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Abstract

We introduce a new statistic on the hyperoctahedral groups (Coxeter groups of
type B), and give a conjectural formula for its signed distributions over arbitrary
descent classes. The statistic is analogous to the classical Coxeter length function,
and features a parity condition. For descent classes which are singletons the conjec-
tured formula gives the Poincaré polynomials of the varieties of symmetric matrices
of fixed rank.

For several descent classes we prove the conjectural formula. For this we con-
struct suitable supporting sets for the relevant generating functions. We prove
cancellations on the complements of these supporting sets using suitably defined
sign reversing involutions.

Keywords: Hyperoctahedral groups, signed permutation statistics, sign reversing
involutions, descent sets, generating functions

1 Introduction

There is an extensive literature concerned with identities for generating functions for Sn,
the symmetric group of degree n. These are typically (multi-variable) polynomials ob-
tained by summing the values of integer-valued functions, or statistics, on the Coxeter
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group Sn. Sometimes the sums are twisted with the non-trivial linear character of Sn.
Occasionally, one can prove more refined versions where the sums are restricted to de-
scent classes. Recently, there has been an interest in finding generalisations, or suitable
analogues, of such results for the hyperoctahedral groups; see for example [8, 1, 2, 4]. The
hyperoctahedral group Bn is the group of permutations w of the set [±n]0 := {−n, . . . , n}
such that w(−j) = −w(j) for all j ∈ [±n]0.

In the present paper we study generating functions involving a new statistic L : Bn →
N0, defined as follows. For w ∈ Bn we set

L(w) =
1

2
#{(i, j) ∈ [±n]20 | i < j, w(i) > w(j), i 6≡ j mod (2)}. (1)

To state our results we introduce some further notation. Let N denote the set of
positive integers, and N0 = {0}∪N. For n ∈ N, let [n] = {1, 2, . . . , n} and [n]0 = {0}∪ [n].
We write (n)X or (n) for the polynomial 1 − Xn ∈ Z[X], where X is an indeterminate.
We set (0) = 1 and write (n)X ! or (n)! for (1)(2) · · · (n). For a real number x, we write
bxc for the largest integer less than or equal to x. Let I = {i1, . . . , il}< ⊆ [n− 1]0, that is
i1 < · · · < il. We put i1 = min(I ∪{n}) and il+1 = n, respectively. Let S = {s0, . . . , sn−1}
be the set of Coxeter generators for Bn described in [3, Section 8.1] (see also Section 2)
and let l : Bn → N0 denote the (Coxeter) length function on Bn with respect to S. Define
the quotient (or descent class)

BI
n = {w ∈ Bn | D(w) ⊆ Ic},

where D(w) := {i ∈ [n− 1]0 | l(wsi) < l(w)} denotes the (right) descent set of w and Ic

denotes the complement [n − 1]0 \ I; cf. [3, Sections 2.4 and 8.1]. Thus w ∈ BIc

n if and
only if D(w) ⊆ I. For n ∈ N and I = {i1, . . . , il}< ⊆ [n− 1]0 we define the polynomials

fn,I(X) =
(n)!

(i1)!

l∏
r=1

b(ir+1−ir)/2c∏
σ=1

(2σ)−1 ∈ Z[X].

In [10] we stated the following conjecture:

Conjecture 1. [10, Conjecture 1.6] For n ∈ N and I = {i1, . . . , il}< ⊆ [n− 1]0,∑
w∈BIcn

(−1)l(w)XL(w) = fn,I(X). (2)

For instance, if I = [n− 1]0 then BIc

n = Bn, and formula (2) reads∑
w∈Bn

(−1)l(w)XL(w) = (n)!.

Our main result is the following.
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Theorem 2. Conjecture 1 holds in the following cases:

1. n ∈ N and I = {0},

2. n ∈ N and I = [n− 1]0,

3. n ∈ 2N and I ⊆ [n− 1]0 ∩ 2Z.

The three parts of Theorem 2 are proved in Sections 3-5, namely Propositions 9, 12,
and 25. Our methods are based on defining supporting sets for the sums in question, and
sign reversing involutions on their complements which preserve their intersections with
the descent classes BIc

n and leave L invariant. The sets BIc

n in (2) may thus be replaced
by their intersections with the supporting sets; the contributions of the other elements to
the sums cancel out. On the supporting sets the statistic L behaves better than on the
whole of BIc

n : in Section 5 we establish, for instance, two additivity results for L with
respect to certain parabolic factorisations.

For one-element sets I = {i}, where i ∈ [n − 1]0, the polynomials fn,{i} are closely
related to the Poincaré polynomials of the varieties of symmetric n× n matrices over Fq
of rank n− i. Indeed, it is well known that, for all prime powers q,

#{x ∈ Matn(Fq) | x = xt, rk(x) = n− i} = q(
n+1
2 )−(i+1

2 )fn,{i} (q−1);

see, for instance, [6, Lemma 10.3.1] and compare [10, Lemma 3.1 (3.4)]. It is interesting
whether – at least in these cases – Conjecture 1 reflects cohomological properties of the
varieties of symmetric matrices of fixed rank.

The restriction of L to Sn agrees with the function L defined in [7, Definition 5.1]. In
fact, Conjecture 1 may be seen as a type-B-analogue of [7, Conjecture C]. The polynomials
in this conjecture encode the numbers of non-degenerate flags in finite vector spaces
equipped with a non-degenerate quadratic form.

The results in the current paper are mainly motivated by our work [10] on representa-
tion zeta functions of nilpotent groups. In the remainder of the introduction we describe
this connection briefly. Let G be a finitely generated, torsion-free nilpotent group. The
representation zeta function of G is the Dirichlet generating series

ζG(s) :=
∞∑
n=1

r̃n(G)n−s,

where s is a complex variable, and r̃n(G) denotes the number of n-dimensional irreducible
complex representations of G, up to twisting by 1-dimensional representations. In [10,
Theorem C], the representation zeta functions are explicitly computed for three infinite
families of groups of nilpotency class 2, namely F2n+η(O), G2n(O), H2n(O), where n ∈ N,
η ∈ {0, 1}, andO is the ring of integers in an arbitrary number field. When 2n+η = 2n = 2
these groups all coincide with the Heisenberg group of 3× 3 upper unitriangular matrices
over O. Let G denote any of the group schemes F2n+η, G2n or H2n. It can be shown that
ζG(O)(s) has an Euler product

ζG(O)(s) =
∏
p

ζG(Op)(s),
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where p runs through the non-zero prime ideals of O and Op denotes the completion of
O at p, and that each local factor ζG(Op)(s) is a rational function in q−s, where q = |O/p|
is the residue field cardinality at p. In fact, these properties hold much more generally;
see [10, Proposition 2.2 and Corollary 2.19]. In [10] we showed that the local zeta functions
ζG(Op)(s) are related to q-series and statistics on hyperoctahedral groups. More precisely,
[10, Theorem C] states that there exist a family of polynomials (fG,I(X))I⊆[n−1]0 in Z[X]
and integers (a(G, i))i∈[n−1]0 such that, for all p,

ζG(Op)(s) =
∑

I⊆[n−1]0

fG,I(q
−1)
∏
i∈I

qa(G,i)−(n−i)s

1− qa(G,i)−(n−i)s
. (3)

The polynomials fG,I(X) turn out to have a combinatorial interpretation: in [10, Propo-
sition 4.6] we showed that, for I ⊆ [n− 1]0,

fF2n+η ,I(X) =
∑
w∈BIcn

(−1)neg(w)X2l(w)+(2η−1) neg(w), (4)

fG2n,I(X) =
∑
w∈BIcn

(−1)neg(w)X l(w). (5)

Here neg(w) := #{i ∈ [n] | w(i) < 0} for w ∈ Bn. Key to the equations (4) and (5) are
formulae for the joint distributions of the statistics neg and l on descent sets of Bn which
were given by V. Reiner; cf. [10, Lemma 4.5]. For the group schemes H2n, we know that

fH2n,I(X) = fn,I(X)

(cf. [10, Theorem C]) and Conjecture 1 is a conjectural analogue of (4) and (5). Iden-
tities like (2), (4), and (5) often have interesting consequences for zeta functions of the
form (3). Provided the statistics involved satisfy suitable invariance conditions, such
identities may, for instance, facilitate proofs that the corresponding zeta functions satisfy
certain functional equations; see [7, Theorem B].

