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Abstract

In this paper we consider biased Maker-Breaker games played on the edge set of
a given graph G. We prove that for every δ > 0 and large enough n, there exists
a constant k for which if δ(G) > δn and χ(G) > k, then Maker can build an odd

cycle in the (1 : b) game for b = O
(

n
log2 n

)
. We also consider the analogous game

where Maker and Breaker claim vertices instead of edges. This is a special case of
the following well known and notoriously difficult problem due to Duffus,  Luczak
and Rödl: is it true that for any positive constants t and b, there exists an integer k
such that for every graph G, if χ(G) > k, then Maker can build a graph which is not
t-colorable, in the (1 : b) Maker-Breaker game played on the vertices of G?

Keywords: Maker-Breaker games, DLR conjecture, odd cycle game

1 Introduction

Let X be a finite set and let F ⊆ 2X be the family of subsets of X. Let a and b be positive
integers. In an (a : b) Maker-Breaker game (X,F), two players, Maker and Breaker, take
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turns claiming previously unclaimed elements of X. The game ends when every element
of X has been claimed by a player. Maker claims exactly a board elements per turn and
Breaker claims exactly b board elements per turn. Unless explicitly stated otherwise, we
will assume that Maker is the first player. Maker wins the game if he is able to fully claim
some element of F ; otherwise Breaker wins. The set X is often referred to as the board of
the game and the members of F are referred to as the winning sets.

It is natural to play a Maker-Breaker game on the edge set of a given graph G. In this
case the board is X = E(G) and the winning sets are all the edge sets of subgraphs H ⊆ G
which possess a graph property P of special interest. For example, in the connectivity
game, the winning sets are all the edge sets of subgraphs H ⊆ G which contain a spanning
tree of G. Given a positive integer k, in the non-k-colorability game, NCk(G), the winning
sets are all the edge sets of subgraphs H ⊆ G which are not k-colorable. Since a graph G
is not 2-colorable if and only if it contains an odd cycle, we refer to NC2(G) as the odd
cycle game.

The following question is due to Duffus,  Luczak and Rödl [4]:

Question 1.1 Is it true that for any positive integers k and b, there exists an integer
r = r(k, b) such that Maker has a winning strategy for the (1 : b) game NCk(G), played on
any graph G such that χ(G) > r?

Not much is known about Conjecture 1.1. By a strategy stealing argument the answer
for Question 1.1 is “yes” for b = 1 and any k (for more details the reader is referred to [1]).
Note that strategy stealing is a purely existential argument; we do not know any explicit
strategy for Maker to win the game with these parameters.

For any b > 2 and any k > 2 Question 1.1 is open. Two partial results were obtained
in [1]. The first result shows that χ(G) = Ω(log(|V (G)|)) suffices to ensure Maker’s win.
The second result shows that if χ(G) > r holds in some robust way, then Maker has a
winning strategy for the game on G. However, no bounds on χ(G) which do not depend
on |V (G)| are known.

In [4], Duffus,  Luczak and Rödl ask the following question:

Question 1.2 Is it true that there exists an integer k such that for all graphs G with
χ(G) > k, Maker has a strategy to claim an odd cycle in the game where Maker claims
one vertex each turn and Breaker claims two?

In this paper we partially answer Questions 1.1 and 1.2 for the case where Maker’s
goal is to build an odd cycle (a non-2-chromatic graph), playing on a graph G with high
minimum degree. Our main results are the following:

Theorem 1.3 For every 0 < δ < 1, there exists an integer n0 = n0(δ) for which the
following holds. Suppose that:

1. G is a graph with |V (G)| = n > n0, and
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2. δ(G) > δn, and

3. χ(G) > 32/δ.

Then for every b 6 δ2n
6400(log2 n)

2 , Maker has a winning strategy in the (1 : b) game

NC2(G).

The next result shows that the bound on the chromatic number of G can be lowered
to the optimal χ(G) > 3 if G has high connectivity instead of high minimum degree. In
particular, O(log n)-connectivity suffices in a game with a constant Breaker’s bias. (This
is because every k-chromatic graph G contains a k-color-critical subgraph G0 ⊂ G, and
every k-color-critical graph is (k − 1)-edge-connected. Thus Theorem 1.4 can be applied
to G0.) This reproves Theorem 1.6 of [1] for the odd cycle game.

