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Abstract

Let G(n,m) be the random graph on n vertices with m edges. Let d = 2m/n
be its average degree. We prove that G(n,m) fails to be k-colorable w.h.p. if
d > 2k ln k− ln k− 1 + ok(1). This matches a conjecture put forward on the basis of
sophisticated but non-rigorous statistical physics ideas (Krzakala, Pagnani, Weigt:
Phys. Rev. E 70 (2004)). The proof is based on applying the first moment method
to the number of “covers”, a physics-inspired concept. By comparison, a standard
first moment over the number of k-colorings shows that G(n,m) is not k-colorable
w.h.p. if d > 2k ln k − ln k.

1 Introduction

Let G(n,m) be the random graph on V = {1, . . . , n} with m edges. Unless specified
otherwise, we let m = ddn/2e for a number d > 0 that remains fixed as n → ∞. Let
k > 3 be an n-independent integer. We say that G(n,m) has a property E with high
probability (‘w.h.p.’) if limn→∞ P [G(n,m) ∈ E ] = 1.

One of the longest-standing open problems in the theory of random graphs is whether
there is a phase transition for k-colorability in G(n,m) and, if so, at what average degree
d it occurs [1, 10, 17]. Regarding existence, Achlioptas and Friedgut [1] proved that for
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any k > 3 there is a sharp threshold sequence dk−col(n) such that for any fixed ε > 0
the random graph G(n,m) is k-colorable w.h.p. if 2m/n < (1 − ε)dk−col(n) and non-k-
colorable w.h.p. if 2m/n > (1 + ε)dk−col(n). To establish the existence of an actual sharp
threshold, one would have to show that the sequence dk−col(n) converges. This is widely
conjectured to be the case (explicitly so in [1]) but as yet unproven.

In any case, the techniques used to prove the existence of dk−col(n) shed no light on
its location. An upper bound is easily obtained via the first moment method. Indeed, a
simple calculation shows that for k > 3 and

d > dk,first = 2k ln k − ln k, (1)

the expected number number of k-colorings tends to 0 as n → ∞ (e.g., [4]). Hence,
Markov’s inequality implies that G(n,m) fails to be k-colorable for d > dk,first w.h.p.
Furthermore, Achlioptas and Naor [6] used the second moment method to prove that for
any k > 3, G(n,m) is k-colorable w.h.p. if

dk−col > dk,AN = 2(k − 1) ln(k − 1) = 2k ln k − 2 ln k − 2 + ok(1). (2)

Here and throughout the paper, we use the symbol ok(1) to hide terms that tend to
zero for large k. The bound (2) was recently improved [12], also via a second moment
argument, for sufficiently large k to

dk−col > dk,second = 2k ln k − ln k − 2 ln 2 + ok(1). (3)

This leaves an additive gap of 2 ln 2 + ok(1) between the upper bound (1) and the lower
bound (3).

The problem of k-coloring G(n,m) is closely related to the “diluted mean-field k-
spin Potts antiferromagnet” model of statistical physics. Indeed, over the past decade
physicists have developed sophisticated, albeit mathematically non-rigorous formalisms
for identifying phase transitions in random discrete structures, the “replica method” and
the “cavity method” (see [31] for details and references). Applied to the problem of
k-coloring G(n,m) [27, 33, 34, 38], these techniques lead to the conjecture that

dk−col = 2k ln k − ln k − 1 + ok(1). (4)

The main result of the present paper is an improved upper on dk−col that matches the
physics prediction (4) (at least up to the term hidden in the ok(1)).

Theorem 1. We have dk−col 6 2k ln k − ln k − 1 + ok(1).

Theorem 1 improves the naive first moment bound (1) by about an additive 1. This
proves, perhaps surprisingly, that the k-colorability threshold (if it exists) does not coin-
cide with the first moment bound. Furthermore, Theorem 1 narrows the gap to the lower
bound (3) to 2 ln 2− 1 + ok(1) ≈ 0.39.

The proof of Theorem 1 is based on a concept borrowed from the “cavity method”,
namely the notion of covers. This concept is closely related to hypotheses on the “geom-
etry” of the set of k-colorings of the random graph, which are at the core of the cavity
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method [26, 27, 31, 33, 37, 38]. More precisely, let Sk(G(n,m)) ⊂ {1, . . . , k}n be the
set of all k-colorings of G(n,m). According to the cavity method, for average degrees
(1 + ok(1))k ln k < d < dk−col w.h.p. the set Sk(G(n,m)) has a decomposition

Sk(G(n,m)) =
N⋃
i=1

Ci

into N = exp(Ω(n)) non-empty “clusters” Ci such that for any two colorings σ, τ that
belong to distinct clusters we have

dist(σ, τ) = |{v ∈ V : σ(v) 6= τ(v)}| > δn for some δ = δ(k, d) > 0.

In other words, the clusters are well-separated. Furthermore, a “typical” cluster Ci is
characterized by a set of Ω(n) “frozen” vertices, which have the same color in all colorings
σ ∈ Ci. Roughly speaking, a cover is a representation of a cluster Ci: the cover details the
colors of (most of) the frozen vertices, while the non-frozen ones are represented by the
“joker color” 0. We will define covers precisely in Section 3.

The key idea behind the proof of Theorem 1 is to apply the first moment method
to the number of covers. Since, according to the cavity method, covers are in one-to-
one correspondence with clusters, we basically carry out a first moment argument over
the number of clusters. The improvement over the “classical” first moment bound for
the number of k-colorings results because this approach allows us to completely ignore
the cluster sizes |Ci|. Indeed, close to the k-colorability threshold the cluster sizes are
conjectured to vary wildly, as has in part been established rigorously [12]. By contrast,
the “classical” first moment argument amounts to putting a rather generous uniform
bound on all the cluster sizes.

The clustering and “freezing” of k-colorings of G(n,m) has been studied previously [2].
Formally, let us call a set F of vertices δ-frozen in a k-coloring σ of G(n,m) if any other
k-coloring τ such that τ(v) 6= σ(v) for some vertex v ∈ F indeed satisfies

|{v ∈ F : σ(v) 6= τ(v)}| > δn.

There is an explicitly known sharp threshold dk,freeze = (1 + ok(1))k ln k, about half of
dk−col, such that for d > dk,freeze w.h.p. a random k-coloring of G(n,m) has Ω(n) frozen
vertices [32]. The threshold dk,freeze coincides asymptotically with the largest average
degree for which efficient algorithms are known to find a k-coloring of G(n,m) w.h.p. [3,
21]. In fact, it has been hypothesized that the emergence of frozen vertices causes the
failure of a wide class of “local search” algorithms [2, 32].

Yet the known results [2, 32] on the freezing phenomenon only show that a random
k-coloring of G(n,m) “freezes”. It is not apparent that this poses an obstacle if we merely
aim to find some k-coloring. As an important part of the proof of Theorem 1, we show
that for d close to dk−col (but strictly below the lower bound (3)), in fact all k-colorings
of G(n,m) belong to a cluster with many frozen vertices w.h.p.
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Corollary 2. Assume that d > 2k ln k− ln k− 4 + ok(1). There is a number δk > 0 such
that w.h.p. every k-coloring σ of the random graph G(n,m) has a set F (σ) of δk-frozen
vertices of size |F (σ)| > (1− ok(1))n.

Due to the conjectured relationship between freezing and the demise of local-search
algorithms, it would be interesting to identify the precise threshold where all the k-
colorings of G(n,m) are frozen.

Further related work. The problem of coloring G(n,m) has been studied intensively
over the past few decades. Improving a prior result by Matula [30], Bollobás [9] determined
the asymptotic value of the chromatic number of dense random graphs.  Luczak extended
this result to sparse random graphs [28]. In the case that d remains fixed as n → ∞,
his result yields dk−col = (2 + ok(1))k ln k. As mentioned above, Achlioptas and Naor [6]
improved this result by obtaining the lower bound (2). In addition,  Luczak’s result was
sharpened in [11] for m� n5/4.

The problem of locating the threshold for 3-colorability has received considerable
attention as well. The best current lower bound is 4.03 [5]. Moreover, Dubois and
Mandler [14] proved that d3−col 6 4.9364. This improved over a stream of prior re-
sults [4, 15, 18, 20, 24].