2 Signed permutations, chessboard elements and

supporting sets

Throughout, we keep the notation introduced in Section 1. Let W be a Coxeter group with
Coxeter generating set S. For I ⊆ S, we denote by WI = 〈si | i ∈ I〉 the corresponding
standard parabolic subgroup of W . We also introduce the quotient W I := {w ∈ W |
D(w) ⊆ Ic}. It is well known that every element w ∈ W has a unique factorisation (or
“parabolic decomposition”)

w = wIwI , where wI ∈ W Iand wI ∈ WI . (6)

the electronic journal of combinatorics 20(3) (2013), #P50 4



The elements of W I are the unique representatives of the cosets in W/WI of shortest
length. The Coxeter length function l on W is additive with respect to this factorisation,
that is

l(w) = l(wI) + l(wI); (7)

see [5, Section 1.10].
Let now, specifically, W be the hyperoctahedral group Bn. This Coxeter group has a

concrete combinatorial description, which we now recall; cf. [3, Section 8.1]. The group
Bn has a faithful representation which identifies it with the group of “signed permutation
matrices”, that is, monomial n × n matrices with non-zero entries in {−1, 1}, acting on
standard basis column vectors and their negatives. For w ∈ Bn we use the “window
notation” w = [a1, . . . , an] to mean that, for i ∈ [n], w(i) = ai ∈ [±n]0. In this notation,
define

si = [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] for i ∈ [n− 1] and

s0 = [−1, 2, . . . , n].

The set S := {s0, s1, . . . , sn−1} is a set of Coxeter generators for Bn. The Coxeter length
function with respect to S may be described in terms of certain statistics on Bn. For
w ∈ Bn, define

inv(w) = #{(i, j) ∈ [n]2 | i < j, w(i) > w(j)},
neg(w) = #{i ∈ [n] | w(i) < 0},
nsp(w) = #{{i, j} ⊆ [n] | i 6= j, w(i) + w(j) < 0}.

It is well known (see [3, Proposition 8.1.1]) that

l(w) = inv(w) + neg(w) + nsp(w). (8)

The descent set D(w) of an element w ∈ Bn may be characterised as follows:

D(w) = {i ∈ [n− 1]0 | w(i) > w(i+ 1)}.

We identify the parabolic subgroup (Bn)[n−1] = {w ∈ Bn | neg(w) = 0} with the sym-
metric group Sn, with standard Coxeter generating set {s1, . . . , sn}. In the combinatorial
description given above, this identifies Sn with the group of n × n permutation matri-
ces. We will freely switch between viewing elements of Bn as permutations of [±n]0 or
as signed permutation matrices, as appropriate. Given a Coxeter group W with Coxeter
generating set S, we usually just write l for the associated Coxeter length function. Only
in case of ambiguity will we use a subscript to indicate the relevant Coxeter group.

Let M ∈ Mat(r × s;Z). If M has exactly one non-zero entry in column j ∈ [s] we
write

iM(j) := i(j) ∈ [r]

for the unique integer i such that Mij 6= 0; informally, i(j) indicates the row of M which
contains the non-zero entry in column j. Similarly, if M has exactly one non-zero entry
in row i ∈ [r] we write

jM(i) := j(i) ∈ [s]
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for the number of the column of M which contains the non-zero entry in row i. In
particular, if w ∈ Bn then iw(j) = |w(j)| and jw(i) = |w−1(i)|.

We call elements of the quotient B
[n−1]
n ascending. An element w ∈ Bn is ascending if

and only if w(1) < w(2) < · · · < w(n). Such an element is determined by its row pattern,
that is, by the function

ρw : [n] −→ {±1}, ρw(i) = wi,j(i), (9)

defined for all w ∈ Bn.
Let n ∈ N and I = {i1, . . . , il}< ⊆ [n− 1]0. Our first step towards proving Theorem 2

is to show that the sum in (2) is supported on relatively small and manageable subsets of
BIc

n which we now define.

Definition 3. Set

Cn,0 = {(wij) ∈ Bn | wij 6= 0 =⇒ i+ j ≡ 0 mod (2)},
Cn,1 = {(wij) ∈ Bn | wij 6= 0 =⇒ i+ j ≡ 1 mod (2)},
Cn = Cn,0 ∪ Cn,1.

We call Cn the group of chessboard elements and Cn,0 the subgroup of even chessboard
elements. Clearly Cn contains Cn,0 as a subgroup of index 2. The name comes from
imagining a signed permutation matrix w ∈ Bn printed on an n × n “chessboard” made
up from white and black squares. The element w is then a chessboard element exactly
if all the non-zero entries of w occupy squares of the same colour. Chessboard elements
were introduced in [7] for the symmetric group Sn. Definition 3 is an extension of [7,
Definition 5.3] to the group Bn.

Let w = (wij) ∈ Cn,0 and m1 = bn+1
2
c, m2 = bn

2
c. Let w1 = (w2a+1,2b+1), where

0 6 a, b 6 m1, and w2 = (w2a,2b), where 1 6 a, b 6 m2. Then w1 ∈ Bm1 and w2 ∈ Bm2 .
This defines a group isomorphism

σ0 : Cn,0 −→ Bm1 ×Bm2 , w 7−→ (w1, w2).

More generally, let w ∈ Bn and define

w1 = (wi(2a−1),2a−1) ∈ Bm1 , 1 6 a 6 m1,

w2 = (wi(2a),2a) ∈ Bm2 , 1 6 a 6 m2.

Informally, w1 is the submatrix of w obtained by selecting the odd-numbered columns of
w together with the corresponding rows of w, and w2 is obtained analogously by selecting
the even-numbered columns. We obtain a map of sets

σ : Bn −→ Bm1 ×Bm2 , w 7−→ (w1, w2), (10)

whose restriction to Cn,0 agrees with σ0. Given w1 ∈ Bm1 and w2 ∈ Bm2 we write w1∗w2 :=
σ−10 (w1, w2) ∈ Cn,0 for the unique even chessboard element in the fibre σ−1(w1, w2).

Our next aim is to give a combinatorial description of the statistic L, akin to the
formula (8) for the Coxeter length function on Bn. To this end, we introduce the following
statistics.
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Definition 4. Let r, s ∈ N and M = (Mij) ∈ Mat(r × s,Z). Let S ⊆ [s] denote the set
of indices of columns of M which contain a unique non-zero entry. Define

a(M) = #{j ∈ S |Mi(j),j = −1, j 6≡ 0 mod (2)},
b(M) = #{(j, j′) ∈ S2 | j < j′, i(j) > i(j′), j 6≡ j′ mod (2)},
c(M) = #{(j, j′) ∈ S2 |Mi(j′),j′ = −1, j < j′, i(j) < i(j′), j 6≡ j′ mod (2)}.

By viewing elements of Bn as signed permutation matrices, these formulae define, in
particular, functions a, b and c on the hyperoctahedral groups.

Example 5. Consider w = [1,−4,−3, 2] ∈ B4. Then a(w) = c(w) = 1 and b(w) = 2.