Theorem 1.4 For every positive integer b, there exists an integer n0 = n0(b) for which
the following holds. Suppose that:

(i) G is a graph with |V (G)| = n > n0, and

(ii) G is (104 log2 n · b2(log2 b)
2)-edge-connected, and

(iii) χ(G) > 3.

Then Maker has a winning strategy in the (1 : b) game NC2(G).

The following theorem is the “vertex version” of Theorem!1.3, where instead of claiming
edges, Maker and Breaker claim vertices of the graph G.

Theorem 1.5 For every 0 < δ < 1 and for every positive integer b, there exists an integer
n0 = n0(δ, b) for which the following holds. Suppose that:

(i) G is a graph with |V (G)| = n > n0, and

(ii) δ(G) > δn, and

(iii) χ(G) > 2(b+ 1)/δ.

Then Maker has a winning strategy in the (1 : b) odd-cycle game played on V (G).
Furthermore, the odd cycle that Maker builds is of constant size (depending only on δ).
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1.1 Notation

The notation in this paper is standard and follows that of [3]. In particular we use the
following. Given a graph G, denote by V (G) and E(G) its sets of vertices and edges,
respectively. For two subsets A,B ⊆ V (G), let EG(A,B) be the set of edges in E(G) with
one endpoint in A and one endpoint in B. For a vertex v ∈ V (G) and a subset U ⊆ V (G),
denote by dG(v, U) the number of edges from v to U . Denote by G[U ] the induced subgraph
on U and set U c = V (G) \ U . We also denote NG(U) = {v ∈ V (G) : ∃u ∈ U.vu ∈ E(G)}.

The remainder of the paper is organized as follows. In Section 2, we will list some tools
to be used in our arguments. Theorems 1.3 and 1.4 are proved in Section 3. Theorem 1.5
is proved in Section 4.

2 Preliminaries

The following lemma shows that if G is a graph with high minimum degree and high
chromatic number, then it contains a subgraph which is highly connected and is only one
edge far from being bipartite. This is a key ingredient in the proof of Theorem 1.3.

Lemma 2.1 Let 0 < δ < 1 and let n be a sufficiently large integer. Suppose that G is a
graph on n vertices with δ(G) > δn and χ(G) > 32/δ. Then there exist two disjoint subsets
A,B ⊆ V (G) such that the bipartite graph H = (A ∪ B,EG(A,B)) is δ2n/64-connected
and EG(A) 6= ∅.

To prove Lemma 2.1 we use the following lemma due to Bohman, Frieze, Krivelevich
and Martin [2] which enables us to partition a dense graph into a few vertex disjoint
subgraphs which are highly connected:

Lemma 2.2 (Lemma 1 in [2]) Let H be a graph on n vertices with minimum degree
k > 0. Then there exists a partition V (H) = V1 ∪ . . .∪ Vt such that for every 1 6 i 6 t the
set Vi has at least k/8 vertices and the induced subgraph H[Vi] is k2/(16n)-vertex-connected.

For the convenience of the reader we include the proof of Lemma 2.2.
Proof. Recall a classical result of Mader (see [3]) stating that every graph of average

degree at least k has a k/4-vertex-connected subgraph.
Let (C1, . . . , Ct) be a family of disjoint subsets of V (H) with the property that each

induced subgraph H[Ci] is k/8-connected and that, among all such families of subsets, the
set of vertices

C :=
t⋃
i=1

Ci

is maximal. According to Mader’s Theorem, t > 0. Also, |Ci| > k/8 for all i and thus
t 6 8n/k.
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Let now (V1, . . . , Vt) be a family of disjoint subsets of V (H) such that Ci ⊆ Vi, the
induced subgraph H[Vi] is k2/(16n)-connected for all 1 6 i 6 t and that among all such
families the set of vertices