The key idea in this line of work is to estimate the first moment of the number of
“rigid” colorings: for any two colors 1 6 i < j 6 k, every vertex of color i must have
neighbors of color j [4]. Clearly, any k-colorable graph must have a rigid k-coloring. At
the same time, the number of rigid k-colorings can be expected to be significantly smaller
than the total number of k-colorings, and thus one might expect an improved first-moment
upper bound. However, in terms of the clustering scenario put forward by physicists, it
is conceivable that many clusters contain a large (in fact, exponentially large) number
of rigid k-colorings. Therefore, the idea of counting rigid k-colorings seems conceptually
weaker than the approach of counting clusters pursued in the present work. In fact, the
improvement obtained by counting rigid colorings appears to diminish for larger k [4].

A fairly new approach to obtaining upper bounds on thresholds in random constraint
satisfaction problems is the use of the interpolation method [8, 19, 22, 35]. This technique
gives an upper bound on, e.g., the k-colorability threshold in terms of a variational problem
that is related to the statistical mechanics techniques. However, this variational problem
appears to be difficult to solve. Thus, it is not clear (to me) how an explicit upper bound
as stated in Theorem 1 can be obtained from the interpolation method.

Dani, Moore and Olson [13] studied a variant of the graph coloring problem in which
each pair of (u, v) of vertices comes with a random permutation πu,v of the k possible
colors. This gives rise to a concept of “permuted” k-colorings. They obtained an upper
bound of 2k ln k−ln k−1+ok(1) on the threshold for the existence of permuted k-colorings.
The proof is based on counting the total weight of k-colorings and using an isoperimetric
inequality. Moreover, as pointed out in [13], physics intuition suggests that the threshold
in the permuted k-coloring problem matches the “unpermuted” k-colorability threshold.

In the context of satisfiability, Maneva and Sinclair [29] used the concept of covers to
obtain a conditional upper bound on the random 3-SAT threshold. Roughly speaking, the
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condition that they need is that w.h.p. all satisfying assignments have frozen variables.
However, verifying this condition in random 3-SAT is an open problem. (That said, it
is conceivable that the approach used in [29] might yield a better upper bound on the
k-SAT threshold for large k.)

2 Preliminaries

Let [k] = {1, 2, . . . , k}. Because Theorem 1 and Corollary 2 are asymptotic statements
in both k and n, we may generally assume that k > k0 and n > n0, where k0, n0 are
constants that are chosen sufficiently large for the various estimates to hold.

We perform asymptotic considerations with respect to both k and n. When referring
to asymptotics in k, we use the notation Ok(·), ok(·), etc. Asymptotics with respect to n
are just denoted by O(·), o(·), etc.

If G is a (multi-)graph and A,B are sets of vertices, then we let eG(A,B) denote the
number of A-B-edges in G. Moreover, eG(A) denotes the number of edges inside of A. If
A = {v} is a singleton, we just write eG(v,B). The reference to G is omitted where it is
clear from the context.

Working with independent edges. The random graph G(n,m) consists of m edges
that are chosen almost independently. To simplify some of the arguments below, we are
going to work with a random multi-graph model G′(n,m) in which edges are perfectly
independent. More precisely, G′(n,m) is obtained as follows: let e = (e1, . . . , em) ∈
(V × V )m be a uniformly random m-tuple of ordered pairs of vertices. In other words,
each ei is chosen uniformly out of all n2 possible vertex pairs, independently of all the
others. Now, let G′(n,m) be the random multi-graph comprising of e1, . . . , em viewed as
undirected edges. Thus, G′(n,m) may have self-loops (if ei = (v, v) for some index i) as
well as multiple edges (if, for example, ei = (u, v) and ej = (v, u) with 1 6 i < j 6 m
and u 6= v). The two random graph models are related as follows.

Lemma 3. For any event A we have P [G(n,m) ∈ A] 6 O(1) · P [G′(n,m) ∈ A].

Proof. The random graph G′(n,m) has at most m distinct edges. Let E be the event that
it has exactly m edges. This is the case iff e1, . . . , em induce pairwise distinct undirected
edges, and no self-loops. Given the event E , G′(n,m) is identical to G(n,m). Hence,

P [G(n,m) ∈ A] = P [G′(n,m) ∈ A|E ] 6 P [G′(n,m) ∈ A] /P [E ] (5)

Now,

P [E ] >
m∏
i=0

(
1− 2i+ n

n2

)
= exp

[
m−1∑
i=0

ln(1− (2i+ n)/n2)

]
> exp(−d− 2d2) = Ω(1).

Thus, the assertion follows from (5).
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The Chernoff bound. We need the following Chernoff bound on the tails of a bino-
mially distributed random variable (e.g., [23, p. 21]).

Lemma 4. Let ϕ(x) = (1 + x) ln(1 + x)− x. Let X be a binomial random variable with
mean µ > 0. Then for any t > 0 we have

P [X > E [X] + t] 6 exp(−µ · ϕ(t/µ)),

P [X < E [X]− t] 6 exp(−µ · ϕ(−t/µ)).

In particular, for any t > 1 we have P [X > tµ] 6 exp [−tµ ln(t/e)] .

Balls and bins. Consider a balls and bins experiment where µ balls are thrown indepen-
dently and uniformly at random into ν bins. Thus, the probability of each distribution of
balls into bins equals ν−µ. We will need the following well-known “Poissonization lemma”
(e.g., [16, Section 2.6]).

Lemma 5. In the above experiment let ei be the number of balls in bin i ∈ [ν]. Moreover,
let λ > 0 and let (bi)i∈[ν] be a family of independent Poisson variables, each with mean λ.
Then for any sequence (ti)i∈[ν] of non-negative integers such that

∑ν
i=1 ti = µ we have

P [∀i ∈ [ν] : ei = ti] = P

[
∀i ∈ [ν] : bi = ti

∣∣∣∣ ν∑
i=1

bi = µ

]
.

Hence, the joint distribution of (ei)i∈[ν] coincides with the joint distribution of (bi)i∈[ν]

given
∑ν

i=1 bi = µ.

We are typically going to use Lemma 5 to obtain an upper bound on the probability
on the left hand side. Therefore, the following simple corollary will come in handy.

Corollary 6. With the notation of Lemma 5, assume that λ = µ/ν > 0. Then for any
sequence (ti)i∈[ν] of non-negative integers such that

∑ν
i=1 ti = µ we have

P [∀i ∈ [ν] : ei = ti] 6 O(
√
µ) · P [∀i ∈ [ν] : bi = ti] .

Proof. Let b =
∑ν

i=1 bi = µ. Since the bi are independent Poisson variables with means
λ = µ/ν, b is Poisson with mean µ. By Stirling’s formula, P [b = µ] = µµ exp(−µ)/µ! =
Ω(µ−1/2). Hence, Lemma 5 yields

P [∀i ∈ [ν] : ei = ti] =
P [∀i ∈ [ν] : bi = ti]

P [b = µ]
= O(

√
µ) · P [∀i ∈ [ν] : bi = ti] ,

as claimed.
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3 Covers

Let G = (V,E) be a graph, let k > k0 be an integer, and let σ : V → [k] be a k-coloring
of G. We would like to identify a set F ⊂ V of vertices whose colors cannot be changed
easily by a “local” recoloring of a few vertices. For instance, if v is a vertex that does not
have a neighbor of color j for some j ∈ [k] \ {σ(v)}, then v can be recolored easily. More
generally, we would like to say that, recursively, a vertex can be recolored easily if there
is a color j such that all its neighbors of color j can be easily recolored. To formalize this,
we need the following concept.

Definition 7. Let ζ : V → {0, 1, . . . , k}. We call v ∈ V stable under ζ if ζ(v) 6= 0
and if for any color j ∈ [k] \ {ζ(v)} there are at least two neighbors u1, u2 of v such that
ζ(u1) = ζ(u2) = j.

Now, consider the following whitening process that, given a k-coloring σ of G,
returns a map σ̂ : V → {0, 1, . . . , k}; the idea is that σ̂(v) = 0 for all v that are easy to
recolor.

