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Abstract

Kühn, Osthus and Taraz showed that for each γ > 0 there exists C such that
any n-vertex graph with minimum degree γn contains a planar subgraph with at
least 2n−C edges. We find the optimum value of C for all γ < 1/2 and sufficiently
large n.

1 Introduction

A way to reformulate typical questions in extremal graph theory is the following. Given
a property P and an edge density (or minimum vertex degree, etc.), what is the ‘largest’
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member of P which must be contained in an n-vertex graph G with the given density?
For many problems in extremal graph theory, the property P is somewhat trivial (for
example, in Turán’s theorem, P is the set of cliques). However this is not always the case:
for example, in the Erdős-Stone [4] theorem, P is the set of complete r-partite graphs, and
the problem of determining the ‘largest’ complete r-partite subgraph remains active, with
most recently results and generalisations due to Nikiforov [10]. In 2005, Kühn, Osthus
and Taraz [9] suggested the study of the property P consisting of all planar graphs, which,
while well-studied in other parts of graph theory, have received relatively little attention
from extremal graph theorists.

A plane graph is a drawing of a graph in the plane with no crossing edges. A graph
is called planar if it has a plane graph drawing. The planarity of a graph G is defined as
the maximum number of edges in a planar subgraph of G. We denote the planarity of G
by pl(G). Kühn, Osthus and Taraz [9] investigated the connection between the minimum
degree δ(G) and planarity pl(G) of a graph G by studying the parameter

pl(n, d) := min{pl(G) : |G| = n, δ(G) > d}.

Among other results they proved the following theorem.

Theorem 1. For each γ > 0 there exists a constant nγ such that pl
(
n, (2/3+γ)n

)
= 3n−6

for every integer n > nγ.

This was later improved by Kühn and Osthus [8] to the following result with the
optimal bound on the minimum degree.

Theorem 2. There exists n2 such that pl(n, 2n/3) = 3n− 6 for every integer n > n2.

More recently, Cooley,  Luczak, Taraz and Würfl [3] showed the following threshold
behaviour of pl(n, d) at minimum degree d = n/2.

Theorem 3. For every µ > 0 there exists nµ such that, for every n > nµ, we have that

pl
(
n, dn/2e

)
> (2.25− µ)n for n odd,

and

pl(n, n/2 + 1) > (2.5− µ)n for n even.

This indeed constitutes a threshold behaviour since pl(n, bn/2c) 6 2n − 4 for all
integers n as one can see from the class of complete bipartite graphs. For smaller values
of d one does not observe such rapid changes in the planarity. Indeed, Kühn, Osthus
and Taraz [9] showed that pl(n, d) varies only by a constant term for the whole range of
d = γn with γ ∈ (0, 1/2).

Theorem 4. For each γ > 0 there is C = C(γ) such that pl(n, γn) > 2n − C for every
integer n.
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For γ < 1/2 this is optimal up to the value of the constant C. For γ > 1/2 the above
statement trivially holds: a Hamilton cycle with chords from one vertex on the inner
face and from another vertex on the outer face proves that every n-vertex graph with
minimum degree at least n/2 has a planar subgraph with 2n − 4 edges. So it is natural
to ask whether there are values γ < 1/2 such that C(γ) = 4. We answer this in the
affirmative as we determine the optimal value of C(γ) for all 0 < γ < 1/2.

Theorem 5. For every γ ∈ (0, 1/2) there exists nγ such that pl(n, γn) = 2n − 4k for
every n > nγ, where k ∈ N is the unique integer such that k 6 1/(2γ) < k + 1. Hence,
C(γ) = 4b1/(2γ)c for n > nγ.

Note that the constants are best possible for the given minimum degree condition:
the graph consisting of k disjoint copies of Kt,t has 2kt vertices, is t-regular, and has no
planar subgraph with more than 4kt−4k edges because Kt,t has no planar subgraph with
more than 4t− 4 edges.

2 Tools and lemmas

Our main tools in the proof are variants of the Regularity Lemma [11] and the Blow-up
Lemma [6]. In order to formulate the versions that we will use, we first introduce some
terminology.