U :=
t⋃
i=1

Vi

is maximal. We claim that U = V (H). Assume to the contrary that there exists a vertex
v ∈ U c. If |NH(v) ∩ Vi| > k2/(16n) for some i, then adding v to Vi can be easily seen
to keep H[Vi] k

2/(16n)-connected, contradicting the maximality of U . Thus v has less
than k2/(16n) neighbors in each of the t 6 8n/k sets Vi, and therefore d(v, U c) > k −
(8n/k)(k2/(16n)) = k/2. We conclude that the minimum degree of the induced subgraph
H[U c] is at least k/2. Applying Mader’s Theorem, this time to H[U c], unveils a k/8-
connected subgraph disjoint from C, a contradiction of the choice of (C1, . . . , Ct). Hence the
family (V1, . . . , Vt) indeed covers all the vertices of H and thus forms a required partition.
2

Proof of Lemma 2.1. Let V (G) = X1 ∪ X2 be a partition such that for every
Xi ∈ {X1, X2} and for every v ∈ Xi, d(v,X3−i) > d(v)/2 (easily obtained by taking a
partition which maximizes |E(X1, X2)|). Consider the bipartite subgraph G′ ⊆ G obtained
by removing all the edges inside X1 and X2; clearly δ(G′) > δ(G)/2 > δn/2. Now, applying
Lemma 2.2 to G′, we get a partition V (G′) = V1 ∪ . . . ∪ Vt with

|Vi| >
(
δn

2

)
/8 =

δn

16
,

hence

t 6
n

δn/16
=

16

δ
,

and the induced subgraph G′[Vi] is (δn/2)2 /(16n) = δ2n/64-connected, for every 1 6 i 6 t.
Since χ(G) > 32/δ > 2t, we conclude that there exists 1 6 i 6 t for which G[Vi] is not
2-colorable, since otherwise giving distinct sets of 2 colors to each G[Vi] yields a proper
2t-coloring, a contradiction. Recall that G′[Vi] is bipartite, so we can denote its parts by
A and B in such a way that EG(A) 6= ∅. This completes the proof. 2

The following theorem of Alon, Hefetz and Krivelevich [1] enables Maker to win the
(1 : b) connectivity game played on the edge set of some given graph G, provided that G
is a highly edge-connected graph. It will be useful in the proof of Theorems 1.3 and 1.4.

Theorem 2.3 Let G = (V,E) be a graph on n vertices and let b > 2 and k = k(n) > log2 n
be integers. If G is (100kb log2 b)-edge-connected, then in the (1 : b) game played on E(G),
Maker (as a first or second player) has a strategy for building a k-edge-connected spanning
subgraph of G. In particular, Maker can build a connected spanning subgraph of G.

For the proof of Theorem 1.5 we need the following lemmas:
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Lemma 2.4 Let 0 < δ < 1, b be a positive integer and n be a sufficiently large integer.
Suppose that G is a graph on n vertices with δ(G) > δn and χ(G) > 2(b+1)/δ. Then there
exist two disjoint subsets A,B ⊆ V (G) such that the bipartite graph H = (A∪B,EG(A,B))
satisfies

(i) |EH(U,U c)| = Ω(n3/2) for every U ⊆ A ∪B of size δn/2 6 |U | 6 |A ∪B| − δn/2;

(ii) δ(H) > δ2n/2;

(iii) all but o(n) vertices in H have degree at least (1− o(1))δn/2; and

(iv) χ(G[A]) > b+ 1.

In a similar way as the proof of Lemma 2.1, Lemma 2.4 is an immediate consequence
of the following:

Lemma 2.5 Let 0 < δ < 1 and let n be a sufficiently large integer. Let G be a graph on n
vertices with δ(G) > δn. Then there exists a partition V (G) = V1 ∪ . . .∪Vt which satisfies:

(i) |Vi| > δn(1− o(1)) for every 1 6 i 6 t;

(ii) δ(G[Vi]) > δ2n for every 1 6 i 6 t;

(iii) all but o(n) vertices in G[Vi] have degree at least δn(1 − o(1)) for every 1 6 i 6 t;
and

(iv) |EG(A,B)| = Ω(n3/2) for every partition Vi = A ∪ B for which δn 6 |A| 6 |Vi| − δn
and for every 1 6 i 6 t.

