–9].

2.2 Matroid theory

Given a finite collection of vectors v1, . . . , vn selected from a fixed vector space, we con-
struct a simplicial complex M(v) as follows. The vertex set of M(v) is [n] and the faces
of M(v) are those subsets I ⊂ [n] such that {vi : i ∈ I} is a linearly independent set.
M(v) is the matroid of v. The faces of M(v) are referred to as independent sets, while
non-faces are said to be dependent.

The matroid of v is an example of a matroid complex (or simply, matroid). These are
simplicial complexes whose faces satisfy the exchange axiom: If I and I ′ are faces and
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|I| < |I ′|, then there is e ∈ I ′ \ I such that I ∪ {e} is a still a face. We will assume from
now on that all matroids considered are loopless, meaning that there are no singleton
dependent sets, in particular, vi 6= 0 for all i.

Given a matroidM with ground set [n] and a partition λ of n, we define a λ-coloring of
M to be a set partition of [n] into blocks of size λ1, λ2, . . . each of which is an independent
set of M . Thus, M is λ-colorable if there is a tableau of shape λ whose rows index
independent sets of M .

As in the introduction, the rank partition of M , ρ(M), is defined by the condition
that the kth partial sum of its parts is equal to the size of the largest union of k indepen-
dent sets of M . In [2] it is proved that ρ(M) is actually a partition of M . Further, it is
shown that M is λ-colorable if and only if λ 6 ρ(M).

The length of the rank partition appears in the graph theory literature under the guise
of arboricity. Recently, the third author has studied the rank partition in the context of
multi-graded Hilbert series of projective equivalence classes.

3 Compatible pairs of tableaux

In this section we define the notion of a compatible pair of tableaux. We then investigate
the combinatorics of such pairs relevant to the proof of Theorem 2.

For each tableau T of shape λ, we define a function cT : [n] → [λ1] by the rule
cT (i) = the column number of T that contains i. We say that a pair of tableaux (S, T )
is compatible if whenever i and j are in the same row of S, cS(i) < cS(j) implies
cT (i) < cT (j). It is clear that if (S, T ) is a compatible pair, then Row(S)∩Col(T ) = {1}.
The converse is false, but we offer the following in lieu of it.

Proposition 3. Let (S, T ) be a pair of tableaux such that Row(S)∩Col(T ) = {1}. Then,
there exists π ∈ Row(S) such that (πS, T ) is a compatible pair of tableaux.

Proof. The hypothesis implies that any two numbers i, j that occur in the same row of
S occur in different columns of T . Denote the entries in the ith row (in order) of S by
s1, . . . , sr and rearrange them to s′1, . . . , s

′
r so that cT (s′j) < cT (s′j+1). Doing this procedure

for each row proves the proposition.

Proposition 4. Let (S, T ) be a compatible pair of tableaux. Suppose that τ ∈ Col(S),
σ ∈ Row(S) and τσ ∈ Col(T ). Then, we must have σ = 1.

We will employ the following notation in the proof: If T is a tableau, then Ki(T )
denotes the set of entries in column i of T .

Proof. For σ ∈ Sn let Fix(σ) denote its set of fixed points. Say that S and T are tableaux
of shape λ and µ, respectively.

Let τ ∈ Col(S), σ ∈ Row(S) and s ∈ {1, . . . , µ1}. We will prove by induction on s
that if, for i = 1, . . . , s,

τσ(Ki(T )) = Ki(T ),
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then
s⋃
i=1

Ki(T ) ⊆ Fix(σ).

Suppose that τσ(K1(T )) = K1(T ). Observe that K1(T ) ⊆ K1(S), since (S, T ) is a
compatible pair of tableaux. Let a ∈ K1(T ). Then τσ(a) ∈ K1(T ) and hence a, τσ(a) ∈
K1(S). Let t be such that σ(a) ∈ Kt(S). Since τ ∈ Col(S), we have that τσ(a) ∈ Kt(S).
Therefore t = 1 and hence a, σ(a) ∈ K1(S). Since σ ∈ Row(S), we have σ(a) = a.