Let G = (V,E) be a graph and let ε, d ∈ (0, 1]. For disjoint nonempty sets U,W ⊆ V ,
we denote by e(U,W ) the number of edges between U and W , and define the density of
the pair (U,W ) as d(U,W ) := e(U,W )/|U ||W |. A pair (U,W ) is ε-regular if

|d(U ′,W ′)− d(U,W )| 6 ε

for all U ′ ⊆ U and W ′ ⊆ W with |U ′| > ε|U | and |W ′| > ε|W |. If the pair (U,W ) is
ε-regular and has density at least d, then we say that (U,W ) is (ε, d)-regular.

An ε-regular partition of G = (V,E) is a partition V0 ·∪V1 ·∪ . . . ·∪Vr of V with |V0| 6
ε|V |, |Vi| = |Vj| for all i, j ∈ [r] := {1, . . . , r}, and such that, for all but at most εr2 pairs
(i, j) ∈ [r]2, the pair (Vi, Vj) is ε-regular.

We say that an ε-regular partition V0 ·∪V1 ·∪ . . . ·∪Vr of a graph G is an (ε, d)-regular
partition if the following is true. For every i ∈ [r] and every vertex v ∈ Vi, there are at
most (ε + d)n edges incident to v which are not contained in (ε, d)-regular pairs of the
partition.

Given an (ε, d)-regular partition V0 ·∪V1 ·∪ . . . ·∪Vr of a graph G, we define a graph R,
called the reduced graph of the partition of G, where R = (V (R), E(R)) has V (R) =
{V1, . . . , Vr} and ViVj ∈ E(R) whenever (Vi, Vj) is an (ε, d)-regular pair. We will usually
omit the partition, and simply say that G has (ε, d)-reduced graph R. We call the partition
classes Vi with i ∈ [r] clusters of G. Observe that our definition of the reduced graph R
implies that, for T ⊆ V (R), we can, for example, refer to the set

⋃
T , which is a subset

of V (G).
In our proof, we require the minimum degree form of the Regularity Lemma.
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Lemma 6 (Regularity Lemma, minimum degree form). For all positive ε, d and γ with
0 < ε < d < γ < 1 there is r1 such that every graph G on n > r1 vertices with minimum
degree δ(G) > γn has an (ε, d)-reduced graph R on r vertices such that r 6 r1 and
δ(R) > (γ − d− ε)r.

Lemma 6 is an easy consequence of the original Regularity Lemma of Szemerédi [11].
Its proof can be found, for example, in [9, Proposition 9].

Now we outline our proof strategy for Theorem 5. First, we apply Lemma 6 to a given
n-vertex graph G with minimum degree at least γn and obtain the reduced r-vertex graph
R whose minimum degree is almost as large as γr. Then we need to distinguish two cases.

Case 1: Some component of R has less than 2δ(R) vertices, and therefore contains a
triangle. Using this triangle we will find a small triangulation T (that is, a plane graph
whose every face is a triangle) in G, and Theorem 4 will guarantee a subgraph S of the
rest of the graph G−V (T ) such that the disjoint union of S and T has at least 2n edges.

Case 2: Each component of R has at least 2δ(R) > r/(k+ 1) vertices, and thus R has
at most k components. These components correspond to k well-connected subgraphs of
G and cover almost all vertices of G. In each subgraph we will find a quadrangulation (a
plane graph whose every face has four edges) which has a certain ‘accepting’ property that
allows the few remaining vertices to be inserted. We conclude that there is a collection
of at most k vertex-disjoint quadrangulations covering all the vertices of G. Since every
quadrangulation on m vertices has 2m− 4 edges, the theorem follows.

As one can see from the above outline, our argument divides into two cases, depending
on whether the reduced graph R has a small component or not. In each case we shall
need some embedding results, which we now describe in detail.

When the reduced graph R does have a small component, we will need the following
embedding result, an easy case of the Counting Lemma (see, for example, Theorem 2.1
in [7]).