Proof. We construct the partition in the following way: initially, let V1 := V (G) and
U := ∅. Assume we have a partition V (G) = V1 ∪ · · · ∪ Vk and a current set U (notice
that U will be modified during the iterations). If there exists an index 1 6 i 6 k and a
partition Vi = A ∪ B for which |A|, |B| > δn and e(A,B) < n3/2, then we break Vi into
A∪B and define a new partition V1∪· · ·∪Vi−1∪A∪B∪Vi+1∪· · ·Vk. Notice that there are
at most n3/4 vertices v in X ∈ {A,B} such that d(v,X) < d(v, Vi) − n3/4. Otherwise, we
get that e(A,B) > n3/2, a contradiction. We add these at most 2n3/4 vertices to U . Since
none of the Vi’s is ever smaller than δn, we get that this procedure stops after at most 1/δ
iterations. Let V (G) = V1 ∪ . . . ∪ Vt be the final partition and let U be the corresponding
set of vertices with (possibly) small degrees inside their parts. Notice that for every i ∈ [t]
and every v ∈ Vi \ U , we have d(v, Vi) > δn − tn3/4 = δn(1 − o(1)). By the previous
argument, in every iteration we increase |U | by at most 2n3/4, hence |U | 6 2n3/4/δ. Now
for every vertex v ∈ U , choose a part Vj, 1 6 j 6 t, for which d(v, Vj) > δ2n and move v
to Vj (recall that dG(v) > δn and that t 6 1/δ). We get a final partition which satisfies
properties (i)− (iv). 2

For the next lemma, we need to define an auxiliary game. Given a graph H and a
subset M ⊆ V (H), consider the Maker-Breaker game G(H,M) played on V (H), in which
the winning sets are all subsets T ⊆ V (H), such that H[T ∪M ] is a connected subgraph
of H or it contains a triangle.
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Lemma 2.6 Let H = (A ∪ B,EG(A,B)) be a graph satisfying (i) − (iii) of Lemma 2.4.
Let M ⊆ V (H) be any subset that can be partitioned to M = D ∪ R, where D is any
dominating set of size O(log n), and such that for each vertex v ∈ D there exists u ∈ R
with degree at least (1− o(1))δn/2 such that uv ∈ E(H). Then, for any constant b, Maker
can win the (1 : b) game G(H,M) within O(log n) moves.

Proof. First, notice that since |D| = O(log n) we conclude that there are at most
O(log n) components in H[M ]. Now, in order to complete the proof, it suffices to prove
that Maker can merge two components of H[M ] within two rounds, by claiming extra
vertices.

Let C be a component of H[M ]. Recall that C spans an edge xy, where x ∈ D with
d(x) > δ(H) > δ2n/2 and y ∈ NH(x)\D with d(y) > (1−o(1))δn/2. Let U = C ∪NH(C).
We may assume that |NH(x) ∪NH(y)| > δn/2, since otherwise |NH(x) ∩NH(y)| = d(x) +
d(y)−|NH(x)∪NH(y)| > (1−o(1))δ2n/2, and Maker can claim a vertex in NH(x)∩NH(y)
to complete a triangle. Hence |U | > |NH(x) ∪ NH(y)| > δn/2. We consider two cases
depending on the size of U c.

Case 1: |U c| > δn/2. Then by Lemma 2.4 (i), |EH(U,U c)| = Ω(n3/2). Note that edges
between U and U c can only go from NH(C) \ C to U c. Therefore, since |NH(C) \ C| 6 n,
there exist Ω(

√
n) many vertices z ∈ N(C) \ C with d(z, U c) = Ω(

√
n). Since Breaker’s

bias b is a constant, Maker can claim such a z and one of its neighbors in U c, say z′, in
two rounds. Since z′ ∈ U c, z′ is not adjacent to any vertex in C. However, D ⊂ M is a
dominating set of H, thus z′ is adjacent to some vertex in M contained in a component
of H[M ] other than C. Thus after claiming z and z′, Maker merges two components of
H[M ].