WH1. Initially, let σ̂(v) = σ(v) for all v ∈ V .

WH2. While there exist a vertex v ∈ V with σ̂(v) 6= 0 that is not stable under σ̂, set
σ̂(v) = 0.

The process WH1–WH2 is similar to processes studied in [36, 37] in the context of
random graph coloring, and in [7] in the context of random k-SAT. (The term “whiten-
ing process” stems from [36].) Clearly, the final outcome σ̂ of the whitening process is
independent of the order in which WH2 proceeds.

The intuition behind the whitening process is that if we attempt to recolor some stable
vertex v with another color j ∈ [k] \ {σ̂(v)}, then we will have to recolor two additional
stable vertices u1, u2 as well. Hence, any attempt to recolor a stable vertex is liable to
trigger an avalanche of further recolorings (unless the graph G has an abundance of short
cycles, which is well-known not to be the case in the random graph G(n,m) w.h.p.).

The following definition is going to lead to a neat description of the outcome of the
whitening process.

Definition 8. A k-cover in G is a map ζ : V → {0, 1, . . . , k} with the following proper-
ties.

CV1. There is no edge e = {u, v} such that ζ(u) = ζ(v) 6= 0.

CV2. If ζ(v) 6= 0, then v is stable under ζ.

CV3. If ζ(v) = 0, then there are i, j ∈ [k], i 6= j, such that v does not have a neighbor u
with ζ(u) = i and v has at most one neighbor w with ζ(w) = j.
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The concept of covers is very closely related and, in fact, inspired by the properties of
certain fixed points of the Survey Propagation message passing procedure [31]. (To my
knowledge, the term “cover” has not been used previously in the context of k-colorability,
although it appears to be in common use in the context of satisfiability.)

We observe that the outcome σ̂ of the whitening process is indeed a k-cover. Indeed,
condition CV1 is satisfied in σ̂ because the whitening process starts from a valid k-
coloring. Furthermore, CV2 holds by construction. Finally, CV3 is satisfied for all v
because otherwise there would not have been a reason for WH2 to set σ̂(v) = 0.

Now, the outcome of σ̂ is the cover characterized by the following two properties.

i. For all vertices v such that σ̂(v) 6= 0 we have σ̂(v) = σ(v).

ii. Subject to i., |σ̂−1(0)| is minimum.

Let us briefly comment on the relationship between covers and clusters of k-colorings.
The intention behind the whitening process is to ensure that all vertices v with σ̂(v) 6= 0
are frozen under σ. But the converse is not generally true, i.e., there are going to be some
vertices v that are frozen while σ̂(v) = 0. This is because step WH2 tends to err on the
side of caution: it requires that v has two neighbors in every color class except its own.
The motivation for this is that just requiring one neighbor is not generally sufficient due
to the possibility of “Kempe chains” (see [32]). In the simplest case, think of a vertex v
of color i = σ(v) that has precisely one neighbor w of color j 6= i, whose only neighbor
of color i is v itself. Then v, w are not frozen because they can just swap colors. By
contrast, the current construction ensures that attempting to recolor one vertex v with
σ̂(v) 6= 0 sets off a “chain reaction”. (Nonetheless, Theorem 1 can be proved with the
weaker notion of covers obtained by relaxing the definition of “stable” to require just that
each v with ζ(v) 6= 0 has at least one neighbor w with ζ(w) = i for each i ∈ [k] \ {ζ(v)}.)

Thus, the construction is intended to ensure that each clusters really only gives rise
to one k-cover. The downside is that it might lead to (a potentially exponential number
of) covers that do not correspond to k-colorings. Indeed, given a k-cover ζ it is not clear
that we can indeed assign a color to all the vertices v with ζ(v) = 0 without creating a
monochromatic edge. This motivates

Definition 9. A k-cover ζ of G is valid if G has a k-coloring σ such that ζ = σ̂.

Hence, we expect that valid k-covers correspond one-to-one to clusters of k-colorings.
To prove Theorem 1, we basically perform a first moment argument over the number of
valid k-covers. The main task is to show that the all-0 cover (i.e., ζ(v) = 0 for all vertices
v) is not a valid k-cover in G(n,m) w.h.p. To this end, we need to establish a few basic
properties that all k-colorings of G(n,m) have w.h.p. More precisely, in Section 4 we are
going to prove the following via a “standard” first moment argument over k-colorings.

Proposition 10. Assume that k > k0 for a sufficiently large constant k0. Moreover,
assume that d = 2k ln k − ln k − c, with 0 6 c 6 4.

1. Let Z be the number of k-colorings of G(n,m). Then 1
n

ln E [Z] = c+ok(1)
2k

.
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2. W.h.p. all k-colorings of G(n,m) satisfy |σ−1(i)| = (1 + ok(1))n
k

for all i ∈ [k].

3. In fact, w.h.p. G(n,m) does not have a k-coloring σ such that |σ−1(i) − n/k| >
n/(k ln4 k) for more than ln8 k colors i ∈ [k].

Building upon Proposition 10, we will establish the following properties of valid k-covers
in Section 5.

Proposition 11. There is a number k0 such that for k > k0 and 2k ln k− ln k− 4 6 d 6
2k ln k any valid k-cover ζ of G(n,m) has the following properties w.h.p.

1. We have |ζ−1(0)| 6 nk−2/3.

2. For all i ∈ [k] we have |ζ−1(i)| = (1 + ok(1))n/k.

3. In fact, there are no more than ln9 k indices i ∈ [k] such that

|ζ−1(i)− n/k| > n/(k ln3 k).

Finally, in Section 6 we perform the first moment argument over k-covers.

Proposition 12. There is εk = ok(1) such that for d > 2k ln k − ln k − 1 + εk w.h.p. the
random graph G(n,m) does not have a k-cover with properties 1.–3. from Proposition 11.

Theorem 1 is immediate from Propositions 11 and 12. Furthermore, we will prove Corol-
lary 2 in Section 5.

4 Proof of Proposition 10

The proof of Proposition 10 is very much based on standard arguments, reminiscent but
unfortunately not (quite) identical to estimates from, e.g., [4]. Suppose d = 2k ln k−ln k−c
with 0 6 c 6 4. Throughout this section we work with the random graph G′(n,m) with
m independent edges.

Lemma 13. Let ν = (ν1, . . . , νk) be a k-tuple of non-negative integers such that
∑k

i=1 νi =
n. Let Zν be the number of k-colorings σ of G′(n,m) such that |σ−1(i)| = νi for all i ∈ [k].
Then

ln E [Zν ] = o(n) +
k∑
i=1

νi ln(n/νi) +
d

2
ln

[
1−

k∑
i=1

(νi
n

)2
]
. (6)

Proof. Let Σν be the set of all σ : V → [k] such that |σ−1(i)| = νi for all i ∈ [k]. By
Stirling’s formula,

ln |Σν | = o(n) +
k∑
i=1

νi ln(n/νi). (7)
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Furthermore, the probability of being a k-coloring in G′(n,m) is the same for all σ ∈
Σν . In fact, due to the independence of the edges in G′(n,m), this probability is q =
(1 −

∑k
i=1(νi/n)2)m, because σ is a k-coloring iff each of the color classes σ−1(i) is an

independent set. As E [Zν ] = |Σν | · q, the assertion follows from (7).

Corollary 14. Let Z be the total number of k-colorings of G′(n,m). We have

1

n
ln E [Z] = ln k +

d

2
ln(1− 1/k) + o(1) =

c

2k
+Ok(ln k/k

2).