The following characterisation of L will be used throughout the paper.

Lemma 6. Let w ∈ Bn and σ(w) = (w1, w2). Then

L(w) = a(w) + b(w) + 2c(w) and (11)

L(w) = neg(w1) + (inv + nsp)(w)− (inv + nsp)(w1)− (inv + nsp)(w2) (12)

= neg(w1) + l(w)− l(w1)− l(w2).

Proof. To prove (11), set

Nn = {(i, j) ∈ [±n]20 | |i| < |j|, i < j, i 6≡ j mod (2)}

and
Mn(w) = {(i, j) ∈ Nn | w(i) > w(j)}.

By definition, L(w) = #Mn(w). Let (i, j) ∈ Nn. If |w(i)| > |w(j)| then exactly one of
(i, j) and (−i, j) are in Mn(w). (Note that in this case i 6= 0.) Thus b(w) = #{(i, j) ∈
Mn(w) | |w(i)| > |w(j)|}. If |w(i)| < |w(j)| we distinguish further by the sign of w(j). If
w(j) < 0 then both (i, j) and (−i, j) are in Mn(w). Note that (i, j) = (−i, j) if and only
if i = 0, in which case j is odd. If w(j) > 0 then neither (i, j) nor (−i, j) are in Mn(w).
Thus a(w)+2c(w) = #{(i, j) ∈Mn(w) | |w(i)| < |w(j)|} and L(w) = a(w)+b(w)+2c(w)
as claimed.

We now prove (12). First, it is clear that a(w) = neg(w1). Omitting the parity
conditions in the definitions of the functions b and c given in Definition 4 yields

b̄(M) := #{(j, j′) ∈ S2 | j < j′, i(j) > i(j′)},
c̄(M) := #{(j, j′) ∈ S2 |Mi(j′),j′ = −1, j < j′, i(j) < i(j′)}.

We claim that b̄+2c̄ = inv + nsp on Bn. To show this, we make the following observations.
The function b̄ + 2c̄ counts certain column pairs (j, j′), depending only on the 2 × 2
submatrices determined by (j, j′). The same is true for the function inv + nsp. To establish
the claim thus amounts to checking it on B2. A simple calculation confirms it there, and
thus b̄+ 2c̄ = inv + nsp on Bn. We further observe that

b(w) = b̄(w)− b̄(w1)− b̄(w2) and c(w) = c̄(w)− c̄(w1)− c̄(w2).
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Using (11) this yields

L(w) = a(w) + b(w) + 2c(w)

= a(w) + b̄(w)− b̄(w1)− b̄(w2) + 2(c̄(w)− c̄(w1)− c̄(w2))

= neg(w1) + (inv + nsp)(w)− (inv + nsp)(w1)− (inv + nsp)(w2).

Using, finally, the facts that l = inv + nsp + neg (see (8)) and neg(w) = neg(w1)+neg(w2),
we obtain the second equality in (12).

The unique longest element of Bn is w0 = [−1,−2, . . . ,−n], of length l(w0) = n2. It is
well known that the Coxeter length function l on Bn is well-behaved under multiplication
by w0. More precisely, the equalities

l(ww0) = l(w0w) = l(w0)− l(w)

hold for all w ∈ Bn; cf. [5, Section 1.8]. At least in this respect the statistic L behaves
analogously.

Corollary 7. Let w0 ∈ Bn be the longest element. Then, for all w ∈ Bn, we have

L(ww0) = L(w0w) = L(w0)− L(w).

Moreover, the trivial element in Bn is the only element w ∈ Bn with L(w) = 0, and hence
w0 is the unique element in Bn on which L attains its maximum

(
n+1
2

)
.

Proof. Let w ∈ Bn. Note that w0 = − Idn, where Idn is the n×n identity matrix, so ww0 =
w0w = −w. Obviously neg(w0) = n, and so neg(ww0) = n− neg(w) = neg(w0)− neg(w).
Since l = inv + nsp + neg, we thus have

(inv + nsp)(−w) = (inv + nsp)(w0)− (inv + nsp)(w) = n2 − n− (inv + nsp)(w). (13)

Let σ(w) = (w1, w2) ∈ Bm1×Bm2 , where m1 = bn+1
2
c and m2 = bn

2
c. Using Lemma 6 (12)

together with (13) and the fact that n = m1 +m2, we then obtain

L(ww0) = L(−w)

= neg(−w1) + (inv + nsp)(−w)− (inv + nsp)(−w1)− (inv + nsp)(−w2)

= m1 − neg(w1) + n2 − n− (inv + nsp)(w)− (m2
1 −m1 − (inv + nsp)(w1))

− (m2
2 −m2 − (inv + nsp)(w2))

= m1 + n2 − n−m2
1 +m1 −m2

2 +m2 − L(w) = m1(2m2 + 1)− L(w).

Using Lemma 6 (11) it is easy to see that L(w0) =
(
n+1
2

)
. Clearly m1(2m2 + 1) =

(
n+1
2

)
,

so L(ww0) = L(w0w) = L(w0) − L(w), as asserted. This immediately implies that
L(w0) =

(
n+1
2

)
is the maximal value attained by L. To see that w0 is the unique element

on which L attains its maximum, it suffices to show that L(w) = 0 implies w = 1.
Assume thus that L(w) = 0, for some w ∈ Bn. By Lemma 6 (11), this implies that
a(w) = b(w) = c(w) = 0. Let j ∈ [n− 1]. Then b(w) = 0 implies that i(j) < i(j + 1), and
c(w) = 0 then implies that i(j + 1) = i(j) + 1. Since this is true for all j ∈ [n − 1], we
have either w = 1 or w = s0. But a(s0) = 1, so we must have w = 1.
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As mentioned previously, our approach to proving Conjecture 1 is to show that the
sum in (2) is supported on certain proper subsets of BIc

n . The following is our first result
in this direction, and says that the sum is supported on the even chessboard elements
in BIc

n . Key to its proof is the construction of a suitable sign reversing involution. For
any subset X ⊆ Bn and I ⊆ [n− 1]0, we set

XI := X ∩BI
n.

Lemma 8. For n ∈ N and I ⊆ [n− 1]0,∑
w∈BIcn

(−1)l(w)XL(w) =
∑
w∈CIcn,0

(−1)l(w)XL(w).

Proof. Let w = (wij) ∈ Bn \ Cn,0. Thus there exists i ∈ [n − 1]0 such that j(i) ≡
j(i + 1) mod (2). Let i be minimal with this property and set w∗ := siw. Lemma 6 (11)
implies that L(w) = L(w∗). Moreover, l(w) = l(w∗) ± 1. Since |j(i) − j(i + 1)| > 2,
we have D(w) = D(w∗). Note that (w∗)∗ = w and w 6= w∗. Every element w ∈
BIc

n \ Cn,0 may thus be paired up with a unique, distinct element w∗ ∈ BIc

n \ Cn,0, such
that (−1)l(w)L(w) + (−1)l(w

∗)L(w∗) = 0. This implies the assertion.

3 The case I = {0}
In this section we prove Conjecture 1 in the case where I = {0}, that is Case (1) of

Theorem 2. In this case, the sum in (2) runs over B
[n−1]
n , that is, ascending matrices. Let

ñ := 2[n−1
2

] + 1 be the largest odd integer less than or equal to n. Then, by definition,

fn,{0}(X) =
(n)!∏bn/2c

σ=1 (2σ)
= (1)(3) · · · (ñ).

Proposition 9. Conjecture 1 holds for I = {0}, that is∑
w∈B[n−1]

n

(−1)l(w)XL(w) = (1)(3) . . . (ñ).