Lemma 7. For each d > 0 and s ∈ N there exist ε > 0 and m0 such that whenever
m > m0 the following holds. Let U, V,W be three pairwise disjoint vertex sets each of size
m. Suppose that each pair forms an (ε, d)-regular pair in a graph G. Then G contains
every 3-partite triangulation on s vertices.

In the case that R has no small components, we will construct quadrangulations. For
this we shall use a version of the Blow-up Lemma. In order to state this result, we need
a further definition. A pair of disjoint sets of vertices U and W in a graph G is called
(ε, δ)-super-regular if it is ε-regular, each vertex u ∈ U has at least δ|W | neighbours in
W , and each w ∈ W has at least δ|U | neighbours in U .

The original version of the Blow-up Lemma, due to Komlós, Sárközy and Szemerédi [6],
showed that, for the purposes of embedding graphs of bounded degree, super-regular pairs
behave like complete bipartite graphs. In our proof, we will need to embed (planar)
graphs with growing degrees, which is generally a very difficult problem. Fortunately for
us, planar graphs are examples of arrangeable graphs, for which a suitable extension of
the Blow-up Lemma [6] has recently been proven by Böttcher, Kohayakawa, Taraz and
Würfl.
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Definition 8 (a-arrangeable). Let a be an integer. An n-vertex graph is called a-arrange-
able if its vertices can be ordered as (x1, . . . , xn) in such a way that∣∣∣N(N(xi) ∩ {xi+1, xi+2, . . . , xn}

)
∩ {x1, x2, . . . , xi}

∣∣∣ 6 a

for each 1 6 i 6 n.
Here, for a set of vertices S, we denote by N(S) the set of those vertices not in S that

are adjacent to some vertex in S.

Chen and Schelp showed that planar graphs are 761-arrangeable [2]; Kierstead and
Trotter [5] improved this to 10-arrangeable. Thus, the following theorem of Böttcher,
Kohayakawa, Taraz and Würfl [1] can be used to embed planar graphs whose maximum
degree is not too large.

Theorem 9 (Arrangeable Blow-up Lemma). For all a,∆R, κ ∈ N and for all δ > 0 there
exists ε > 0 such that for every integer r there is n0 such that the following is true for
every n1, . . . , nr with n0 6 n =

∑
ni and ni 6 κ · nj for all i, j ∈ [r].

Let R be a graph of order r with ∆(R) < ∆R. Assume that we are given a graph G with
a partition V (G) = V1 ·∪ . . . ·∪Vr and a graph H with a partition V (H) = X1 ·∪ . . . ·∪Xr with
|Vi| = |Xi| = ni such that (Vi, Vj) is an (ε, δ)-super-regular pair for every ij ∈ E(R) and
such that all edges of H run between sets Xi, Xj for which ij ∈ E(R). Further assume
that H is a-arrangeable and has ∆(H) 6

√
n/ log n. Then there exists an embedding

ϕ : V (H)→ V (G) of H to G such that ϕ(Xi) = Vi.

We will embed planar graphs into large well connected subgraphs of G. These sub-
graphs will correspond to spanning trees of components of R. However, to be able to use
Theorem 9, we shall need spanning trees whose maximum degree is bounded. This is the
purpose of the following lemma.

Lemma 10. Given k ∈ N, let R be a connected graph with minimum degree at least
v(R)/k. Then R has a spanning tree with maximum degree 4k.

Proof. We define the score of a spanning tree T of R to be the sum of the squares of the
degrees of vertices in T . Let T be a spanning tree of R with minimum score. Observe
that T has less than v(R)/(2k) vertices of degree 4k, since the sum of the vertex degrees
of T is 2v(R)− 2.