Proof. Let N be the set of all k-tuples ν = (ν1, . . . , νk) of non-negative integers such that∑k
i=1 νi = n. Then E [Z] =

∑
ν∈N E [Zν ] 6 nk maxν∈N E [Zν ] . Hence, Lemma 13 yields

1

n
ln E [Z] = o(1) + max

{
k∑
i=1

νi ln(n/νi) +
d

2
ln

[
1−

k∑
i=1

(νi
n

)2
]

: ν ∈ N

}
. (8)

Letting A be the set of all k-tuples α = (α1, . . . , αk) ∈ [0, 1]k such that
∑k

i=1 αi = 1, we
obtain from (8)

1

n
ln E [Z] = o(1) + max

{
−

k∑
i=1

αi ln(αi) +
d

2
ln

[
1−

k∑
i=1

α2
i

]
: α ∈ A

}
. (9)

The entropy function −
∑k

i=1 αi ln(αi) is well-known to attain its maximum at the point

α = 1
k
1 with all k entries equal to 1/k. Furthermore, the sum of squares

∑k
i=1 α

2
i attains

its minimum at α = 1
k
1 as well. Hence, the term d

2
ln[1 −

∑k
i=1 α

2
i ], and thus (9), is

maximized at 1
k
1. Consequently,

1

n
ln E [Z] = ln k +

d

2
ln(1− 1/k) + o(1) = ln k − d

2

[
1

k
+

1

2k2
+Ok(k

−3)

]
= ln k −

[
k ln k − ln k

2
− c

2

]
·
[

1

k
+

1

2k2
+Ok(k

−3)

]
=

c

2k
+O(ln k/k2),

as claimed.

Corollary 15. W.h.p. all k-colorings σ of G′(n,m) satisfy |σ−1(i)| = (1 + ok(1))n
k

for all
i ∈ [k], and there is no k-coloring σ such that |σ−1(i)− 1/k| > 1/(k ln4 k) for more than
ln8 k colors i ∈ [k].

Proof. Let ν = (ν1, . . . , νk) be a k-tuple of non-negative integers such that
∑k

i=1 νi = n.
We are going to estimate E[Zν ] in terms of how much ν deviates from the “flat” vector
(n/k, . . . , n/k). To this end, we compute the first two differentials of (6). Set α =
(α1, . . . , αk) = ν/n and let f(α) = −

∑k
i=1 αi lnαi +

d
2

ln(1−
∑k

i=1 α
2
i ). Since

∑k
i=1 αi = 1,

the electronic journal of combinatorics 20(3) (2013), #P32 10



we can eliminate the variable αk = 1−
∑k−1

i=1 αi. Hence, we obtain for i, j ∈ [k − 1], i 6= j

∂f

∂αi
= ln(αk/αi) +

d(αk − αi)
1− ‖α‖2

2

,

∂2f

∂α2
i

= − 1

αk
− 1

αi
− 2d

1− ‖α‖2
2

− 2d(αk − αi)2

(1− ‖α‖2
2)2

, (10)

∂2f

∂αi∂αj
= − 1

αk
− d

1− ‖α‖2
2

− 2d(αk − αi)(αk − αj)
(1− ‖α‖2

2)2
. (11)

In particular, the first differential Df vanishes at α = 1
k
1. At this point, the Hessian

D2f = ( ∂2f
∂αi∂αj

)i,j∈[k−1] is negative-definite, whence α = 1
k
1 is a local maximum. Because

the rank-one matrix ((αk − αi) · (αk − αj))i,j∈[k−1] is positive semidefinite for all α, (10)
and (11) show that D2f is negative-definite for all α. In fact, due to the − 2d

1−‖α‖22
term

in (10), all its eigenvalues are smaller than − d
1−‖α‖22

6 −d. Therefore, Taylor’s theorem

yields that

f(α) 6 f(k−11)− d

2

∥∥α− k−11
∥∥2

2

for all α. Hence, Corollary 14 implies that

1

n
ln E[Zν ] 6

c

2k
+Ok(ln k/k

2)− d

2

∥∥α− k−11
∥∥2

2
. (12)

Since d = (2− ok(1))k ln k, the right hand side of (12) is negative if either

• maxi∈[k] |αi − k−1| > (k ln1/3 k)−1, or

• there are more than ln8 k indices i ∈ [k] such that |αi − 1/k| > (k ln4 k)−1.

Thus, Markov’s inequality shows that w.h.p. there is no k-coloring with either of these
properties.

Finally, Proposition 10 is immediate from Lemma 3 and Corollaries 14 and 15.

5 Proof of Proposition 11

Suppose d = 2k ln k− ln k− c with 0 6 c 6 4. Throughout this section we work with the
random graph G′(n,m) with m independent edges.

5.1 The core

Let σ : V → [k] be a map such that |σ−1(i)| = (1 + ok(1))n
k

for all i ∈ [k]. Moreover,
let G′(σ) be the random multi-graph G′(n,m) conditional on σ being a valid k-coloring.
Thus, G′(σ) consists of m independent random edges e1 = (u1,v1), . . . , em = (um,vm)
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such that σ(ui) 6= σ(vi) for all i ∈ [m]. To prove Proposition 11 we need to show that with
a very high probability, a large number of vertices of G′(σ) will remain “unscathed” by
the whitening process WH1–WH2. To exhibit such vertices, we consider the following
construction. Let ` = exp(−7) ln k and assume that k > k0 is large enough so that ` > 3.
Let Vi = σ−1(i) for i ∈ [k].

CR1 For i ∈ [k] let Wi = {v ∈ Vi : ∃j 6= i : e(v, Vj) < 3`} and W =
⋃k
i=1Wi.

CR2 Let U = {v ∈ V : ∃j : e(v,Wj) > `}.

CR3 Set Y = U . While there is a vertex v ∈ V \ Y that has ` or more neighbors in Y ,
add v to Y .

We call the graph G′(σ)−W − Y obtained by removing the vertices in W ∪ Y the core
of G′(σ).

By construction, every vertex v in the core has at least ` neighbors of each color
j 6= σ(v) that also belong to the core. Indeed, by CR1 every vertex v in the core has at
least 3` neighbors in every color class other than their own. Furthermore, CR2 ensures
that for every color i at most ` of these neighbors lie in the set W . In addition, CR2 and
CR3 ensures that no vertex v ∈ V \ Y has ` or more neighbors in Y . Thus, for every
color i 6= σ(v) our vertex v has at least 3`− 2` = ` neighbors in V \ (W ∪ Y ). In effect,
if σ̂ is the outcome of the whitening process applied to G′(σ), then σ̂(v) = σ(v) for all
vertices v in the core.

The construction CR1–CR3 has been considered previously to show that a random
k-coloring of the random graph G(n,m) has many frozen vertices w.h.p. [2, 12]. In the
present context we need to perform a rather more thorough analysis of the process CR1–
CR3 to show that w.h.p. all k-colorings σ of G(n,m) induce a non-zero cover σ̂. To
obtain such a strong result, we need to control the large deviations of various quantities,
particularly the sizes of the sets W , Wi and U . More precisely, in Section 5.2 we prove

Lemma 16. With probability at least 1 − exp(−16n/k) the random graph G′(σ) has the
following properties.

1. We have |W | 6 nk−0.7.

2. For all i ∈ [k] we have |Wi| 6 n ln ln k
k ln k

.

3. There are no more than ln4 k indices i ∈ [k] such that |Wi| > n
k ln4 k

.

Moreover, in Section 5.3 we are going to establish

Lemma 17. In G′(σ) we have P
[
|U | > n ln ln k

k ln k

]
6 exp(−10n/k).

To estimate the size of Y we use the following observation.

Lemma 18. W.h.p. the random graph G′(n,m) has the following property.

For any set Y ⊂ V of size |Y| 6 d2n ln ln k
k ln k

e we have e(Y) < `
2
|Y| (13)
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Proof. For any fixed set Y of size 0 < yn 6 d2n ln ln k
k ln k

e the number e(Y) of edges spanned
by Y in G′(n,m) is binomially distributed with mean

E [e(Y)] =
m(yn)2

n2
= (1 + ok(1))y2dn/2 6 2y2nk ln k

Hence, by the Chernoff bound

P [e(Y) > y`n/2] 6 exp

[
y`n

2
ln

(
y`n/2

e · E [e(Y)]

)]
6 exp

[
y`n

3
ln(ky)

]
. (14)

Since ky 6 3 ln ln k/ ln k and ` = Ωk(ln k), (14) yields

P [e(Y) > y`n/2] 6 exp [3yn ln(y)] . (15)

Further, by Stirling’s formula the total number of sets Y ⊂ V of size yn is(
n

yn

)
6 exp [yn(1− ln y)] 6 exp(−2yn ln y). (16)

Combining (15) and (16) with the union bound, we obtain

P [∃Y ⊂ V : |Y| = yn, e(Y) > ` |Y| /2] 6 exp [yn ln(y)] .