Proof. By Lemma 8, it is enough to prove the assertion where the sum runs over C[n−1]n,0 ,
that is ascending even chessboard elements. Assume first that n is odd, and that Propo-
sition 9 is true for n. Since n is odd, we have ñ = ñ+ 1 = n. In this case restriction
of to [±n]0 yields a one-to-one correspondence between elements of C[n]n+1,0 and elements

of C[n−1]n,0 . Indeed, if w ∈ C[n]n+1,0 then wn+1,n+1 = 1. Moreover, it is clear that L and l are
preserved under this correspondence. Hence∑

w∈C[n]n+1,0

(−1)l(w)XL(w) =
∑

w∈C[n−1]
n,0

(−1)l(w)XL(w) = (1)(3) · · · (ñ) = (1)(3) · · · (ñ+ 1).
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Hence, if Proposition 9 is true for all odd n then it is also true for all even n.
We now prove Proposition 9 for odd n by induction in steps of two. For n = 1 we

have f1,{0}(X) = 1−X, and B1 = {1,−1} = B∅
1 , so∑

w∈B∅
1

(−1)l(w)XL(w) = (−1)l(1)XL(1) + (−1)l(−1)XL(−1) = 1−X.

Assume now that n is odd and that Proposition 9 holds for n. We show how every element
in C[n+1]

n+2,0 is obtained from one in C[n−1]n,0 in exactly one of two ways. Let w ∈ C[n−1]n,0 . Then

we may associate to w two elements in C[n+1]
n+2,0, namely

w+ :=

w 1
1

 and w− :=

 w
−1

−1

 .

We claim that all elements in C[n+1]
n+2,0 are of this form. To see this, let v ∈ C[n+1]

n+2,0. If
vn+2,j(n+2) = 1 then j(n+ 2) = n+ 2, since v is ascending. Deleting row n+ 2 and column

n + 2 leaves an element v′ ∈ C[n]n+1,0. Since v ∈ C[n+1]
n+2,0, we must have v′n+1,n+1 = 1, and so

v is of the form w+. If vn+2,j(n+2) = −1 then j(n+ 2) = 1, since v is ascending. Deleting

row n+ 2 and column 1 leaves an element v′ ∈ C[n]n+1,1. Hence wn+1,2 = −1 and v is of the
form w−.

By Lemma 6 (11), we have L(w+) = L(w) and L(w−) = n + 2 + L(w). Moreover,
l(w+) = l(w), and

l(w−) = (neg + nsp)(w−) = 2 + neg(w) + 2n+ 1 + nsp(w) ≡ 1 + l(w) mod (2).

By the induction hypothesis, we obtain∑
w∈C[n+1]

n+2,0

(−1)l(w)XL(w) =
∑

w∈C[n−1]
n,0

(
(−1)l(w

+)XL(w+) + (−1)l(w
−)XL(w−)

)
=

∑
w∈C[n−1]

n,0

(
(−1)l(w)XL(w) + (−1)1+l(w)Xn+2+L(w)

)
=

∑
w∈C[n−1]

n,0

(−1)l(w)XL(w)(1−Xn+2)

= (1)(3) · · · (n)(1−Xn+2) = (1)(3) · · · (n)(ñ+ 2).

We record, without further proof, a corollary of the proof of Proposition 9 on the
structure of ascending even chessboard elements.
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Lemma 10. Let w ∈ C[n−1]n,0 be an ascending even chessboard element and j ∈ bn
2
c. Then

i(2j)− i(2j − 1) is odd. Furthermore, the following hold:

1. If w(2j) > 0 then i(2j) − i(2j − 1) > 0 and w−1(e) < 0 for all e ∈ N such that
i(2j − 1) < e < i(2j). Moreover, w(2j − 1) > 0 unless possibly if i(2j − 1) = 1.

2. If w(2j) < 0 then i(2j − 1)− i(2j) = 1.

Informally, an ascending even chessboard element is built up from pairs of adjacent
columns satisfying one of the following:

(1) Both columns typically contain positive entries, “sandwiching” an even number of
consecutive rows of w, all containing negative entries.

(2) Both columns contain negative entries in adjacent rows of w.

In particular, ascending even chessboard elements have no odd sandwich in the sense of
Definition 15.

4 The case I = [n− 1]0

In this section we prove Conjecture 1 in the case where I = [n − 1]0, that is Case (2)

of Theorem 2. In this case, we have BIc

n = Bn and fn,[n−1]0(X) = (n)!∏0
σ=1(2σ)

= (n)!. By

Lemma 8, the sum defining fn,[n−1]0(X) is supported on even chessboard matrices, that is∑
w∈Bn

(−1)l(w)XL(w) =
∑
w∈Cn,0

(−1)l(w)XL(w).

We now show that the latter sum is supported on diagonal elements. More precisely, let

Dn = {(wij) ∈ Cn,0 | wij = 0 if i 6= j}

denote the subgroup of Cn,0 consisting of diagonal elements.

Lemma 11. ∑
w∈Cn,0

(−1)l(w)XL(w) =
∑
w∈Dn

(−1)l(w)XL(w).

Proof. Observe that w ∈ Cn,0 \ Dn if and only if there exists i ∈ [n− 2]0 such that either
j(i + 1) < min{j(i), j(i + 2)} or j(i + 1) > max{(j(i), j(i + 2)}. Let w ∈ Cn,0 \ Dn and
let i be minimal with respect to this property. Define w◦ := si+1sisi+1w ∈ Cn,0 \ Dn.
Informally, w◦ is obtained from w by interchanging rows i and i + 2 if i is positive, and
by changing the sign in row 2 if i = 0. Clearly l(w◦) ≡ l(w) + 1 mod (2). Using Lemma
6 it is easy to see that L(w◦) = L(w). Note that (w◦)◦ = w and w 6= w◦. Every element
w ∈ Cn,0 \ Dn may thus be paired up with a unique, distinct element w◦ ∈ Cn,0 \ Dn such
that (−1)l(w)L(w) + (−1)l(w

◦)L(w◦) = 0. This implies the assertion.
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Proposition 12. Conjecture 1 holds for I = [n− 1]0, that is∑
w∈Bn

(−1)l(w)XL(w) = (n)!.

Proof. The proof is by induction on n. The assertion holds trivially for n = 1. Assume
now that the assertion is true for some n− 1 > 1. Given v ∈ Dn−1 we define

v+ :=

(
v

1

)
∈ Dn and v− :=

(
v
−1

)
∈ Dn.

Using the formula l = inv + neg + nsp (cf. (8)) and Lemma 6 (11) we see that

l(v+) = l(v), l(v−) = l(v) + 2n− 1,

L(v+) = L(v), L(v−) = L(v) + n.

Hence, by Lemma 8, Lemma 11 and the induction hypothesis, we obtain

∑
w∈Bn

(−1)l(w)XL(w) =
∑
w∈Cn,0

(−1)l(w)XL(w) =
∑
w∈Dn

(−1)l(w)XL(w)

=
∑

v∈Dn−1

(
(−1)l(v

+)XL(v+) + (−1)l(v
−)XL(v−)

)
=

∑
v∈Dn−1

(
(−1)l(v)XL(v) + (−1)l(v)+2n−1XL(v)+n

)
=

∑
v∈Dn−1

(−1)l(v)XL(v)(1−Xn) = (n− 1)!(1−Xn) = (n)!.

