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Abstract

Wilf partitions are partitions of an integer n in which all nonzero multiplicities
are distinct. On his webpage, the late Herbert Wilf posed the problem to find “any
interesting theorems” about the number f(n) of those partitions. Recently, Fill,
Janson and Ward (and independently Kane and Rhoades) determined an asymptotic
formula for log f(n). Since the original motivation for studying Wilf partitions
was the fact that the operation that interchanges part sizes and multiplicities is
an involution on the set of Wilf partitions, they mentioned as an open problem
to determine a similar asymptotic formula for the number of fixed points of this
involution, which we denote by F (n). In this short note, we show that the method
of Fill, Janson and Ward also applies to F (n). Specifically, we obtain the asymptotic
formula logF (n) ∼ 1

2 log f(n).

1 Introduction

By a Wilf partition, we mean an integer partition in which all nonzero multiplicities
are distinct. On his webpage, the late Herbert Wilf posted a set of unsolved problems,
among them the task to find “any interesting theorems” about the number f(n) of such
partitions. An important contribution to this problem was made recently, when Fill,
Janson and Ward [3] (and independently Kane and Rhoades [6]) proved an asymptotic
formula for log f(n):

log f(n) ∼ 1

3
(6n)1/3 log n. (1)

Kane and Rhodes even provide the following more precise asymptotic formula:

log f(n) =
1

3
(6n)1/3 log n− 1

2
(6n)1/3 log log n+O(n1/3).
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Wilf’s motivation for considering partitions with distinct multiplicities was the fact that
the operation that interchanges parts and multiplicities is an involution on the set of all
such partitions. For example, if we consider the Wilf partition

5 + 5 + 4 + 3 + 3 + 3 + 1 + 1 + 1 + 1 + 1 + 1

of 29, then by interchanging parts and multiplicities, we get a new Wilf partition of 29:

6 + 3 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1.

Some Wilf partitions are fixed points of this involution, such as

6 + 4 + 4 + 3 + 3 + 3 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1, (2)

which is mapped to itself when parts and multiplicities are interchanged. We are interested
in the number F (n) of such fixed points, in particular asymptotics for it, which was left
as an open problem by Fill, Janson and Ward. The first few terms of the sequences f(n)
(that counts all Wilf partitions) and F (n) (Sloane’s A098859 and A217605 respectively [1])
are given in the following table:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
f(n) 1 1 2 2 4 5 7 10 13 15 21 28 31 45 55 62 82 105
F (n) 1 0 0 2 1 1 0 1 1 3 0 3 3 3 0 4 3 2

Table 1: Values of F (n) for small n.

The behaviour of F (n) is quite erratic, much more so than for f(n) (which is conjec-
tured to be increasing). However, there is still an asymptotic formula for logF (n), as we
show in the following:

Theorem 1. The number F (n) of fixed points of the involution on Wilf partitions satisfies

logF (n) ∼ 1

2
log f(n) ∼ 1

6
(6n)1/3 log n. (3)

The proof of this theorem follows very closely the ideas of Fill, Janson and Ward. It
procedes in two stages: first we determine an upper bound for F (n), then we construct
a set of fixed points of the Wilf involution that is large enough to provide us with a
matching lower bound. It is perhaps interesting to compare (3) to a similar combinatorial
result: involutions are permutations with only 1- and 2-cycles, much like the fixed points
of Wilf’s involution, where the part-multiplicity pairs form 1- and 2-cycles. If I(n) is the
number of involutions, then

log I(n) ∼ 1

2
log n! ∼ n

2
log n,
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see [4, Example VIII.5]. Thus when I(n) is compared to the total number n! of permu-
tations, one encounters a similar factor of 1

2
. This might even explain heuristically why

the factor 1
2

is present in our result: the key to the proof by Kane and Rhoades in [6]
is to split a Wilf partition into a set of parts, a set of multiplicities, and a permutation
assigning parts to multiplicities. The number of possible permutations gives the main
contribution to the asymptotic formula, and the same is true in our situation, where
these permutations have to be involutions.