Taking the union bound over all possible sizes yn completes the proof.

Proof of Proportion 11. By Proposition 10 w.h.p. all k-colorings σ of the random graph
G′(n,m) satisfy |σ−1(i)| = (1 + ok(1))n/k for all i ∈ [k]. Let us call such a k-coloring σ
of G = G′(n,m) good if it has the following two properties (and bad otherwise):

G1. Step CR1 applied to G, σ yields sets W1, . . . ,Wk,W that satisfy the three properties
in Lemma 16.

G2. The set U created in step CR2 has size |U | 6 n ln ln k
k ln k

.

Let Zbad be the number of bad k-colorings of G′(n,m). Since G′(σ) is just the random
graph G′(n,m) conditional on σ being a k-coloring, we have

E [Zbad] =
∑
σ

P [σ is a k-coloring of G(n,m)]

·P [σ is bad in G′(n,m)|σ is a k-coloring]

=
∑
σ

P [σ is a k-coloring of G(n,m)] · P [σ is bad in G′(σ)]

6 2 exp(−10n/k) ·
∑
σ

P [σ is a k-coloring of G(n,m)] [by Lemmas 16, 17]

6 2 exp(−10n/k) · exp(cn/k + o(n)) [by Proposition 10]

6 exp(−6n/k + o(n)) = o(1) [as c 6 4].
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Hence, w.h.p. the random graph G′(n,m) does not have a bad k-coloring.
Now, consider a good k-coloring σ. By Lemma 18, we may assume that (13) holds.

To bound the size of the set Y created by step CR3, observe that each vertex that is
added to Y contributes ` extra edges to the subgraph spanned by Y . Thus, assume that
|Y | > 2n ln ln k

k ln k
and consider the first time step CR3 has got a set Y ′ of size d2n ln ln k

k ln k
e.

Then Y ′ spans at least y`n/2 edges, in contradiction to (13). Hence, w.h.p. G′(n,m) is
such that

for any good k-coloring the set Y constructed by CR3 has size at most 2n ln ln k
k ln k

. (17)

If (17) is true and G′(n,m) does not have a bad k-coloring, then for any k-coloring σ
the set W ∪ Y constructed by CR1–CR3 has size at most |W ∪ Y | 6 k−0.7n+ 2n ln ln k

k ln k
6

nk−2/3 (the bound on |W | follows from G1). This shows the first property asserted in
Proposition 11, because the construction CR1–CR3 ensures that the cover σ̂ obtained
from σ via the whitening process WH1–WH2 satisfies σ̂(v) = σ(v) for all v ∈ V \(W∪Y ).
By the same token, the second assertion follows because by G1 and (17) for every color
i ∈ [k] we have

|σ−1(i) ∩ (W ∪ Y )| 6 |Wi|+ |Y | = n · ok(1/k).

Finally, the G1 and (17) also imply that there cannot be more than ln9 k indices i ∈ [k]
such that |σ−1(i)− n/k| > n/(k ln3 k), which is the third assertion.

Proof of Corollary 2. We claim that the vertices in F = V \ (W ∪ Y ) are δ-frozen
w.h.p. for δ = 1/(k ln k). Indeed, assume that τ is another k-coloring such that the set
∆ = {v ∈ F : τ(v) 6= σ(v)} has size 0 < |∆| < δn. Every vertex v ∈ ∆ has at least `
neighbors in ∆. Indeed, the construction CR1–CR3 ensures that every vertex v ∈ ∆
has at least ` neighbors colored τ(v) 6= σ(v) in ∆. Hence, ∆ violates (13). Thus, the
assertion follows from Lemma 18.

5.2 Proof of Lemma 16

We begin by estimating the number of edges between different color classes. Recall that
Vi = σ−1(i) for i ∈ [k], and that we are assuming that |Vi| = (1 + ok(1))n/k. Let νi = |Vi|
for i = 1, . . . , k.

Lemma 19. In G′(σ) we have

P

[
min

16i<j6k
e(Vi, Vj) 6

0.99dn

k2

]
6 exp(−11n/k) and

P

[
max

16i<j6k
e(Vi, Vj) >

1.01dn

k2

]
6 exp(−11n/k).

Proof. Because the edges e1, . . . , em are chosen independently, for any pair 1 6 i < j 6 k
the random variable e(Vi, Vj) has a binomial distribution Bin(m, qij), where

qij =
2νiνj

n2 −
∑k

l=1 ν
2
l

>
2νiνj
n2

.
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Since we are assuming that νi, νj = (1 + ok(1))n
k
, we have qij > (2 + ok(1))/k2. Thus,

E [e(Vi, Vj)] = mqij > (1 + ok(1))dn/k2. Hence, the Chernoff bound yields

P

[
e(Vi, Vj) 6

0.99dn

2k2

]
6 exp

[
− dn

8 · 104k2

]
6 exp(−12n/k).

Finally, the first assertion follows by taking a union bound over i, j. The second assertion
follows analogously.

Proof of Lemma 16. By Lemma 19 we may disregard the case that

min
16i<j6k

e(Vi, Vj) 6
0.99dn

k2
.

Thus, fix integers (mij)16i<j6k such that

mij >
0.99dn

k2
and

∑
16i<j6k

mij = m. (18)

Let M be the event that e(Vi, Vj) = mij for all 1 6 i < j 6 k.
We need to get a handle on the random variables (e(v, Vj))v∈Vi (i.e., the number of

neighbors of v in Vj) in the random graph G′(σ). Given that M occurs we know that∑
v∈Vi e(v, Vj) = e(Vi, Vj) = mij. Furthermore, because G′(σ) consists of m independent

random edges e1, . . . , em, given the eventM the mij edges between Vi and Vj are chosen
uniformly and independently. Therefore, we can think of the vertices in Vi as “bins” and
of the mij edges as randomly tossed “balls”. In particular, the average number of balls
that each bin v ∈ Vi receives is mij/νi. Crucially, these balls-and-bins experiments are
independent for all i, j.

To analyze them, we apply Corollary 6. Thus, consider a family (bvj)v∈V,j∈[k]\{σ(v)} of
mutually independent Poisson variables with means E [bvj] = mσ(v)j/νσ(v). Then for any
family (tvj)v∈V,j∈[k]\{σ(v)} of integers we have

P [∀v, j : e(v, Vj) = tvj|M] 6 exp(o(n)) · P [∀v, j : bvj = tvj] . (19)

In words, the joint probability that the random variables (e(v, Vj))v∈V,j∈[k]\{σ(v)} take cer-
tain values given thatM occurs is dominated by the corresponding event for the random
variables (bvj).

If |Wi| > n ln ln k
k ln k

, then there are at least N = n ln ln k
k ln k

vertices v ∈ Vi such that
minj∈[k]\{i} e(v, Vj) < 3`. Thus, let Wi be the number of vertices v ∈ Vi such that
minj∈[k]\{i} bvj < 3`. Then (19) yields

P [|Wi| > N |M] 6 exp(o(n)) · P [Wi > N ] . (20)

Furthermore, because the random variables (bvj)v∈Vi,j∈[k]\{i} are mutually independent,
Wi is a binomial random variable with mean E [Wi] 6 νiqi, where

qi =
∑

j∈[k]\{i}

P [Po(mij/νi) 6 3`] .
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Since νi = (1 + ok(1))n/k and mij > 0.99dn/k2, we have µij/νi > 0.98d/k > 1.95 ln k.
Recalling that ` = exp(−7) ln k, we find P [Po(mij/νi) 6 3`] 6 k−1.9 and thus qi 6 (k −
1)k−1.9. Hence,

E [Wi] 6 (1 + ok(1))k−1.9n 6 k−1.8n. (21)

Therefore, the Chernoff bound gives

P [Wi > N ] 6 exp

[
−N ln

(
k1.8N

en

)]
6 exp(−20n/k). (22)