5 The case n even and I even

In this section we push further the ideas that led to the proof of Lemma 8. There we proved
that the relevant sums over BIc

n are supported over chessboard matrices CIcn,0. In the proof
we described a sign reversing involution ∗ on Bn \ Cn,0 such that D(w) = D(w∗), L(w) =
L(w∗) and l(w) 6≡ l(w∗) mod (2) for all w ∈ Bn \ Cn,0. Consequently, these elements’
contributions to the sums in question cancelled each other out. A similar idea was used
in the proof of Lemma 11. In the current section we further restrict the “supporting
sets” CIcn,0 and show how, under suitable conditions, elements outside these sets may be
cancelled by means of a sign reversing involution; see Definition 17. In Sections 5.2 and
5.3 we establish additivity results for L with respect to two parabolic factorisations. In
conjunction, they allow us to establish Conjecture 1 in the case where n is even and
I ⊆ [n− 1]0 ∩ 2Z, that is Case (3) of Theorem 2, in Proposition 25.
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5.1 Parabolic factorisations and supporting sets

Recall that we may factorise any element w ∈ Bn as w = w[n−1]w[n−1], where w[n−1] ∈
B

[n−1]
n is ascending, and w[n−1] ∈ 〈s1, . . . , sn−1〉 ∼= Sn; cf. (6). Let w ∈ Cn,0 be an even

chessboard element. Since Cn is a group containing Cn,0 as a subgroup, there are three
possibilities for this factorisation of w:

1. w[n−1], w[n−1] ∈ Cn,0,

2. w[n−1], w[n−1] ∈ Cn,1,

3. w[n−1], w[n−1] ∈ Bn \ Cn.

Definition 13. Let
En = {w ∈ Cn,0 | w[n−1], w[n−1] ∈ Cn,0}

denote the set of even chessboard elements whose factorisation is into even chessboard
elements. Similarly, let

Mn = {w ∈ Cn,0 | (w[n−1], w[n−1] ∈ Cn,0) ∨ (w[n−1], w[n−1] ∈ Cn,1)}

denote the set of even chessboard elements whose factorisation is into chessboard elements.

Note that En ⊆Mn ⊆ Cn,0 and that Mn = En if n is odd.
Some of the key features of the case where n and I are even are recorded in the

following lemma. A subset I = {i1, i2, . . . , il}< ⊆ [n− 1]0∩ 2Z is called even. We say that
w is of even descent type if I = D(w) is even.

Lemma 14. Let n be even and w ∈ Cn ∩ Sn be a chessboard element in Sn. Suppose that
D(w) is even, and write σ(w) = (w1, w2) ∈ Sn/2 × Sn/2. Then w ∈ Cn,0 and w1 = w2 ∈
S
(I/2)c

n/2 . In particular, for all even I ⊆ [n− 1]0,

MIc

n = EIcn .

Moreover, lSn(w) = 4lSn/2(w1).

Informally, Lemma 14 states that w is a “block permutation matrix”, composed of
2× 2 identity matrices.

Proof. Let w = (wij), and recall that wi,j(i) denotes the non-zero entry in the i-th row.
Assume first that w ∈ Cn,1. Then i+j(i) is odd for all i ∈ [n], so j(1) is even. This implies
that w has a descent at j(1)− 1, which is impossible since D(w) is even. Thus w ∈ Cn,0,
and i + j(i) is even for all i ∈ [n]. Suppose that j(2) 6 j(1) − 1 or j(2) > j(1) + 3.
Then i(j(2)− 1) > 3, so there is a descent at j(2)− 1, contradicting the assumption that
D(w) is even. Thus j(2) = j(1) + 1. Continuing the same argument for the 2i+ 1-th and
2i+ 2-th row, for each i ∈ [n

2
− 1], we obtain

j(2i+ 2) = j(2i+ 1) + 1, for all i ∈ [
n

2
− 1]0.
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By definition (10) of the map σ this means that w1 = w2 ∈ Sn/2.
Furthermore, w has a descent at 2a if and only if w1 has a descent at a, for all a ∈ [n−1].

Hence w1 ∈ S
(I/2)c

n/2 . This implies that w ∈ Mn if and only if w ∈ En. Indeed, if

w[n−1] ∈ Cn, then we have shown that w[n−1] ∈ Cn,0, and so w[n−1] ∈ Cn,0, and hence
w ∈ En. Thus MIc

n = EIcn for all even I. The statement about the lengths is clear.

Definition 15. Let w = (wij) ∈ Bn. A pair of natural numbers (r, h), where r ∈ [n− 2]
and h ∈ [n−1] is odd, is said to be an odd sandwich in w if it satisfies one of the following
conditions:

1. wr,j(r) = wr+h+1,j(r+h+1), and wr,j(r) 6= wr+i,j(r+i) for all i ∈ [h],

2. r = 1, w1,j(1) = w1+i,j(1+i) for all i ∈ [h], and w1,j(1) 6= w1+h+1,j(1+h+1).

We say that w has an odd sandwich if there exists an odd sandwich in w.

Recall that s0 ∈ S is the Coxeter generator such that, for any w ∈ Bn, the matrix s0w
is obtained by changing the sign of w1,j(1). Informally speaking, w has an odd sandwich if
and only if in either w or s0w there exists a row containing a 1, followed by an odd number
of consecutive rows containing −1s, followed by a row containing a 1, or if there exists
a row containing a −1, followed by an odd number of consecutive rows containing 1s,
followed by a row containing a −1.

Lemma 16. Let w ∈ Cn,0. Then w ∈Mn if and only if w has no odd sandwich.

Proof. Write w = (wij) = w[n−1]w[n−1]. Then w has the same row pattern as w[n−1];
cf. (9). Moreover, w ∈ Mn if and only if w[n−1] ∈ Cn. To prove the lemma, it therefore

suffices to prove that for any v ∈ B[n−1]
n we have v ∈ C[n−1]n if and only if v has no odd

sandwich.
Assume that v ∈ C[n−1]n and that v has an odd sandwich (r, h). It is easily seen

that the smallest integer i ∈ [n − 1] such that vi,jv(i) 6= vi+1,jv(i+1) is odd. Since v is
ascending, we have |jv(r) − jv(r + h + 1)| = 1. But since h is odd, we have r + jv(r) 6≡
r + h + 1 + jv(r + h + 1) mod (2), and so v 6∈ Cn; contradiction. Thus v ∈ Cn−1n implies
that v does not have an odd sandwich.

Conversely, assume that v ∈ B[n−1]
n \Cn. This means that there exists an integer j ∈ [n],

such that iv(j)+j 6≡ iv(j+1)+j+1 mod (2). (Informally, the non-zero entries in columns
j and j+1 are on chessboard squares of different colours.) In particular, h := |iv(j)−iv(j+
1)| − 1 is odd. Let r := min{iv(j), iv(j + 1)}, so that r+ h+ 1 = max{iv(j), iv(j + 1)}. If
vr,j(r) = vr+h+1,j(r+h+1) then, because v is ascending, vr,j(r) 6= vr+s,j(r+s), for all s ∈ [h], so
v has an odd sandwich (r, h). If vr,j(r) 6= vr+h+1,j(r+h+1) then, again because v is ascending,

r = 1, and so v has an odd sandwich (1, h). In either case v ∈ B[n−1]
n \ Cn implies that v

has an odd sandwich.

Let w ∈ Cn,0 \ Mn. By Lemma 16 this means that w has an odd sandwich. Let
(r, h) be the topmost odd sandwich in w, that is the unique odd sandwich in w such
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that if (r′, h′) is another odd sandwich in w, then r 6 r′. In the following we define an
element w∨ ∈ Cn,0 \Mn with the property that L(w) = L(w∨), the positive parts of the
descent sets D(w) and D(w∨) agree and the parities of l(w) and l(w∨) differ. For this

end, we factorise w = w[n−1]w[n−1] with w[n−1] ∈ B
[n−1]
n and w[n−1] ∈ (Bn)[n−1] ∼= Sn.

Since w[n−1] is ascending, the non-zero entries in rows r and r+h+ 1 must lie in adjacent
columns; in other words, if j := jw[n−1](r) and j′ := jw[n−1](r + h + 1) then |j − j′| = 1.
Set µ = min{j, j′} ∈ [n].

