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Abstract

A 3D floorplan is a non-overlapping arrangement of blocks within a large box.
Floor planning is a central notion in chip-design, and with recent advances in 3D in-
tegrated circuits, understanding 3D floorplans has become important. In this paper,
we study so called mosaic 3D floorplans where the interior blocks partition the host
box under a topological equivalence. We give representations which give an upper
bound on the number of general 3D floorplans, and further consider the number of
two layer mosaic floorplans. We prove that the number of two layer mosaic floor-
plans is n(1+o(1))n/3. This contrasts with previous work which has studied ‘corner
free’ mosaic floorplans, where the number is just exponential. The upper bound is
by giving a representation, while the lower bound is a randomized construction.

1 Introduction

A (2D) floorplan is non-overlapping arrangement of rectangles within a larger host rect-
angle. It is a central notion in chip-design, where one wants to find an (in some sense)
optimal arrangement of the components of a chip. The state-of-the-art methods for finding
these optimal arrangements often involve enumerating through all possible arrangements,
or generating arrangements randomly to find the optimal one. Hence finding efficient
encodings for arrangements with a given number, n, of rectangles - and understanding
the limitations of these - has become an important issue in the field of chip-design. Re-
cently technology has enabled us to build chips in three dimensions [4]. This calls for an
understanding of the 3D version of floorplans, where blocks are arranged within a host
box. For clarity, as a matter of terminology, we refer to the largest outer box as a ‘box’,
while we refer to the smaller inner components as ‘blocks’.
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Mosaics are a special type of floorplans, where the smaller rectangles partition the
host rectangle. Generic mosaic floorplans are such that they do not have adjacencies
that could be removed by a small perturbation (the precise definition will be given in
Section 2). Enumeration and efficient encoding of these is the first step towards under-
standing general floorplans. Obviously, there are uncountably many different (mosaic)
floorplans. To meaningfully approach these questions one has to start with a notion of
equivalence of floorplans, and enumerate and encode the resulting equivalence classes.
We will consider the most widely studied notion, the so called topological equivalence
(see Definition 10). The main problems are to find efficient encodings and asymptotic
enumeration of topological equivalence classes of mosaic floorplans.

In the 2D case these problems have been studied extensively and satisfying answers
have been found. The number of equivalence classes is essentially exponential in n. In fact
they can be completely enumerated and their number turns out to be the number of Baxter
permutations. There are nice bijections between floorplans and such permutations (see
e.g. [2]), and also between floorplans and pairs of dual binary trees (see [7]) that provide
efficient encodings. The crucial observation behind these results is always a certain kind
of induction on the number of rectangles: if one removes the top left rectangle from an
arrangement, the resulting gap can be filled by extending some of the other rectangles in
the arrangement that were previously adjacent to the rectangle just removed.

Figure 1: Diagonal Corner

This idea does not carry over to 3D floorplans. There is a certain kind of local arrange-
ment (see Figure 1) where removing the small block in the front, neither of the adjacent
blocks can be extended to cover the gap without creating overlaps. We shall refer to such
an arrangement as a diagonal corner. This seems to be the only obstruction to generaliz-
ing the inductive argument: if one forbids diagonal corners, then a very similar induction
works, see e.g. Chapter 3.3 of [1]. Hence many results carry over to 3D, in particular the
number of such arrangements is again (up to lower order multiplicative terms) exponen-
tial. However the question is completely unresolved for general 3D arrangements. It was
previously unknown even whether there exist more than exponentially many 3D floor-
plans. Indeed we are unaware of any non-trivial lower or upper bounds on the number of
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3D mosaic floorplans.
A number of other representations have been proposed for (often special classes of)

3D floorplans. A recent survey is given by [3]. This lists three attempts to represent
mosaic floorplans. The 3D-corner block lists of Ma, Hong, Dong and Cheng [5] and O-
Sequence of Ohta, Yamada, Kodama, and Fujiyosa [6] give representations for labeled
floorplans without diagonal corners. Finally, there has been an attempt by Wang, Young,
and Cheng [8] to generalize pairs of trees to encode 3D mosaic floorplans. Their approach
would give an nn type upper bound, but their paper has errors and their encoding appears
to be incomplete.