Assume that s > 1 and that τσ(Ki(T )) = Ki(T ), for every i = 1, . . . , s. By the
induction hypothesis,

⋃s−1
t=1 Kt(T ) ⊆ Fix(σ). It remains to prove that Ks(T ) ⊆ Fix(σ).

Let Hi = Ks(T ) ∩Ki(S), for i = 1, . . . , λ1. Then Ks(T ) =
⋃λ1
i=1Hi.

Suppose that Ks(T ) 6⊆ Fix(σ). Let p = max{i : Hi 6⊆ Fix(σ)}. Choose a ∈ Hp such
that σ(a) 6= a. As σ ∈ Row(S), a ∈ Kp(S), and σ(a) 6= a, we have σ(a) 6∈ Kp(S). Let q
such that σ(a) ∈ Kq(S). We have q 6= p. Since τ ∈ Col(S), τσ(a) ∈ Kq(S). As a ∈ Hp,
a ∈ Ks(T ), thus τσ(a) ∈ Ks(T ). Therefore τσ(a) ∈ Hq. We consider two cases.

Case 1. Assume that q < p. Since σ ∈ Row(S), a and σ(a) are in the same row of S.
We have σ(a) ∈ Kq(S), a ∈ Kp(S) and q < p. Since a ∈ Ks(T ) and (S, T ) is a
compatible pair of tableaux, σ(a) ∈

⋃s−1
t=1 Kt(T ) ⊆ Fix(σ). Then σ(σ(a)) = σ(a).

This is a contradiction because σ(a) 6= a.

Case 2. Assume that p < q. By the definition of p, Hq ⊆ Fix(σ). We claim that τσ(Hq) =
Hq. Indeed, let b ∈ Hq. Then σ(b) = b ∈ Kq(S) therefore, since τ ∈ Col(S),
τσ(b) ∈ Kq(S); as b ∈ Ks(T ), τσ(b) ∈ Ks(T ), hence τσ(b) ∈ Ks(T )∩Kq(S) = Hq.
We proved that τσ(Hq) ⊆ Hq. Since τσ is one to one, τσ(Hq) = Hq and we get
a contradiction because a 6∈ Hq and τσ(a) ∈ Hq.

Now if τ ∈ Col(S), σ ∈ Row(S) and τσ ∈ Col(S), then

τσ(Ki(T )) = Ki(T ),

for i = 1, . . . , µ1. Therefore
µ1⋃
t=1

Kt(T ) ⊆ Fix(σ)

and we have σ = 1.

Lemma 5. If (S, T ) is a compatible pair of tableaux, then

pSnTnS = |Col(S) ∩ Col(T )|pSnS.

Proof. We consider the coefficient of the identity element 1 in the product pSnTnS. It is
given by the formula, ∑

σ∈Row(S),τ∈Col(T ),ν∈Col(S)
στν=1

sign(τ) sign(ν).
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If σ ∈ Row(S), τ ∈ Col(T ), ν ∈ Col(S) and στν = 1, then τ = σ−1ν−1 ∈ Col(T ), and,
by Proposition 4, σ = 1 and τ = ν−1. Therefore, the above sum reduces to being over
|Col(S) ∩ Col(T )|, and each summand reduces to 1.

For every σ ∈ Row(S) and every τ ∈ Col(S),

σ · pSnTnS · τ = sign(τ)pSnTnS.

We conclude from [6, pp.501–503] that pSnTnS = |Col(S) ∩ Col(T )|pSnS.

From the lemma we at once obtain a dual version.

Corollary 6. If (St, T t) is a compatible pair of tableaux, then

nSpTpS = |Row(S) ∩ Row(T )|nSpS.

Proof. The symmetric group algebra C[Sn] has an involutive automorphism ι induced by
the map σ 7→ sign(σ)σ. This follows since sign is a linear character of Sn. This map has
the property that ιpS = nSt and ιnS = pSt . Applying ι to the result of Lemma 5 gives
the claimed equality.