Suppose that there is a vertex u of T whose degree in T exceeds 4k. Observe that the
removal of u from T disconnects T into more than 4k components, one of which, C, has
less than v(R)/(4k) vertices. Let v be the neighbour of u which is in C. Now v has at
least v(R)/k neighbours in R, of which less than v(R)/(4k) are in C and a further less
than v(R)/(2k) are of degree at least 4k. It follows that v has a neighbour u′ in R which
is not in C and whose degree is less than 4k. Let T ′ be obtained from T by deleting uv
and inserting u′v. Then T ′ is still a spanning tree of v. Each vertex of T ′ has the same
degree as in T except for u and u′, which have respectively lost and gained one neighbour.
It follows that the score of T ′ is smaller than that of T , which by contradiction completes
the proof.
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Finally, we need to specify which planar graphs we will embed into our spanning trees.
Let H = (V,E) be a plane graph. We say that a k element subset V ′ ⊆ V forms a

bag of order k in H if there is {x1, x2} ⊆ V \ V ′ such that V ′ ∪ {x1, x2} induces a copy of
K2,k in H and all inner faces of H[V ′ ∪ {x1, x2}] are also faces of H. We call the vertices
of V ′ which are not in the outer face the interior vertices of the bag.

x1

u u′

x2

x1

u u′

x2

Figure 1: A bag of order k = 6; the same bag reordered and with an insertion of ` = 6
vertices.

Observe that we can reorder the interior vertices of a bag without affecting the pla-
narity of H. A bag is thus a very convenient structure into which one can put further
vertices: if some vertex v (not in H) is adjacent in a supergraph G of H to any two interior
vertices u, u′ of a bag, then we can redraw H such that u and u′ are consecutive in the
bag, and insert v and uv, u′v to obtain H ′. If H is a quadrangulation, then H ′ is still a
quadrangulation contained in G. Furthermore, if v1, . . . , v` /∈ V (H) are all adjacent to u
and u′ in G, then we can insert all these vertices and edges to u and u′, and still obtain
a subgraph H ′′ of G which is a quadrangulation. Furthermore, v1, . . . , v` then form a bag
of order ` in H ′′. This will be particularly useful in the proof of the following lemma.

Lemma 11. Let T be a tree of order r > 2, n > (16r)3, and let G be an n-vertex graph
with the partition V1 ·∪ . . . ·∪Vr of its vertex set such that |Vi| 6 2|Vj| for all i 6= j and
G[Vi, Vj] is a complete bipartite graph whenever ij ∈ E(T ).

Then G contains a plane quadrangulation H with maximum degree ∆(H) 6 n1/3 + 2
as a spanning subgraph. Furthermore, all but at most 9n2/3 vertices of H are contained
in a collection of pairwise disjoint bags each of order in the interval [n1/3/2, n1/3].

Proof. We first prove that G has a quadrangulation H with ∆(H) 6 n1/3+2 by induction
on r. So assume that r = 2 and G is a bipartite graph with partite sets V1, V2. We partition
Vi into a minimum number of sets Wi,j with sizes |Wi,j| 6 n1/3 as equal as possible. The
plane graph H is constructed as follows. Take x1, x2 ∈ W1,1 and all of W2,1 and embed
the graph induced by these vertices into the plane. Let y1, y2 ∈ W2,1 lie in the same
face and embed W1,1 \ {x1, x2} into this face connecting each vertex to y1 and y2. We
continue greedily embedding sets Wi,j into faces with two vertices of degree 2 from V3−i
and adding all edges in between. This process does not stop before all vertices of G
have been embedded into the plane. The resulting graph H is a quadrangulation with
∆(H) 6 n1/3 + 2.
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Now assume that r > 2 and 1r ∈ E(T ). Further assume that we have embedded
V1 ·∪ . . . ·∪Vr−1 this way and obtained a quadrangulation H ′ on V \ Vr. We extend H ′ to
a quadrangulation H on V as follows. Again partition Vr into a minimum number of sets
Wr,i with sizes |Wr,i| 6 n1/3 as equal as possible. For each i sequentially, pick a pair of
vertices u, u′ in V1 that have degree 2 and lie in the same face in H ′, embed all vertices
from Wr,i into this face, and connect these to u, u′. Since |V1| > n/(2r − 1) > 8n2/3, we
do not run out of pairs in V1.