Case 2: |U c| < δn/2. We are done if U c is empty, thus U c is not empty and contains
some component of H[M ], call it C ′. Similarly, C ′ contains two adjacent vertices x′, y′ such
that d(x′) > δ2n/2 and d(y′) > (1 − o(1))δn/2. We may assume that |(N(C) ∩ N(C ′)) \
(C ∪ C ′)| = o(n), since otherwise Maker can merge two components in just one move by
claiming a vertex in N(C)∩N(C ′). Thus all but o(n) vertices in N(x′)∪N(y′) are in U c.
But |U c| < δn/2, thus |N(x′) ∩N(y′)| > (1− o(1))δ2n/2. Then Maker can easily claim a
vertex in NH(x) ∩NH(y) to complete a triangle. 2

3 Proofs of Theorems 1.3 and 1.4

In this section we prove Theorems 1.3 and 1.4.
Proof of Theorem 1.3. First we describe a strategy for Maker and then prove it

is indeed a winning strategy. At any point during the game, if Maker cannot follow the
proposed strategy, then he forfeits the game. Maker’s strategy is divided into the following
two stages:

Stage I: Let H = (A ∪ B,EG(A,B)) be a subgraph of G as described in Lemma 2.1
and let e ∈ EG(A). In his first move, Maker claims the edge e.

Stage II: In this stage, Maker builds a connected spanning subgraph of H.
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Notice that if Maker can follow the proposed strategy then he wins the game. Indeed,
if Maker has built a connected spanning subgraph of H, then since H is a bipartite graph
and e is in one of its sides then adding e to Maker’s graph creates an odd cycle. It thus
suffices to prove that indeed Maker can follow the proposed strategy without forfeiting the
game. We consider each stage separately.

Stage I: Follows immediately from Lemma 2.1 and since Maker is the first player to
claim an edge.

Stage II: Apply Theorem 2.3 on H with b 6 δ2n
6400(log2 n)

2 and k = log2 n, then

100k · b · log2 b 6 100 log2 n ·
δ2n

6400(log2 n)2
· log2 n 6

δ2n

64
.

Thus H is (100kb log2 b)-edge-connected, and Maker has a winning strategy for the (1 : b)
k-edge-connectivity game played on E(H). In particular, Maker can build a connected
spanning subgraph of H. 2

The idea for Theorem 1.4 is similar, we provide only a sketch here.
Proof of Theorem 1.4: Let G be a graph which satisfies the conditions of Theo-

rem 1.4. Set k := 100 log2 n · b log2 b, then G is (100kb log2 b)-edge-connected. Now we
consider two cases:

Case 1: Suppose that there exists a spanning subgraph G′ ⊆ G that is bipartite
and k-edge-connected. Then since χ(G) > 3, at least one side of G′ spans an edge in G.
Maker, in his first move, claims such an edge. Starting from his second move, Maker plays a
connectivity game on E(G′). Let k′ = log2 n, then G′ is k = (100k′b log2 b)-edge-connected.
Thus by Theorem 2.3, Maker can build a k′-edge-connected spanning subgraph G′′ ⊆ G′.
Then G′′ together with the first edge Maker claimed contains an odd cycle.

Case 2: Suppose that all spanning subgraphs of G that are k-edge-connected are non-
bipartite. Then Maker plays the k-connectivity game on E(G). By Theorem 2.3, he can
build a k-edge-connected spanning subgraph of G, which is, under the assumption of Case
2, non-bipartite as desired. 2

4 Proof of Theorem 1.5

In this section we prove Theorem 1.5.
Proof. First we describe a strategy for Maker and then prove it is indeed a winning

strategy. At any point during the game, if Maker cannot follow the proposed strategy,
then he forfeits the game. Maker’s strategy is divided into the following four stages:

Stage I: Let H = (A ∪ B,EG(A,B)) be a subgraph of G as described in Lemma 2.4.
In his first two moves, Maker claims two adjacent vertices, u and v, in A.