The starting point of our paper is nevertheless [8]. Let Fn denote the set of unlabeled
generic 3D mosaic floorplans, and Tn the subset where there are only 2 layers in the z
direction. Our main contributions are the following.

• We give a non-trivial upper bound on the number of generic 3D floorplans.

Theorem 1.
log |Fn| 6 3n log n + O(n).

• We show that already the number of generic two-layer 3D mosaic floorplans up to
topological equivalence is super-exponential. In particular using a random construc-
tion we prove

Theorem 2.

log |Tn| >
(

1

3
− o(1)

)
n log n.

• Finally, exploiting duality of binary trees for 2D floorplans, careful analysis gives
that this lower bound is asymptotically correct for 2-layer floorplans.

Theorem 3.

lim
log |Tn|
n log n

=
1

3
.

Remark 4. We find it rather surprising that already 2-layer floorplans have enough com-
plexity to yield a super-exponential number of equivalence classes, especially in the light
of the result that the number of general 3D plans without diagonal corners is only expo-
nential. On the other hand we haven’t been able to exploit multiple layers to construct
significantly more floorplans. The best lower bound we have for log |Fn| is, asymptotically,
log |Tn|.

The paper is organized as follows. In Section 2 we give precise definitions of the various
notions related to floorplans. We also recall the quaternary corner-tree construction of
Wang et. al. from [8]. In Section 3 we give a random construction to prove Theorem 2.
In Section 4 we show how 8-tuples of labeled corner-trees can be used to encode a 3D
floorplan. Then an easy observation is used to reduce the required number of trees from
8 to 4 and finish the proof of Theorem 1. Finally in Section 5 we prove Theorem 3 by
showing that in the case of 2-layer floorplans much less information is sufficient to encode
the labelings on the trees.
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2 Floorplans

A mosaic floorplan is a subdivision of a large host box H into n smaller blocks B1 ∪B2 ∪
· · · ∪ Bn = H. A point in H will be referred to as a corner if it is the vertex of at least
one of the Bis.

Definition 5. The local configuration at a corner x ∈ H is the following. Take a
coordinate-parallel box x ∈ L ⊂ H small enough that L intersects exactly those blocks
that contain x, but such that all these intersections have positive volume. These inter-
sections then form a subdivision of L into at most 8 blocks. This subdivision of L is the
local configuration at x, and x is called the center of it.

Figure 2 shows examples of local configurations. We shall only be interested in certain
special kinds of floorplans called generic floorplans.

A

Figure 2: The corners in the middle of the cubes are the prototypes of generic corners.
(The block labeled A extends to the back of the configuration.)

Definition 6.

• A local configuration is generic if it satisfies the following condition:

– The center is the vertex of at most two of the blocks.

– If these two blocks share a face then there are at most 2 other blocks in the
configuration. In this case the configuration is similar to the second example
in Figure 2.

– Otherwise the two blocks may only intersect in a single point (the center) and
there may be at most 3 other blocks in the configuration. In this case the
configuration is similar to the first example in Figure 2

• A corner is generic if its local configuration is.

• A floorplan is generic if all its corners are.
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Remark 7. In two dimensions already the first of the three requirements defines what is
a generic local configuration: The only thing we have to rule out is a corner where 4
rectangles meet.

Remark 8. There is a topological reason for the name ‘generic’. Obviously, in the subdivi-
sion corresponding to a local configuration all the boxes contain the center. Non-generic
local configurations are however not stable in this sense. They can be perturbed by an ar-
bitrarily small change in the coordinates of the boxes into a new subdivision that doesn’t
have a unique center, because it contains disjoint boxes. This is not hard to see as there
are only a few different local configurations to check. In fact it is also clear that one
can choose the perturbation so that the resulting subdivision has only generic corners.
Figure 3 shows a non-generic local configuration along with a perturbation that changes
it.