It remains to show that most vertices lie in a collection of large disjoint bags. Recall
that the planarity of H is preserved if we reorder the embedding in such a way that all
vertices in Wi,j of degree 2 in H form a bag. Since there are at most 2n2/3 many sets Wi,j,
all but at most 4n2/3 many vertices lie in pairwise disjoint bags. Some of these bags might
be small, i.e., they might have order less than 1

2
n1/3. Assume that the bag in Wi,j is small.

Note that |Wi,j| > 9
10
n1/3 by construction. Thus at least 1

5
n1/3 pairs from Wi,j have been

used to embed other sets Wi′,j′ . But there are at most 2n2/3 many sets Wi,j. Hence, at
most 10n1/3 bags are small. Consequently, all but at most 4n2/3 + 10n1/3 · 1

2
n1/3 6 9n2/3

vertices lie in disjoint bags of size at least 1
2
n1/3.

3 Proof of Theorem 5

Given γ > 0, let k ∈ N be such that k 6 1/(2γ) < k + 1. We set β = γ − 1/(2(k + 1)),
δ = β/8, d = β/4 and s = C(β) + 6, where C(β) is the constant returned by Theorem 4.
Next we choose ε such that 2ε is sufficiently small to apply Theorem 9 with a = 10,
∆R = 8(k + 1) + 1, κ = 2 and δ as given. We further insist that

ε 6
β

105k4(8(k + 1) + 2)
.

Let r1 be the parameter returned by Lemma 6 for d and ε as chosen, and m0 that
returned by Lemma 7. Let n0 > max

{
(16r1)

3, 6(k + 1)s,m0r1
}

be sufficiently large so
that Theorem 9 applies with any r 6 r1.

Suppose that n > (4k) · n0 and let G be an n-vertex graph with minimum degree
δ(G) >

(
1

2(k+1)
+β
)
n. By Lemma 6 there is an (ε, d)-regular partition V (G) = V0 ·∪ . . . ·∪Vr

with r 6 r1 such that the corresponding reduced graph R satisfies δ(R) >
(

1
2(k+1)

+β/2
)
r.

We distinguish two cases.
Case 1: R has a component with less than 2δ(R) vertices. In this case R contains a

triangle. It follows by Lemma 7 that G contains a triangulation T on s vertices, which has
3s− 6 edges. The graph G− V (T ) has minimum degree at least

(
1

2(k+1)
+ β
)
n− s > βn,

where the last inequality is by our choice of n0. Therefore, by Theorem 4, G − V (T )
contains a planar subgraph S with at least 2(n− s)− C(β) edges. Then G contains the
disjoint union of S and T , which is planar and has at least 2n− 2s−C(β) + 3s− 6 = 2n
edges (by choice of s) as required.

Case 2: Every component of R has at least 2δ(R) > r/(k + 1) vertices. It follows
that R has c 6 k components. We will show that we can cover G with c vertex-disjoint
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quadrangulations, which implies that G contains a planar subgraph with at least 2n−4c >
2n− 4k edges as required.

Let C be a component of R, and T be its spanning tree with maximum degree 8(k+1)
guaranteed by Lemma 10. Let Vi be any cluster of C and ij ∈ T . Observe that, by the
(ε, d)-regularity of (Vi, Vj), at most ε|Vi| vertices do not have at least (d−ε)|Vj| neighbours
in Vj. It follows that we can remove from each cluster Vi at most 8(k + 1)ε|Vi| vertices
and obtain a set V ′i whose every vertex has at least (d− ε)|Vj| neighbours in each Vj such
that ij ∈ T . Since (8(k + 1) + 1)ε 6 β/8 and d − δ = β/8, if ij ∈ T , then each vertex
in V ′i has at least δ|V ′j | neighbours in V ′j . Moreover, since 8(k + 1)ε 6 1/2, for each i we
have |V ′i | > |Vi|/2. Consequently, the pair (V ′i , V

′
j ) is 2ε-regular (see [7, Fact 1.5]) and,

since |Vi| = |Vj|, we also have |V ′i | 6 2|V ′j | for each i, j. It follows that each edge ij of
T corresponds to a (2ε, δ)-super-regular pair (V ′i , V

′
j ), and the cluster sizes are not too

unbalanced, as required for Theorem 9.
Let G′ be a graph whose vertex set is the union of the sets V ′i , i ∈ C and whose edges

are all edges between V ′i and V ′j whenever ij ∈ T . Note that G′ has nC vertices, where
nC satisfies

n > nC > 2δ(R)
(
1− 8(k + 1)ε

)(1− ε)n
r

>
n

2k
> n0.