2 Proof of the main theorem

2.1 The upper bound

We represent partitions as sequences of part-multiplicity pairs (pi,mi) – each such pair
represents mi terms in the partition that are equal to pi. If a Wilf partition is a fixed
point of our involution and the part-multiplicity pair (pi,mi) occurs in it, then so does
the pair (mi, pi).

We split such a Wilf partition into two parts:

• The part that consists of all part sizes that are equal to their multiplicities, i.e., all
part-multiplicity pairs (pi,mi) such that pi = mi.

• The rest, which consists of pairs of part-multiplicity pairs of the form (pi,mi) and
(mi, pi) with mi 6= pi.

For instance, the partition in (2) is split into the part-multiplicity pair (3, 3) and the rest,
which consists of the pairs (6, 1), (4, 2), (2, 4) and (1, 6). The first part is equivalent to
a partition of some number k 6 n into distinct squares. Let q(k) denote the number
of partitions of k into squares. It is known (as a special case of the Meinardus scheme,
see [2, Chapter 6]) that

log q(k) ∼ Ck1/3

for a constant C = 3(
√
πζ(3/2)/4)2/3. If we take the remaining part-multiplicity pairs

(pi,mi) and remove all those for which pi < mi, then we obtain a Wilf partition of
(n− k)/2. Moreover, as it was shown by Fill, Janson and Ward, a Wilf partition of n can
have at most (6n)1/3 distinct parts: if there are r distinct parts, then the multiplicities
are at least 1, 2, . . . , r, and so we have

n > 1 · r + 2 · (r − 1) + . . .+ r · 1 =
r(r + 1)(r + 2)

6
>
r3

6
.

Since we are cutting in half, the remaining Wilf partition has at most 1
2
(6(n−k))1/3 distinct

parts. A Wilf partition of n with r distinct parts can be obtained by the following two-step
process (cf. [3]):

• start with a partition of n into r parts,

the electronic journal of combinatorics 20(4) (2013), #P13 3



• split every part xi into mi copies of pi such that pimi = xi. If we require in addition
that pi > mi, then there are at most d(xi)/2 possibilities for the choice of pi and
mi, where d(·) denotes the number of divisors.

Note that not every partition that we get from this process is actually a Wilf partition,
but every Wilf partition can be obtained in this way. As in [3], we now make use of the
estimate

p(m, r) = O

(
mr−1

r!(r − 1)!

)
(4)

for the number of partitions of m into r summands, which holds for r = O(n1/3) (cf. [7,
Section 7.2.1.4, Exercise 34]): p(m, r) is also the number of partitions of m + r(r − 1)/2
into distinct parts (add 0, 1, 2, . . . , r − 1 to the parts to make them distinct). Each such
partition can be turned into a composition by permuting the r parts in all possible r!
ways. It is well known [4, Example I.6] that the number of compositions of s into r parts
is
(
s−1
r−1

)
, thus

p(m, r) 6
1

r!

(
m+ r(r − 1)/2− 1

r − 1

)
6

(m+ r2/2)r−1

r!(r − 1)!
,

from which (4) follows. Moreover, we need the estimate

log d(n) = O

(
log n

log log n

)
for the number of divisors of n (see [5, Theorem 317]). These give us the following upper
bound:

F (n) 6
n∑
k=0

k≡n mod 2

∑
r6(6(n−k))1/3/2

q(k)p((n− k)/2, r) max
x6n

(d(x)/2)r

6 n2q(n) max
m6n/2,r6(6n)1/3/2

p(m, r) max
x6n

(d(x)/2)r

and thus

logF (n) 6
1

6
(6n)1/3 log n

(
1 +O

(
1

log log n

))
= f(n)(1 + o(1))/2.