Stage II: In this stage, Maker claims a dominating set D of H of size 100 log n/δ2.
Stage III: Let D′ = D ∪ {u, v}. In this stage, for every vertex w ∈ D′, Maker claims

a distinct vertex z ∈ N(w) \D′ with dH(z) = (1− o(1))δn/2.
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Stage IV: Let M be the set of vertices that Maker has claimed so far. In this stage
Maker claims a set of vertices T ⊆ V (H) of size O(log n), for which H[M ∪T ] is connected.

Notice that if Maker can follow the proposed strategy then he has claimed an odd cycle.
Indeed, if Maker connects M in H, in particular Maker has built a (u, v)-path, say P , in
H. Then since H is a bipartite graph and u and v are in the same partition class, P is of
even length. Thus P , together with the edge uv that he claimed in Stage I, form an odd
cycle claimed by Maker. Furthermore, we will show that Maker can also ensure an odd
cycle of constant length.

We prove that indeed Maker can follow the proposed strategy without forfeiting the
game.

Stage I: By Lemma 2.4 (iv) we have b+1 < χ(G[A]) 6 ∆(G[A])+1. Hence ∆(G[A]) >
b + 1, namely there is a star with b + 1 leaves in G[A]. Since Breaker can only claim b
vertices at each round, Maker can claim the center of this star in his first move and then
claim one of its leaves in his second move.

Stage II: We show that by claiming vertices uniformly at random, after claiming
100 log n/δ2 vertices, with high probability (that is, with probability 1 − o(1)), Maker
claims a dominating set D of H against any strategy of Breaker. Since the game of
claiming a dominating set of H in 100 log n/δ2 moves is a finite, perfect information game
(and therefore – deterministic), it follows that Maker has a deterministic strategy for
claiming such a D (although we do not describe it here). It suffices to show that a set D
of 100 log n/δ2 vertices chosen uniformly at random from V (H) is with high probability a
dominating set of H. Fix a vertex x ∈ V (H), since δ(H) > δ2n/2, the probability that no
vertex from NH(x) is chosen is at most (1− δ2/2)100 logn/δ

2
. Applying the union bound we

get

P[D is not a dominating set of H] 6 n · (1− δ2/2)100 logn/δ
2

6 n · e−
δ2

2
·100 logn/δ2 = o(1).

It could happen that some vertex that Maker wants to claim, when building D, is
already taken by Breaker. However, Stages I and II take only |D| + 2 = O(log n) rounds.
Therefore, during the first two stages Breaker claims O(log n) = o(n/ log n) many vertices.
It thus follows that, in each move, the probability that Maker will choose a vertex which
has already been claimed by Breaker is at most o(1/ log n). Hence, with probability 1−o(1)
Maker never chooses any vertex that Breaker has already claimed.

Stage III: By Lemma 2.4 (ii) and (iii), every w ∈ D′ has Θ(n) many neighbors, all
but o(n) of which have degree (1 − o(1))δn/2. Since |D′| = O(log n) = o(n), Maker can
secure such a distinct neighbor for each vertex in D′.

Stage IV: Let F be the set of vertices that Breaker has claimed in Stage I, II and III.
Notice that |F | = O(log n) = o(n) has negligible size. Applying Lemma 2.6 to H \F gives
us the desired result.

We will finish the proof by showing that the odd cycle that Maker built is of constant
length. Observe that with high probability D from Stage II has the following property:

(P1) ∀v ∈ V (H), d(v,D) > 25 log2 n.
Consider a vertex v in H. Since δ(H) > δ2n/2, for every vertex Maker has claimed in

D, the probability that it is a neighbor of v is at least δ2/2. Thus the expected number of
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neighbors of v in D is at least δ2/2 · |D| = δ2/2 · 100 log2 n/δ
2 = 50 log2 n. Thus a standard

Chernoff bound argument implies (P1).
By (P1), the minimum degree of Maker’s graph is Ω(log n). On the other hand, Maker’s

graph is of order O(log n), since the whole game ends in O(log n) rounds. Therefore Maker’s
graph (even minus the special edge uv) is connected and is of linear minimum degree (with
respect to the order of the graph), which implies that its diameter is constant (see e.g, [5]
Problem 2.1.65). Therefore, removing the edge uv, taking a shortest path between u, v and
adding uv back, we obtain an odd cycle of constant length. 2
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