By Lemma 11, G′ contains a plane quadrangulation H in which the maximum degree is
at most nC

1/3 + 2 6 n1/3 + 2, and in which at most 9n
2/3
C vertices are not contained in

bags of order between 1
2
nC

1/3 > (n/16k)1/3 and n
1/3
C 6 n1/3. By Theorem 9, H can be

embedded into the subgraph of G induced on
⋃
C.

Repeating this for each component we obtain a collection of c vertex disjoint quad-
rangulations H1, . . . , Hc in G, together with a collection B1, . . . , B` of pairwise disjoint
bags of order at least (n/16k)1/3 covering all but at most 9

∑
C n

2/3
C 6 9n2/3k vertices of⋃

i∈[r] V
′
i . In particular, we have that 1

2
n2/3 < ` 6 (16k)1/3n2/3.

Let L be the set of vertices in none of the quadrangulations. Observe that every vertex
in L is either in V0 or in Vi \V ′i for some i; therefore, it follows that |L| 6 (8(k+1)+1)εn.
We say that a bag Bi is good for u ∈ L if u has at least n1/3/(32k2) neighbours in Bi. Since
(8(k + 1) + 1)εn + 9n2/3k 6 βn, each vertex u ∈ L has at least n/(2(k + 1)) neighbours
contained in B1 ∪ · · · ∪ B`. Of these at least n/(2(k + 1)) − ` · n1/3/(32k2) > n/(6k)
lie in bags that are good for u. Hence, at least n2/3/(6k) > `/(24k2) of the bags Bi are
good for u. We now assign vertices Li of L to each bag Bi sequentially as follows. From
the collection of unassigned vertices of L for which Bi is good, we assign Li to be any
n1/3/(128k2) of them if this is possible, and all of them if not. Suppose that after carrying
out this procedure there is a vertex u of L which is not in any Li. Then it must be the
case that for each Bi good for u, we have |Li| = n1/3/(128k2). But there are at least
`/(24k2) such Bi, and `/(24k2) · n1/3/(128k2) > (8(k + 1) + 1)εn > |L|, (where the first
inequality is by choice of ε) which is a contradiction.

We then work as follows. For each bag Bi, we reorder the interior vertices of Bi such
that the first vertex of Li is adjacent to the first and second interior vertices of Bi, the
second vertex of Li to the third and fourth, and so on. Because each vertex of Li has
at least n1/3/(32k2) neighbours in Bi, and |Li| 6 n1/3/(128k2), this is possible. We now
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insert, for each j, the jth vertex of Li into the interior face of Bi containing the (2j−1)st
and 2jth interior vertices, and add the edges to those two vertices. Let the plane graphs
so constructed be H ′1, . . . , H

′
c. By construction, these graphs are vertex disjoint and cover

G, and since Hi was a quadrangulation, so H ′i is also a quadrangulation for each i. The
disjoint union of H ′1, . . . , H

′
c is then a planar subgraph of G with 2n−4c > 2n−4k edges,

as required.

4 Concluding Remarks

There remain several open questions on planar graphs. In particular, it is possible that in
Theorem 5 the constant nγ can be taken to be an absolute constant provided γ � n−1/2.
Note that this is a natural lower bound since there are bipartite graphs without 4-cycles
of minimum degree Θ(n1/2). Another possibility would be to investigate the behaviour of
the planarity function pl(n, γn) for γ ∈ (1/2, 2/3] in more detail. Finally, one could ask
these questions if the constraint imposed is that of edge density rather than minimum
degree.

More generally, one could replace ‘planar graphs’ by some other property — topolog-
ically defined, or by forbidden minors, for example.
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