Combining (20) and (22), we obtain

P [|Wi| > N |M] 6 exp(o(n)− 20n/k) 6 exp(−19n/k). (23)

Now, consider the event that there are at least κ = dln4 ke classes i1, . . . , iκ such that
|Wi| > N ′ = n

k ln4 k
. We have

P
[
Wij > N ′

]
6 exp

[
−N ′ ln

(
k1.8N ′

en

)]
6 exp

[
−1

2
N ′ ln k

]
, (24)

Furthermore, because the random variables Wi1 , . . . ,Wiκ are independent, we obtain
from (19) and (24)

P [|{i ∈ [k] : |Wi| > N ′}| > κ|M] 6

(
k

κ

)
exp

[
−κ

2
N ′ ln k

]
6 exp(−20n/k). (25)

With respect to the event |W | > nk−0.7, observe that by (21) the sum W =
∑k

i=1Wi

is stochastically dominated by a binomial random variable with mean nk−0.8. Therefore,
by (19) and the Chernoff bound

P
[
|W | > nk−0.7|M

]
6 P

[
W > nk−0.7

]
6 exp(−nk−0.7) 6 exp(−20n/k). (26)

Finally, since the estimates (23), (25), (26) hold for all M, the assertion follows from
Bayes’ formula.

5.3 Proof of Lemma 17

We begin by estimating the number of edges between the sets Wi and the color class Vj.
As before, we let Vi = σ−1(i) for i ∈ [k] and νi = |Vi| = (1 + ok(1))n/k for i = 1, . . . , k.

Lemma 20. In G′(σ) we have

P

[
max

16i<j6k
e(Wi, Vj) >

2n ln ln k

k

]
6 exp(−11n/k).
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Proof. Fix 1 6 i < j 6 k. We begin by proving the following statement.

For any set S ⊂ Vi of size |S| 6 n ln ln k
k ln k

we have P [e(S, Vj) > 2n ln ln k/k] 6
exp(−13n/k).

(27)

Indeed, for any set S as above the number e(S, Vj) of edges ei that join S to Vj has a
binomial distribution Bin(m, qj,S), where

qj,S =
2νj|S|

n2 −
∑k

l=1 ν
2
l

6
3 ln ln k

k2 ln k
;

the last inequality follows from our assumption that νl = (1 + ok(1))n/k for all l ∈ [k].
Hence,

E [e(S, Vj)] = mqj,S 6
3d ln ln k

2k2 ln k
· n 6

3 ln ln k

2k
· n

Thus, (27) follows from the Chernoff bound. Taking the union bound over all possible
sets S of size |S| 6 n ln ln k

k ln k
, we obtain from (27)

P

[
∃S ⊂ Vi, |S| 6

n ln ln k

k ln k
: e(S, Vj) >

2n ln ln k

k

]
6 2νi exp(−13n/k)

6 exp(−12n/k). (28)

As P
[
|Wi| > n ln ln k

k ln k

]
6 exp(−16n/k) by Lemma 16, the assertion follows from (28).

Lemma 21. Let Ti be the number of vertices v ∈ Vi such that maxj 6=i e(v, Vj) > 100 ln k
and let T =

∑
i∈[k] Ti. Then in G′(σ) we have

P
[
T >

n

4k ln k

]
6 exp(−10n/k).

Proof. For an integer vector m = (mij)16i<j6k let Em be the event that e(Vi, Vj) = mij

for all 1 6 i < j 6 k. Set mji = mij for 1 6 i < j 6 k. By Lemma 19 we may
confine ourselves to the case that e(Vi, Vj) 6 2dn

k2
for all i 6= j. Thus, fix any m such that

mij 6 2dn
k2

for all i < j. Given Em, for each of the mij edges between color classes Vi, Vj
the actual vertex in Vi that the edge is incident with is uniformly distributed. Thus, we
can think of the vertices v ∈ Vi as bins and of edge mij edges as balls of color j, and our
goal is to figure out the probability that bin v contains more than 100 ln k balls colored j
for some j 6= i. Because we are conditioning on Em, these balls-and-bins experiments are
independent for all color pairs i 6= j.

To study these balls-and-bins experiments we use Corollary 6. Let (bvj)v∈V,j∈[k]\{σ(v)}
be a family of mutually independent Poisson variables such that E[bvj] = mij/νi for all
v ∈ Vi, j ∈ [k] \ {i}. In addition, let Ti be the number of vertices v ∈ Vi such that
maxj 6=i bvj > 100 ln k and let T =

∑k
i=1 Ti. Then Corollary 6 gives

P
[
T >

n

4k ln k

∣∣ Em] 6 exp(o(n)) · P
[
T >

n

4k ln k

]
(29)
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To complete the proof we need to bound P
[
T > n

4k ln k

]
. For each vertex v ∈ Vi and

each j 6= i we have E [bvj] = mij/νi 6 2dn
k2νi

6 3 ln k. Hence, by Stirling’s formula

P [bvj > 100 ln k] 6
∑

s>100 ln k

E [bvj]
s /s! 6 k−90.

Because the random variables bvj are mutually independent, T is a sum of independent
Bernoulli random variables. Applying the union bound, we thus have

P

[
max
j 6=σ(v)

bvj > 100 ln k

]
6 k−89 for any v ∈ V . (30)

Therefore, (30) shows that T is stochastically dominated by a binomial random variable
Bin(n, k−89). Consequently, the Chernoff bound yields

P
[
T >

n

4k ln k

]
6 P

[
Bin(n, k−89) >

n

4k ln k

]
6 exp(−20n/k). (31)

Finally, combining (29) and (31) yields the assertion.

Proof of Lemma 17. Let d = (dvj)v∈V,j∈[k]\{σ(v)} be an integer vector. Moreover, let Ed be
the event that e(v, Vj) = dvj for all v ∈ V , j 6= σ(v). We are going to estimate the size of U
given that Ed occurs for a vector d that is “compatible” with the properties established in
Lemmas 19–21. More precisely, we call d feasible if the following conditions are satisfied.

i. For all i 6= j we have mij =
∑

v∈Vi dvj >
dn
2k2

. Moreover, mij = mji.

ii. For all i 6= j we have wij =
∑

v∈Vi:dvj63` 6
2n ln ln k

k
.

iii. Let T be the set of all v such that maxj 6=σ(v) dvj > 100 ln k. Then |T | 6 n
4k ln k

.

By Lemmas 19–21, we just need to show that for any feasible d we have

P

[
|U | > n ln ln k

k ln k

∣∣ Ed] 6 exp(−10n/k). (32)

Given the event Ed, the total number mij of Vi-Vj-edges is fixed. So is the number wji
of Wj-Vi edges. What remains random is how these edges are matched to the vertices in
Vi. More specifically, think of the Wj-Vi-edges as black balls, of the Vj \Wj-Vi-edges as
white balls, and of the vertices v ∈ Vi as bins. Each bin v has a capacity dvj. Now, the
balls are tossed randomly into the bins, and our objective is to figure out the number of
bins that receive more than ` black balls. Observe that these numbers are independent
for all pairs i 6= j of colors.

To estimate this probability, consider a family (bvj)v∈V,j∈[k]\{σ(v)} of independent bi-
nomial random variables such that bvj has distribution Bin(dvj, wji/mji). Let B be the
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event that
∑

v∈Vi bvj = wji for all i 6= j. Furthermore, let U be the number of vertices v
such that maxj 6=σ(v) bvj > `. Then

P

[
|U | > n ln ln k

k ln k

∣∣ Ed] = P

[
U > n ln ln k

k ln k

∣∣B] 6 P
[
U > n ln ln k

k ln k

]
P [B]

. (33)

The sums
∑

v∈Vi bvj are binomial random variables Bin(mij, wji/mji). Moreover, they
are independent for all i 6= j. Therefore, Stirling’s formula yields

P [B] =
∏
i 6=j

P [Bin(mij, wij/mij) = mij] = Θ(n−k(k−1)/2) = exp(o(n)). (34)

Let v ∈ Vi be a vertex such that for color j 6= i we have dvj 6 100 ln k. Then our

assumptions i. and ii. on d ensure that E [bvj] =
wjidvj
mji

6 300 ln ln k. Therefore, by the

Chernoff bound

P [bvj > `] 6 exp

[
−` · ln

(
`

e · E [bvj]

)]
6 k−100.