Definition 17. Given w ∈ Cn,0 \Mn with topmost odd sandwich (r, h) and µ as above.
Set

w∨ = w[n−1]sµw[n−1] ∈ Cn,0 \Mn.

Informally, w∨ is obtained from w = w[n−1]w[n−1] from transposing columns µ and
µ+ 1 in w[n−1] or, equivalently, transposing rows µ and µ+ 1 in w[n−1]. The element w∨

may also be thought of as obtained from w by interchanging columns r and r + h + 1,
deliminating the topmost odd sandwich in w. Before we prove that the involution w 7→ w∨

on Cn,0 \Mn has the desired properties, we consider an example.

Example 18. For n = 3, let

w =

 −1
−1

1

 =

 −1
−1

1

 1
1

1

 = w[2]w[2] ∈ C{0,2}3,0 \M3,

with l(w) = 5, L(w) = 3 and D(w) = {1}. The unique – and therefore topmost – odd
sandwich in w is (r, h) = (1, 1), involving the first and last row. Clearly µ = min{2, 3} = 2,
and thus

w∨ =

 −1
−1

1

 s2

 1
1

1

 =

−1
−1

1

 ,

with l(w∨) = 4, L(w∨) = 3 and D(w∨) = {0, 1}.

Lemma 19. Let w = (wij) ∈ Cn,0 \Mn with topmost odd sandwich (r, h). Then D(w) \
{0} = D(w∨)\{0}, and if (r, h) satisfies Definition 15 (1) then D(w) = D(w∨). Moreover,

L(w) = L(w∨) and l(w) = l(w∨)± 1.

Proof. We first prove the statements about the descent types. Let w∨ = w[n−1]sµw[n−1] as
above. Since w−1[n−1](µ) ≡ w−1[n−1](µ+1) mod (2) the non-zero entries of w[n−1] in rows µ and
µ + 1 are not in adjacent columns. Thus, transposing rows µ and µ + 1 does not change
the descent type of w[n−1], that is, D(w[n−1]) = D(sµw[n−1]). For any element u ∈ Bn, we
have D(u)\{0} = D(u[n−1]). Since (w∨)[n−1] = sµw[n−1], we get D(w)\{0} = D(w[n−1]) =
D(sµw[n−1]) = D(w∨)\{0}. If (r, h) satisfies Definition 15 (1) then wr,j(r) = wr+h+1,j(r+h+1)

so 0 ∈ D(w) if and only if 0 ∈ D(w∨) and thus D(w) = D(w∨).
We now prove that L(w) = L(w∨). Let jmin := min{j(r), j(r + h + 1)} and jmax :=

max{j(r), j(r+h+1)}. Then jmin ≡ jmax mod (2), since w ∈ Cn,0 and |i(jmax)− i(jmin)| =
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h+1 is even. We write w = (wij) and w∨ = (w∨ij), where i, j,∈ [n]. Consider the (h+2)×n-
submatrices

v := (wij) and v∨ := (w∨ij), where r 6 i 6 r + h+ 1, j ∈ [n].

Recall that v and v∨ are obtained from one another by interchanging their first and last
rows. Using the fact that L = a + b + 2c (cf. Lemma 6 (11)), and noting that w and
w∨ coincide outside of the rows i such that r 6 i 6 r + h + 1, we see that in order to
prove that L(w) = L(w∨), it is sufficient to prove that (a+ b+ 2c)(v) = (a+ b+ 2c)(v∨).
To prove the latter it is sufficient to show that for any column j in v, the contribution
to L from the three columns j,jmin, jmax in v is equal to the contribution to L from the
three columns j,jmin, jmax in v∨. As L = a + b + 2c and a(v) = a(v∨), it is enough to
consider the contribution to b and c. Let j be a non-zero column in v, that is j ∈ [n] such
that r 6 i(j) 6 r + h + 1. Since we only need to consider the contribution to b and c
from the columns j,jmin, jmax, we may assume that j 6≡ jmin mod (2), which is equivalent
to j 6≡ jmax mod (2), since jmin ≡ jmax mod (2). There are then three possible cases:
j < jmin, jmin < j < jmax, and jmax < j, respectively. In the sequel we consider only the
case that wr,j(r) = wr+h+1,j(r+h+1) (cf. Definition 15 (1)), omitting similar arguments for
the case that wr,j(r) 6= wr+h+1,j(r+h+1) (cf. Definition 15 (2)).

Consider the first case, j < jmin. Suppose that wi(jmin),jmin
= wi(jmax),jmax = 1. If

i(jmin) < i(jmax), the total contribution to b + 2c from the column pairs (j, jmin) and
(j, jmax) is 1. If i(jmin) > i(jmax), the total contribution to b + 2c from the column pairs
(j, jmin) and (j, jmax) is also 1. Suppose on the other hand that wi(jmin),jmin

= wi(jmax),jmax =
−1. If i(jmin) < i(jmax), the total contribution to b + 2c from the column pairs (j, jmin)
and (j, jmax) is 3. If i(jmin) > i(jmax), the total contribution to b + 2c from the column
pairs (j, jmin) and (j, jmax) is also 3. Thus (a + b + 2c)(v) = (a + b + 2c)(v∨) in the first
case.

Next, consider the second case, jmin < j < jmax. Suppose that wi(jmin),jmin
= wi(jmax),jmax

= 1. If i(jmin) < i(jmax), the total contribution to b + 2c from the column pairs (jmin, j)
and (j, jmax) is 2. If i(jmin) > i(jmax), the total contribution to b+2c from the column pairs
(jmin, j) and (j, jmax) is also 2. Suppose on the other hand that wi(jmin),jmin

= wi(jmax),jmax =
−1. If i(jmin) < i(jmax), the total contribution to b + 2c from the column pairs (jmin, j)
and (j, jmax) is 2. If i(jmin) > i(jmax), the total contribution to b + 2c from the column
pairs (jmin, j) and (j, jmax) is also 2. Thus (a+ b+ 2c)(v) = (a+ b+ 2c)(v∨) in the second
case.

Finally, consider the third case, jmax < j. Suppose that wi(jmin),jmin
= wi(jmax),jmax = 1.

If i(jmin) < i(jmax), the total contribution to b + 2c from the column pairs (jmin, j) and
(jmax, j) is 1. If i(jmin) > i(jmax), the total contribution to b + 2c from the column pairs
(jmin, j) and (jmax, j) is also 1. Suppose on the other hand that wi(jmin),jmin

= wi(jmax),jmax =
−1. If i(jmin) < i(jmax), the total contribution to b + 2c from the column pairs (jmin, j)
and (jmax, j) is 2. If i(jmin) < i(jmax), the total contribution to b + 2c from the column
pairs (jmin, j) and (jmax, j) is 1. If i(jmin) > i(jmax), the total contribution to b+ 2c from
the column pairs (jmin, j) and (jmax, j) is also 2. Thus (a+ b+ 2c)(v) = (a+ b+ 2c)(v∨)
in the third case.
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To finish the proof of the lemma, recall from (7) that for any g ∈ Bn, and any s ∈ S,
we have l(g) = l(g[n−1]) + l(g[n−1]), and l(sg) = l(g)± 1. Thus

l(w∨) = l(w[n−1]) + l(sµw[n−1]) = l(w[n−1]) + l(w[n−1])± 1 = l(w)± 1.

Corollary 20. Let n ∈ N and I ⊆ [n− 1]0. Then∑
w∈B(I0)

c

n

(−1)l(w)XL(w) =
∑

w∈M(I0)
c

n

(−1)l(w)XL(w). (14)

Assume that either n is odd or both n and I ⊆ [n− 1]0 are even. Then∑
w∈B(I0)

c

n

(−1)l(w)XL(w) =
∑

w∈E(I0)
c

n

(−1)l(w)XL(w).