4 Proof of Theorem 2

We restate our main theorem.

Theorem 2. Let λ and µ be partitions of n.

(1) Then there is a permutation π ∈ Sn such that

Tλ
(
(vπ(1) ∧ · · · ∧ vπ(µ1))⊗ · · · ⊗ (vπ(n−µr+1) ∧ · · · ∧ vπ(n))

)
6= 0

if and only if µ 6 λt 6 ρ(M(v)).

(2) Dually, there is a permutation π ∈ Sn such that

Tλ
(
(vπ(1) · · · · · vπ(µ1))⊗ · · · ⊗ (vπ(n−µr+1) · · · · · vπ(n))

)
6= 0

if and only if µ 6 λ and λt 6 ρ(M(v)).

Proof of Theorem 2(1). We start by assuming that the tensor occuring in (1) is non-zero.
The tensor,

(vπ(1) ∧ · · · ∧ vπ(µ1))⊗ · · · ⊗ (vπ(n−µr+1) ∧ · · · ∧ vπ(n))

is obtained by applying a column anti-symmetrizer nT to v1 ⊗ · · · ⊗ vn, for some tableau
T of shape µt. Since Tλ ∈ C[Sn] is central, we have

TλnT (v1 ⊗ · · · ⊗ vn) = nTTλ(v1 ⊗ · · · ⊗ vn) 6= 0.

In particular, Tλ(v1 ⊗ · · · ⊗ vn) 6= 0. By Theorem 1, we know that λt 6 ρ(M(v)).
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Now, the Frobenius character of the left ideal in C[Sn] generated by nT is the elemen-
tary symmetric function eµ. The fact that nTTλ 6= 0 implies that in the Schur expansion
of eµ, the Schur function sλ appears with positive coefficient. However, this coefficient is
the Kostka number Kλtµ and hence λt > µ.

For the opposite direction, we assume that µ 6 λt 6 ρ(M(v)). It follows that λ 6 µt,
and by [5, Lemma 1.4.20] there is a pair of tableaux (S0, T ) of shape λ and µt, respectively,
such that any two elements in the same row of S0 occur in the different columns of T . From
this we have Row(S0) ∩ Col(T ) = {1} and by Proposition 3, there is some π ∈ Row(S0)
such that (πS0, T ) is a compatible pair of tableaux. Write S = πS0.

Since λt 6 ρ(M(v)), Theorem 1 gives us Tλv
⊗ 6= 0. Since Tλ is scalar multiple of∑

Q pQnQ (the sum over all tableaux Q of shape λ) there is some summand pQnQ which
is not zero when applied to v⊗. By rearranging the vectors we may assume that this
summand is pSnSv

⊗.
Lemma 5 tells us that pSnTnS = |Col(S) ∩Col(T )|pSnS. A Young symmetrizer pSnS

is essentially idempotent, thus, there is a non-zero constant k for which

k · pSnS = (pSnS)(pSnTnS).

Applying k · pSnS to v1 ⊗ · · · ⊗ vn we see that

(nSpSnTnS)(v1 ⊗ · · · ⊗ vn) 6= 0,

and this implies that there is some permutation σ ∈ Col(S) for which,

(nSpSnT )vσ−1(1) ⊗ · · · ⊗ vσ−1(n) 6= 0.

This implies that the cyclic Sn-representation in V ⊗n generated by

nT (vσ−1(1) ⊗ · · · ⊗ vσ−1(n))

contains an irreducible representation of shape λ, since nSpS is a dual Young symmetrizer.
We conclude the projection of this cyclic representation to its isotypic component of shape
λ is non-zero, and hence,

TλnT (vσ−1(1) ⊗ · · · ⊗ vσ−1(n)) 6= 0.

Reindexing the vectors if needed, this is exactly what we needed to show.

We now prove the version for symmetrizations of products of symmetric tensors, the
proof following exactly the same lines as that of (1).