2.2 The lower bound

It remains to prove an inequality in the opposite direction. To this end, we employ the
ideas of Fill, Janson and Ward once again. Our goal is to construct a sufficiently rich set
of fixed points of the involution. This is slightly more difficult than the first part of the
proof and requires the following lemma:

Lemma 2. There exists a set A = {a1, a2, a3, . . .} of positive integers such that

• Every positive integer, except for 2, 3, 7, 11 and 15, has a Wilf partition that is a
fixed point of the involution and only uses part sizes and multiplicities in A.
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• |A ∩ [1,m]| = O(logm).

Remark 1. In particular, this means that 2, 3, 7, 11 and 15 are the only positive integers
that do not have a Wilf partition that is a fixed point (it is easy to check that there is
indeed none in those five cases – see also Table 1).

Proof. We set ak = k for 1 6 k 6 10. One can verify directly that all positive integers
6 136, except for 2, 3, 7, 11 and 15, have Wilf partitions that are fixed points of the
involution and only use 1, 2, . . . , 10 as part sizes and multiplicities. Now set b10 = 136
and define ak and bk for k > 10 recursively as follows:

ak = b
√
bk−1 − 15c and bk = bk−1 + a2k.

It is easy to see that ak = Ω((
√

2 − ε)k) for any ε > 0, so the second statement holds.
For the first statement, we show that a1, . . . , ak are sufficient to obtain a suitable Wilf
partition of any integer in the interval [16, bk]. This is true for k = 10 by our choice of b10.
For k > 10, the induction hypothesis guarantees the existence of a suitable Wilf partition
for all integers in the interval [16, bk−1]. By adding a part-multiplicity pair (ak, ak) if
necessary, we can also cover all values from 16 + a2k 6 bk−1 + 1 to bk−1 + a2k = bk, which
completes the induction. �

Now we complete the proof of our main theorem by providing a lower bound for F (n).
Fix a large integer K, and let C be a constant such that |A ∩ [1,m]| 6 C logm for
sufficiently large m, as is guaranteed by Lemma 2. Now let R be the integer nearest to

1

2K

(
6n

1 + 3/K

)1/3

.

Consider the smallest 2RK integers that are not elements of A, and denote them by
x1, x2, . . . , x2RK . By our choice of R, those integers are all smaller than n for sufficiently
large n, which means that there are at most C log n elements of A that are less than x2RK .
This implies that

xj 6 C log n+ j.

Choose K permutations of {1, 2, . . . , R} independently, and call them σ1, . . . , σK . Now we
construct a Wilf partition of n that is also a fixed point of the involution as follows:

• For 1 6 i 6 K and 1 6 j 6 R, we include x(i−1)R+j copies of x(2K−i)R+σi(j), and vice
versa.

• The total contribution of these parts is

m = 2
K∑
i=1

R∑
j=1

x(i−1)R+j · x(2K−i)R+σi(j)

6 2
K∑
i=1

R∑
j=1

(C log n+ iR)(C log n+ (2K + 1− i)R)
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= 2C2KR log2 n+ 2CK(2K + 1)R2 log n+
2K(K + 1)(2K + 1)

3
R3

=
2K2 + 3K + 1

2K2 + 6K
n+O

(
n2/3(K + log n)

)
by our choice of R. For sufficiently large n, this is less than n − 16. Thus we can
find a Wilf permutation of n − m using only parts and multiplicities in A that is
also a fixed point of the involution. Since none of the xi lies in A by our choice, we
can combine the two to a Wilf permutation of n that still has the desired property.

It follows immediately that
F (n) > R!K

and thus

logF (n) > K logR! = KR(logR +O(1)) =
1

2

(
6n

1 + 3/K

)1/3(
1

3
log n+O(1)

)
.

Since K was arbitrary, we have

logF (n) >
1

6
(6n)1/3 log n(1 + o(1)) = f(n)(1 + o(1))/2,

which completes the proof of Theorem 1.

Remark 2. Setting e.g. K = blog nc, we can get a slightly more precise lower bound:

logF (n) >
1

6
(6n)1/3(log n+O(log log n)).
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