Proof. Without loss of generality we may assume that 0 ∈ I, so that I = I0. By Lemma 8
the sum over BIc

n is supported on CIcn,0. Lemma 19 asserts that for every w ∈ CIcn,0 \Mn

there exists a unique w∨ ∈ CIcn,0 \ Mn such that (−1)l(w)XL(w) + (−1)l(w
∨)XL(w∨) = 0.

Moreover, D(w) \ {0} = D(w∨) \ {0}, so w ∈ BIc

n if and only if w∨ ∈ BIc

n . Hence the sum
over BIc

n is supported on MIc

n .
When n is even and I ⊆ [n − 1]0 is even, Lemma 14 states that MIc

n = EIcn , whence
the second equality. When n is odd, it follows from the first, as Mn = En.

Remark 21. Example 18 illustrates that the sign reversing involution ∨ on Cn,0 \ Mn

does not, in general, preserve the descent type. This is in contrast to the involution ∗
defined in the proof of Lemma 8. The weaker statement (14) is, however, sufficient for
our application in the proof of Proposition 25.

5.2 A first additivity result for L

We now consider how the statistic L behaves with respect to the parabolic factorisation
w = w[n−1]w[n−1]. For an arbitrary element w ∈ Cn,0, it is not necessarily true that L
is additive with respect to this factorisation, that is L(w) = L(w[n−1]) + L(w[n−1]). A
counter-example is given by

w =

(
1
−1

)
=

(
1

−1

)(
1

1

)
= w[1]w[1] ∈M2 \ E2,

where L(w) = 2, L(w[1]) = 2 and L(w[1]) = 1.
The following result shows that the situation improves when we assume that w ∈ En.

Proposition 22. Suppose that w ∈ En. Then

L(w) = L(w[n−1]) + L(w[n−1]).
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Proof. Since w ∈ En, we have w[n−1], w[n−1] ∈ Cn,0. Let w = w1 ∗ w2 and w[n−1] =
(w[n−1])1 ∗ (w[n−1])2. We claim that

w[n−1] = (w1)
[n−1] ∗ (w2)

[n−1], (15)

that is (w[n−1])1 = (w1)
[n−1] and (w[n−1])2 = (w2)

[n−1]. Indeed, the ascending matrix w[n−1]

is obtained from w by a permutation of columns, and since both w[n−1] and w are chess-
board elements, each column of w is moved an even amount to obtain the corresponding
column of w[n−1]. Clearly, w[n−1] has the same row pattern as w; cf. (9). For any v ∈ Cn,0,
with v = v1 ∗ v2, every non-zero entry at (i, j) is either equal to the entry at ( i+1

2
, j+1

2
) in

v1, if i (and therefore j) is odd, or is equal to the entry at ( i
2
, j
2
) in v2, if i (and therefore

j) is even. The row pattern of (w[n−1])1 is therefore the same as that of w1, and the row
pattern of (w[n−1])2 is the same as that of w2. Any descent in (w[n−1])1 or (w[n−1])2 would
give rise to a descent in w[n−1], so the matrices (w[n−1])1 and (w[n−1])2 must be ascending.
Thus (w[n−1])1 = (w1)

[n−1] and (w[n−1])2 = (w2)
[n−1], establishing (15).

In a similar way, we let w[n−1] = (w[n−1])1 ∗ (w[n−1])2, and we claim that

w[n−1] = (w1)[n−1] ∗ (w2)[n−1], (16)

that is (w[n−1])1 = (w1)[n−1] and (w[n−1])2 = (w2)[n−1]. Indeed, σ0 is a homomorphism,
and so

(w1, w2) = σ0(w) = σ0(w
[n−1]w[n−1]) = σ0(w

[n−1])σ0(w[n−1])

= ((w[n−1])1(w[n−1])1, (w
[n−1])2(w[n−1])2),

and thus w1 = (w[n−1])1(w[n−1])1 and w2 = (w[n−1])2(w[n−1])2. Using (15) we obtain

w1 = (w1)
[n−1](w1)[n−1] = (w[n−1])1(w1)[n−1] = (w[n−1])1(w[n−1])1,

whence (w[n−1])1 = (w1)[n−1]. The equality (w[n−1])2 = (w2)[n−1] is proved in the same
way. This proves (16).

Recall that l(w) = l(w[n−1]) + l(w[n−1]); see (7). Since inv + nsp = l − neg (see (8))
and neg(w) = neg(w[n−1]) + neg(w[n−1]) = neg(w[n−1]), this implies that

(inv + nsp)(w) = (inv + nsp)(w[n−1]) + (inv + nsp)(w[n−1]).

Lemma 6 (12) and the equalities (15) and (16) now imply that

L(w[n−1]) + L(w[n−1]) =

neg((w1)
[n−1]) + (inv + nsp)(w[n−1])− (inv + nsp)((w1)

[n−1])− (inv + nsp)((w2)
[n−1])

+ neg((w1)[n−1]) + (inv + nsp)(w[n−1])− (inv + nsp)((w1)[n−1])− (inv + nsp)((w2)[n−1])

= neg(w1) + (inv + nsp)(w)− (inv + nsp)(w1)− (inv + nsp)(w2) = L(w).
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5.3 A second additivity result for L

We now consider how the statistic L behaves with respect to parabolic factorisations of
the form w = w[i−1]0w[i−1]0 , where i ∈ [n − 1]. Even if w ∈ En, it is not necessarily
true that L(w) = L(w[i−1]0) + L(w[i−1]0). A counter-example is given by i = 2 and
w = [−5, 2, 1,−4, 3] ∈ E5. Here D(w) = {0, 2, 3} and L(w) = 7. But L(w{0,1}) =
L([2, 5, 1,−4, 3]) = 6 and L(w{0,1}) = L([−2, 1, 3, 4, 5]) = 2.

The following result establishes additivity of L under this kind of parabolic factorisa-
tion under additional conditions.

Proposition 23. Suppose that n is even and w ∈ En has even descent type D(w). Let
e ∈ [n − 1] be an even integer such that e 6 min{(D(w) ∪ {n}) \ {0}}, that is w(1) <
· · · < w(e). Then

L(w) = L(w[e−1]0) + L(w[e−1]0).

Proof. Write the factorisation w = w[e−1]0w[e−1]0 as

w =

 A M

 =

 B M




A 0

0 Idn−e

 = w[e−1]0w[e−1]0 ,

where A ∈ Mat(n × e,Z) comprises the first e columns of w, M ∈ Mat(n × (n − e),Z)
comprises the last n− e columns and Idn−e denotes the identity matrix of size n− e. We
now describe the matrices B and A. Define

f : [e] −→ [e], κ 7→ #{(r, s) ∈ [n]× [e] | wrs 6= 0 ∧ r 6 i(κ)}.

Informally speaking, f enumerates the rows in A containing a non-zero entry, so that for
κ ∈ [e], the non-zero entry of w in column κ lies in the f(κ)-th non-zero row in A. Since
each column of A contains exactly one non-zero entry, the function f is a bijection. Given
this definition, B is the n× i-matrix whose (iw(j), f(j))-entry is 1 for j ∈ [e], and all other
entries zero, and A is the i× i ascending matrix whose (f(j), j)-entry is wiw(j),j.