Hence, taking the union bound, we find

P

[
max
j 6=σ(v)

bvj > `

]
6 k−99 if max

j 6=σ(v)
dvj 6 100 ln k. (35)

Let U ′ be the number of vertices v such that maxj 6=σ(v) bvj > ` while maxj 6=σ(v) dvj 6
100 ln k. Because the random variables bvj are independent, (35) implies that U ′ is stochas-
tically dominated by a binomial random variable Bin(n, k−99). Therefore, the Chernoff
bound gives

P

[
U ′ > n ln ln k

2k ln k

]
6 P

[
Bin(n, k−99) >

n ln ln k

2k ln k

]
6 exp(−11n/k). (36)

As U 6 T +U ′ 6 U ′+ n
4k ln k

by our assumption iii. on d, (36) implies that P
[
U > n ln ln k

k ln k

]
6

exp(−11n/k). Thus, the assertion follows from (33) and (34).

6 Proof of Proposition 12

Throughout this section, we let ζ : V → {0, 1, . . . , k}, Vi = ζ−1(i) and νi = |Vi| for
i = 0, 1, . . . , k. In addition, we let αi = νi/n. We always assume that the conditions of
Proposition 12 hold, namely

Z1. |ζ−1(0)| 6 nk−2/3.

Z2. |ζ−1(i)| = (1 + ok(1))n/k for all i ∈ [k].

Z3. There are no more than ln9 k indices i ∈ [k] such that |ζ−1(i)− n/k| > n/(k ln3 k).

In addition, we assume that d = 2k ln k − ln k − c for some 0 6 c 6 4.
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6.1 Counting covers

To prove Proposition 12 we perform a first moment argument over the number of covers
ζ. Let Iζ be the event that V1, . . . , Vk are independent sets in G′(n,m). Moreover, let Cζ
be the event that ζ is a k-cover in G′(n,m). Clearly, Cζ ⊂ Iζ , and we begin by estimating

the probability of the latter event. Let Fζ =
∑k

j=1 α
2
j .

Lemma 22. We have 1
n

ln P [Iζ ] = d
2

ln(1− Fζ).

Proof. For each of the edges ei the probability of joining two vertices in Vj is (νj/n)2 = α2
j .

Hence, the probability that ei does not fall inside any of the classes V1, . . . , Vk is equal to
1− Fζ . Thus, the assertion follows from the independence of e1, . . . , em.

In Section 6.2 we are going to establish the following estimate of the probability of Cσ.

Lemma 23. We have 1
n

ln P [Cζ |Iζ ] 6
∑k

i=0 αi ln pi + o(1), where

p0 =
∑

i,j∈[k]:i 6=j

(
1

2
+

αjd

1− Fζ

)
exp

[
−(αi + αj)d

1− Fζ

]
,

pi =
∏

j∈[k]\{i}

1−
(

1 +
αjd

1− Fζ

)
exp

[
− αjd

1− Fζ

]
for i = 1, . . . , k.

Proof of Proposition 12. Let A be the set of all vectors α = (α0, . . . , αk) ∈ [0, 1]k+1 that
satisfy the following three conditions (cf. Z1–Z3):

i.
∑k

i=0 αi = 1,

ii. We have α0 6 k−2/3 and αi = (1 + ok(1))/k for i = 1, . . . , k. Indeed, there are no
more than K = ln9 k indices i ∈ [k] such that |αi − 1/k| > k−1 ln−3 k.

iii. αin is an integer for i = 0, 1, . . . , k.

For α ∈ A let Sα be the set of all maps ζ : V → {0, 1, . . . , k} such that |ζ−1(i)| = αin for
all i. Then

Sα =

(
n

α0n, . . . , αkn

)
=

(
n

α0n

)
·
(

(1− α0)n

α1n, . . . , αkn

)
6

(
n

α0n

)
· k(1−α0)n.

Hence, Stirling’s formula yields

1

n
lnSα 6 −α0 lnα0 − (1− α0) ln((1− α0) /k). (37)

Lemmas 22 and 23 show that for any ζ ∈ Sα,

1

n
ln P [Cζ ] 6 o(1) +

d

2
ln(1− Fζ) +

k∑
i=0

αi ln pi.
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Given the value of α0, the sum Fζ =
∑k

i=1 α
2
i is minimized if αi = (1 − α0)/k for all

i ∈ [k]. Thus,

1

n
ln P [Cζ ] 6 o(1) +

d

2
ln(1− (1− α0)2/k) +

k∑
i=0

αi ln pi. (38)

Using the approximation ln(1− z) = −z − z2/2 +O(z3) and recalling that d = 2k ln k −
ln k − c, we see that

d

2
ln(1− (1− α0)2/k) = −(1− α0)2 ln k

+
(1− α0)2 ln k

2k
+
c(1− α0)2

2k
− (1− α0)4 ln k

2k
+Ok(k

−1.9)

= −(1− 2α0) ln k +
c

2k
+ ok(1/k) [as α0 6 k−2/3 by ii.]. (39)

Furthermore, because Fζ ∈ (0, 1) and as ln(1− z) 6 −z for all z ∈ (0, 1), we get

k∑
i=1

αi ln pi 6 −
∑

i,j∈[k]:i 6=j

αi(1 + αjd) exp(−αjd)

= −
∑
j∈[k]

(1− α0 − αj)(1 + αjd) exp(−αjd). (40)

Since αj = (1 + ok(1))/k for all j ∈ [k] by ii. and as d = 2k ln k −Ok(ln k), (40) yields

k∑
i=1

αi ln pi 6 Ok(k
−1.9)− (1− α0)

∑
j∈[k]

(1 + αjd) exp(−2αjk ln k). (41)

Moreover, applying condition ii., we obtain from (41)

k∑
i=1

αi ln pi 6 Ok(k
−1.9) +O(K ln k) · exp(−2(1 + ok(1)) ln k)

−(1− α0)(k −K)(1 + 2 ln k +Ok(1/ ln2 k)) ·
exp(−2(1 +Ok(ln

−3 k)) ln k)

6 ok(1/k)− (1− α0) · 1 + 2 ln k

k
[as K 6 k0.01]

6 ok(1/k)− 1 + 2 ln k

k
[as α0 6 k−2/3 by ii.] (42)

Further, again because Fζ ∈ (0, 1) we have

p0 6
1

2

∑
i,j∈[k]:i 6=j

(1 + 2αjd) exp [−(αi + αj)d] ,

6 Ok(k
−3+ok(1)K) +

k(k − 1)

2

[
1 + 4 ln k +Ok(ln

−2 k)
]

exp
[
−4 ln k +O(ln−2 k)

]
[by condition ii.]

6
1 + 4 ln k +Ok(ln

−1 k)

2k2
.
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Hence,

α0 ln p0 6 α0 ln

(
1 + 4 ln k

2k2

)
+ α0 · ok(1). (43)

Plugging (39), (42) and (43) into (38), we obtain

1

n
ln P [Cζ ] 6

c

2k
− (1− 2α0) ln k − 1 + 2 ln k

k

+α0 ln

(
1 + 4 ln k

2k2

)
+ α0 · ok(1) + ok(k

−1)

=
c− 2− 4 ln k

2k
− ln k + α0 ln

(
1 + 4 ln k

2

)
+ α0 · ok(1) + ok(k

−1). (44)

Finally, combining (37) and (44), we get

1

n
ln(|Sα| · P [Cζ ]) 6

c− 2− 4 ln k

2k
− α0 ln

(
2kα0

1 + 4 ln k

)
−(1− α0) ln(1− α0) + α0 · ok(1) + ok(1/k)

6
c− 2− 4 ln k

2k

+α0

[
1− ln

(
2kα0

1 + 4 ln k

)
+ ok(1)

]
+ ok(1/k). (45)