Proof of Theorem 2(2). Assume that the tensor occuring in (2) is non-zero. The hypoth-
esis implies that there is a tableau T of shape µ for which TλpTv

⊗ 6= 0. This implies
TλpT 6= 0 and, as before, this implies the Schur function sλ appears in the Schur decom-
position of hλ. Since this is the Kostka number Kλµ, we must have µ 6 λ. As before,
TλpT = pTTλ, and thus Tλv

⊗ 6= 0, forcing λt 6 ρ(M(v)).
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For the other direction we assume that µ 6 λ and that λt 6 ρ(M(v)). The former
hypothesis furnishes us with a compatible pair of tableaux (St, T t) of shape λt and µt,
respectively. The latter hypothesis implies that Tλv

⊗ 6= 0.
Since Tλ is a non-zero scalar multiple of

∑
Q nQpQ (sum over tableaux of shape λ),

there is a dual Young symmetrizer nQpQ for which nQpQv
⊗ 6= 0. We may reindex v so

that Q = S.
Now, we apply Corollary 6 and the fact that dual Young symmetrizers are near idem-

potent to get that
(nSpS)(nSpTpS)v⊗ 6= 0.

From this we conclude that there is some permutation σ ∈ Row(S) for which

pSnSpTvσ−1(1) ⊗ · · · ⊗ vσ−1(n) 6= 0.

Just as in the proof of (1), this statement is sufficient to give the claim of the theorem.

5 Representations generated by tensors

We briefly mention the representation theory that motivated our theorem.
The general linear group GL(V ) acts diagonally on the tensor product V ⊗n. Given

x ∈ V ⊗n we let G(x) denote the cyclic GL(V )-representation in V ⊗n generated by x.
That is, G(x) is linearly spanned by the orbit GL(V )x.

It follows from Schur–Weyl duality that an irreducible representation of GL(V ) with
highest weight λ appears in G(x) if and only if Tλx 6= 0. Applying Theorem 1 we see that
the support of the irreducible decomposition of G(v⊗) is an invariant of M(v). The third
author (in joint work with A. Fink) has recently shown [1] that the isomorphism type of
G(v⊗) is an invariant of M(v).

The character of G(v⊗) is a symmetric polynomial in dim(V )-many variables, and is
a positive integer sum of Schur polynomials. For λt 6 ρ(M(v)), it has been observed
through computer experimentation that the difference between the character of G(v⊗)
and the complete homogeneous symmetric polynomial hλ remains a positive integer sum
of Schur polynomials.

This naturally leads a person to look for surjections from G(v⊗) to representations
whose character is hλ. From this we arrive at the following conjecture.

Conjecture 7. Suppose that µt 6 ρ(M(v)), and let S denote the tableau of shape µ filled
with the numbers 1, . . . , n from left-to-right, top-to-bottom. Then, there is a permutation
σ ∈ Sn such that the natural map,

pSσ : G(v⊗)→ Symµ1(V )⊗ · · · ⊗ Symµr(V ),

is surjective.

The conjecture would imply that G(pSσv
⊗) contains an irreducible representation of

shape λ for every λ > µ. The second item in our Theorem 2 is a weakening of this
assertion.
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This conjecture is best possible, in the following sense. Let

v⊗ = e⊗µ = (e1 ⊗ · · · ⊗ e1)︸ ︷︷ ︸
µ1

⊗ · · · ⊗ (er ⊗ · · · ⊗ er)︸ ︷︷ ︸
µr

,

where ei denotes the ith standard basis vector of V = Cr. In this case G(e⊗µ ) actually is
a tensor product of symmetric powers, and it is readily shown that the conjecture holds
at the level of characters. Indeed it is sufficient to prove it when λ > µ is a covering
relation. In this case λ and µ differ in exactly two positions, and it is sufficient to see that
hahb− ha+1hb−1 is Schur positive, where a > b > 1. This follows from the Pieri rule since
the difference is exactly the Schur polynomial s(a,b).

An interesting combinatorial problem related to Conjecture 7 is to put a lower bound
on the number of distinct λ-colorings of a matroid, given that λ 6 ρ(M).
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