Recall the formula L(w) = a(w) + b(w) + 2c(w) given in Lemma 6 (11). Using the
assumptions that n and D(w) are even, we will show that the functions a,b and c are
each additive over the factorisation w = w[e−1]0w[e−1]0 . Clearly a(w) = a(A) + a(M),
a(w[e−1]0) = a(A) = a(A) and a(w[e−1]0) = a(M), so a is additive. It is easy to verify that
b(w[e−1]0) = b(A) = b(A), c(w[e−1]0) = c(A) = c(A) and that b(B) = c(B) = 0. Hence the
respective additivity of b and c is equivalent to

b(w)− b(A)− b(M) = b(w[e−1]0)− b(B)− b(M) (17)

and

c(w)− c(A)− c(M) = c(w[e−1]0)− c(B)− c(M). (18)
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These two equations can be interpreted in the following way. Let V ∈ Mat(n,Z) be a
matrix with at most one non-zero entry in each column, such as w, w[e−1]0 or w[e−1]0 .
Suppose that V has the form

V = (V1 | V2) ,
where V1 ∈ Mat(n×e,Z) consists of the first e columns of V , and V2 ∈ Mat(n×(n−e),Z)
consists of the remaining n− e columns. Then, by Definition 4,

b(V )− b(V1)− b(V2) = #{(j1, j2) ∈ [e]× [n− e] | iV (j1) > iV (j2), j1 6≡ j2 mod (2)}

and

c(V )− c(V1)− c(V2)
= #{(j1, j2) ∈ [e]× [n− e] | ViV (j2),j2 = −1, iV (j1) < iV (j2), j1 6≡ j2 mod (2)}

Informally, the value b(V )−b(V1)−b(V2) is equal to the contribution to b given by column
pairs (j1, j2) such that j1 denotes a column of V1 and j2 denotes a column of V2. Similar
considerations hold for the function c.

To prove the equations (17) and (18) it therefore suffices to establish a bijection ϕ :
[e]→ [e], inducing a bijection between the columns of A and the columns of B such that

j ≡ ϕ(j) mod (2), (19)

iw(j) > iw(k)⇐⇒ iB(ϕ(j)) > iw(k) for all j ∈ [e], e < k 6 n. (20)

We consider w as obtained from the ascending matrix w[n−1] by column permutations,
given by w[n−1]. Since both n and D(w) are even, Lemma 14 implies that w[n−1] =
(w[n−1])1 ∗ (w[n−1])1. This implies that w is obtained from w[n−1] by permuting pairs of
adjacent columns of w[n−1], indexed by pairs of the form (2j − 1, 2j), for j ∈ [n/2]. Note
that w[n−1] ∈ Cn,0. We may therefore apply Lemma 10 to the column pairs of w[n−1],
and any statement about these column pairs remains true for the column pairs of the
submatrix A of w. Assume that w[n−1] is non-trivial; otherwise, there is nothing to prove.
To define the bijection ϕ, we consider a pair (2j− 1, 2j) for j ∈ [e/2]. We distinguish two
cases:

Case w(2j) > 0. Here Lemma 10 implies that f(2j) ≡ 0 mod (2) and f(2j − 1) ≡
1 mod (2), and in this case we set

ϕ(2j − 1) = f(2j − 1), ϕ(2j) = f(2j).

Case w(2j) < 0. Here Lemma 10 implies that w(2j − 1) = w(2j) − 1 and thus
f(2j − 1) = f(2j) + 1. Therefore, if f(2j − 1) ≡ 1 mod (2) then f(2j) ≡ 0 mod (2), and
in this case we set

ϕ(2j − 1) = f(2j − 1), ϕ(2j) = f(2j).

On the other hand, if f(2j − 1) 6≡ 1 mod (2) then f(2j) 6≡ 0 mod (2). In other words, in
this case we have f(2j − 1) ≡ 0 mod (2) and f(2j) ≡ 1 mod (2), and we set

ϕ(2j − 1) = f(2j), ϕ(2j) = f(2j − 1).
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Note that this last case is the only one where ϕ does not agree with f .
By definition the bijection ϕ satisfies condition (19). Moreover, in the cases where

ϕ(j) = f(j) we have iB(ϕ(j)) = iB(f(j)) = iw(j), since, as noted previously, the non-zero
entry in column f(j) in the matrix B lies in row iw(j). Thus, condition (20) is satisfied
whenever ϕ(j) = f(j). Finally, in the case where (2j − 1, 2j) is a column pair such that
ϕ(2j − 1) = f(2j) and ϕ(2j) = f(2j − 1), we have f(2j − 1) = f(2j) + 1, so

iB(ϕ(2j)) + 1 = iB(f(2j − 1)) + 1 = iw(2j − 1) + 1 = iw(2j) = iB(f(2j)) = iB(ϕ(2j − 1)).

Thus, for k such that e < k 6 n, we have

iw(2j − 1) > iw(k)⇐⇒ iw(2j) > iw(k)

⇐⇒ iB(ϕ(2j − 1)) > iw(k)⇐⇒ iB(ϕ(2j)) > iw(k).

Therefore condition (20) is satisfied also in this case.
We have thus established the existence of a bijection ϕ with the required properties,

and this finishes the proof.

5.4 Proof of Case (3) of Theorem 2

For a, b ∈ N0 such that a > b, the X-binomial coefficient is defined as(
a

b

)
X

=
(a)!

(a− b)!(b)!
∈ Z[X].

More generally, for n ∈ N and I = {i1, . . . , il}< ⊆ [n− 1]0, the X-multinomial coefficient
is (

n

I

)
X

=

(
n

il

)
X

(
il
il−1

)
X

· · ·
(
i2
i1

)
X

∈ Z[X].

It is well known that ∑
w∈SIcn

X l(w) =

(
n

I

)
X

; (21)

see, for instance, [9, Proposition 1.3.17].

Lemma 24. Suppose that n and I ⊆ [n− 1]0 are even. Then∑
w∈SIcn

(−1)l(w)XL(w) =

(
n/2

I/2

)
X2

.

Proof. By arguing as in the proof of Lemma 8, we may argue that the sum is supported on
the set SI

c

n ∩Cn,0. Let w ∈ SIcn ∩Cn,0 and write w = w1 ∗w2. By Lemma 14 we have w1 =

w2 ∈ S(I/2)c

n/2 and lSn(w) = 4lSn/2(w1). By Lemma 6 (12) we have L(w) = l(w) − 2l(w1).
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(Here and in the sequel we suppress subscripts in the notation for various Coxeter length
functions.) Using (21) we obtain∑

w∈SIcn

(−1)l(w)XL(w) =
∑

w∈SIcn ∩Cn,0

(−1)l(w)X l(w)−2l(w1)

=
∑

w1∈S(I/2)c

n/2

(−1)4l(w1)X4l(w1)−2l(w1)

=
∑

w1∈S(I/2)c

n/2

X2l(w1) =

(
n/2

I/2

)
X2

.

Proposition 25. Conjecture 1 holds when both n and I ⊆ [n − 1]0 are even, that is, in
this case ∑

w∈BIcn

(−1)l(w)XL(w) =

(
n/2

I/2

)
X2

(1)(3) · · · (n− 1)

(1)(3) · · · (i1 − 1)
.

Proof. By Corollary 20, we have∑
w∈B(I0)

c

n

(−1)l(w)XL(w) =
∑

w∈E(I0)
c

n

(−1)l(w)XL(w).

Recall that i1 = min(I ∪ {n}). By the two additivity results for L established in Propo-
sitions 22 and 23, this may be written as

∑
w∈B(I0)

c

n

(−1)l(w)XL(w) =

 ∑
w∈B[n−1]

n

(−1)l(w)XL(w)

∑
w∈SIcn

(−1)l(w)XL(w)


=

 ∑
w∈BIcn

(−1)l(w)XL(w)


 ∑
w∈B[i1−1]

i1

(−1)l(w)XL(w)

 .

The proposition now follows from Proposition 9 (twice) and Lemma 24.
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