Elementary calculus shows that the function

α0 ∈ (0, 1) 7→ −α0(1− ln
2kα0

1 + 4 ln k
+ ok(1))

attains its maximum at α0 = (1 + ok(1))1+4 ln k
2k

. Hence, (45) yields

1

n
ln(|Sα| · P [Cζ ]) 6

c− 1 + ok(1)

2k
. (46)

To complete the proof, consider for any α ∈ A the number Σα of k-covers ζ of G′(n,m)
such that |ζ−1(i)| = αi for all i. Then (46) implies that 1

n
ln E[Σα] 6 c−1

2k
− ok(1) for all

α ∈ A. Hence, there is 0 < εk = ok(1) such that for c < 1− εk we have

E[Σα] 6 exp

[
c− 1

2k
− ok(1)

]
6 exp(−εk/2) = exp(−Ω(n)). (47)

Since condition iii. ensures that |A| 6 nk = exp(o(n)), the assertion follows from (47) by
taking the union bound over all α ∈ A and applying Lemma 3.
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6.2 Proof of Lemma 23

Given Iζ , the pairs e1, . . . , em that constitute the random graph G′(n,m) are simply
distributed uniformly and independently over the set of all n2(1− Fζ) possible pairs that
do not join two vertices in the same class Vi for i = 1, . . . , k. For each vertex v and each
j ∈ {0, 1, . . . , k} let dv,j be the number of pairs ei such that ei contains v together with
a vertex from Vj. Clearly, given Iζ we have dv,j = 0 for all v ∈ Vj, j ∈ [k].

Of course, the random variables dv,j are not independent because we know that the
total number of edges is equal to m. But their dependence turns out to be “relatively
mild”. In fact, we are going to show that the dv,j can be approximated by a family of
independent Poisson random variables up to an error term of exp(o(n)), which is negligible
for our purposes. To state this precisely, consider a family (bvj)v∈V,j∈{0,1,...,k} of independent
Poisson random variables with means

E [bvj] =
αjd

1− Fζ
.

Let Bζ be the event that

i. for any v ∈ V0 there exist i, j ∈ [k], i 6= j such that bvi = 0 and bvj 6 1 and

ii. for any 1 6 i < j 6 k and any v ∈ Vi we have bvj > 1.

These two conditions mirror the conditions CV3 and CV2 from the definition of “cover”.
The key step in the proof (somewhat reminiscent of the Poisson cloning model [25]) is to
establish the following.

Lemma 24. We have P [Cζ |Iζ ] 6 exp(o(n)) · P [Bζ ].

To prove Lemma 24 we consider a further event. Set Bij =
∑

v∈Vi bvj for i, j ∈
{0, 1, . . . , k}, (i, j) 6= (0, 0). Being sums of independent Poisson variables, the random
variables Bij are Poisson as well, with means

E[Bij] = E [Bji] = αiαjdn/(1− Fζ) (0 6 i < j 6 k).

In addition, let B00 be a random variable that is independent of all of the above such
that 1

2
B00 has distribution Po(α2

0m/(1−Fζ)). (In particular, B00 takes even values only.)
Now, let V be the event that

i. Bij = Bji for all i 6= j and

ii. 1
2
B00 +

∑
06i<j6k Bij = m.

Lemma 25. We have P [V ] = exp(o(n)).

Proof. Since

E

[
B00

2
+

∑
16i<j6k

Bij

]
=

dn

2(1− F (ζ))

[
α2

0 +
∑
i 6=j

αiαj

]
= m,
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there exist integers βij = E[Bij] +O(1) such that βij = βji and 1
2
β00 +

∑
06i<j6k βij = m.

Clearly,

P [V ] > P [Bij = βij for all i, j] =
∏
i,j

P [Bij = βij] . (48)

Since βij = E [Bij] +O(1) and Bij is a Poisson variable, Stirling’s formula yields

P [Bij = βij] = Ω(n−1/2).

Therefore, (48) implies P [V ] > Ω(n−(k+1)2/2) = exp(o(n)), as claimed.

Proof of Lemma 24. Let m = (mij)i,j∈{0,1,...,k} be a family of non-negative integers such
that

a. mij = mji for all i, j,

b. mii = 0 for i ∈ [k] and

c. m00 +
∑

06i<j6kmij = m.

Let Mm be the event that∑
v∈V0

dv0 = 2m00 and
∑
v∈Vi

dvj = mij for any 0 6 i < j 6 k.

Analogously, let M′
m be the event that

B00 = 2m00 and Bij = mij for any 0 6 i < j 6 k.

We claim that for any m that satisfies a.–c. above we have

P [Cζ |Mm] = P [Bζ |M′
m] . (49)

Indeed, let either i = j = 0 or 0 6 i < j 6 k. Given that Mm occurs, we can think
of the mij edges that join Vi and Vj as balls and of the vertices v ∈ Vi as bins. Each
ball is tossed into one of the bins randomly and independently, and these experiments are
independent for all i, j. Thus, (49) simply follows from the Poissonization of the balls and
bins experiment (Lemma 5).

To complete the proof, we need to compare P [Mm|Iζ ] and P [M′
m|V ]. Because under

the distribution P [ · |Iζ ] the pairs e1, . . . , em are simply chosen randomly subject to the
constraint that none of them joins two vertices in the same class Vi, i ∈ [k], we see that

P [Mm|Iζ ] =
m!

m00!
∏

06i<j6kmij!
·
(

α2
0

1− Fζ

)m00 ∏
06i<j6k

(
2αiαj
1− Fζ

)mij
. (50)

(The factor of 2 arises because e1, . . . , em are ordered pairs.) Furthermore, because V
provides that Bij = Bji for all i, j, we have

P [M′
m|V ] =

P [B00 = 2m00] ·
∏

06i<j6k P [Bij = mij]

P [V ]
.
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Thus, by Lemma 25

P [M′
m|V ] = exp(o(n)) · P [B00 = 2m00] ·

∏
06i<j6k

P [Bij = mij] . (51)

Since for 0 6 i < j 6 k the random variables Bij are Poisson with mean αiαjdn/(1−Fζ),
we have

P [Bij = mij] =
(αiαjdn/(1− Fζ))mij

mij! exp(αiαjdn/(1− Fζ))

=

(
2αiαj
1− Fζ

)mij mmij

mij! exp(2αiαjm/(1− Fζ))
. (52)

Similarly,

P [B00 = 2m00] =
(α2

0m/(1− Fζ))m00

m00! exp(α2
0m/(1− Fζ))

=

(
α2

0

1− Fζ

)m00 mm00

m00! exp(α2
0m/(1− Fζ))

. (53)

Combining (50)–(53), we obtain from Stirling’s formula

P [Mm|Iζ ]
P [M′

m|V ]
=

m! exp(m(1− Fζ)−1(α2
0 + 2

∑
06i<j6k αiαj))

exp(o(n))mm

=
m! exp(m+ o(n))

mm
= exp(o(n)). (54)

Finally, combining (49) and (54) we conclude that for any m that satisfies a.–c. we
have

P [Cζ ∩Mm|Iζ ] = P [Cζ |Mm] · P [Mm|Iζ ] [as Mm ⊂ Iζ ]
= exp(o(n)) P [Bζ |M′

m] · P [M′
m|V ]

= exp(o(n)) P [Bζ ∩M′
m] /P [V ]

= exp(o(n)) P [Bζ ∩M′
m] [due to Lemma 25].

Summing over all possible m completes the proof.

Proof of Lemma 23. We are going to bound the probability of the event Bζ . For v ∈ V0

we have

P [∃1 6 i < j 6 k : bvi = bvj = 0] 6
∑

16i<j6k

P [bvi = bvj = 0]

+
∑

i,j∈[k]:i 6=j

P [bvi = 0, bvj = 1] = p0,
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because the bvi, bvj are independent Poisson variables. Similarly, if v ∈ Vi for some i ∈ [k],
then

P [∀j ∈ [k] \ {i} : bvj > 1] =
∏

j∈[k]\{i}

1− P [bvj 6 1] = pi.

Due to the mutual independence of the bvj, we thus obtain P [Bζ ] = pα0n
0

∏k
i=1 p

αin
i . Finally,

the assertion follows from Lemma 24.
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