Figure 3: A non-generic configuration and its perturbation

There is a subtle point about generic corners that is important to keep in mind. We
have seen that a non-generic local configuration can be perturbed into a generic one.
One hopes that if the floorplan has a non-generic corner, then the whole floorplan can be
slightly perturbed to get rid of this corner. This is the case in two dimensions. It is a
known fact that a non-generic 2D floorplan can always be perturbed into a generic one.
The same is not true however for 3D floorplans. Figure 4 shows a 3D floorplan which has
two non-generic corners but that is globally rigid in the sense that any slightly perturbed
floorplan will still have non-generic corners. Thus this notion of genericity is, in some
sense, ‘incorrect’. The main reason we still use this definition is because the properties of
generic floorplans are much nicer compared to the non-generic ones.

2.1 Dissection planes

There is a classical encoding of floorplans which we now recall. One can reconstruct a
floorplan given the appropriate coordinates of each face of each block. (The x-coordinate
of the sides orthogonal to the x-axis, etc.) These coordinates cannot be arbitrary, how-
ever. When two blocks have touching faces, these sides obviously have to have the same
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A

B

Figure 4: A globally rigid configuration where the interior corners of the block A are
non-generic. (The block labeled B reaches all the way to the bottom.)

coordinate value. Hence it is enough to store one value for each group of faces that must
have the same coordinate. This motivates the following approach.

Definition 9.

• A dissection plane (of a given floorplan) is the union of a maximal set of faces
that must have the same coordinate value. More precisely let us say that two faces
are attached if their intersection has positive area. This yields a graph on faces;
dissection planes are the corresponding connected components of the graph.

• The dissection graph associated to a floorplan in a coordinate direction is a directed
graph. Its vertices are the dissection planes orthogonal to the given direction. For
each block of the floorplan one places an edge between the dissection planes con-
taining the two faces of the block orthogonal to the given direction, and orients it
towards the plane with the larger coordinate value.

Definition 10. Two floorplans are topologically equivalent if for each coordinate direction
their corresponding dissection graphs are isomorphic. In the case of 3D-floorplans, this
means that the x-, y- and z- direction dissection graphs respectively must be isomorphic.

Remark 11. The name ‘topological equivalence’ comes from the following observation.
Imagine that the walls of the blocks are mobile, as in a Japanese house. A deformation
of a floorplan consists of translating a dissection plane in normal direction, creating no
empty space and lengthening or shortening incident blocks in order to do such. It is easy
to see that deformations preserve the dissection graphs.

It is a well known fact, however, (see, eg. [7] for a good explanation in the 2D-
case) that the converse also holds: floorplans with isomorphic dissection graphs can be
deformed into each other. Furthermore, given the dissection graphs, one can reconstruct
the equivalence class of the floorplan as follows: The dissection graphs determine a partial
order on the set of dissection planes. Extending this arbitrarily to a complete order, and
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assigning coordinate values respecting this order determines a choice for the coordinates
of each block, hence one gets the desired floorplan.

The partial order setting makes the well known fact that we alluded to above more
transparent. Consider two complete orders, both satisfying the partial order and differing
by a transposition. In the floorplan setting this transposition corresponds to shifting one
of the involved dissections planes past the other while maintaining the remaining order
of the dissection planes. This is possible because the projected areas of the planes does
not intersect – otherwise, these planes would be related in the partial order.

Definition 12. We will also use a one-dimensional analogue of dissection planes. Simi-
larly to faces, we can say that two edges (of two blocks) are attached if their intersection
has positive length. This yields a graph on edges, connected components in this graphs
are going to be referred to as supporting segments. It is not hard to see (by looking at Fig-
ure 2) that, when two edges are attached, they lie in the intersection of two perpendicular
dissection planes.

2.2 Corner trees

We shall need one more construction from [8] that will be used to encode floorplans, the
so-called corner tree. Let us choose a corner of the host box and denote it by P . Each
block A in the floorplan has a corresponding corner, the one closest to P . If the corner is
not P itself, examining the possible shapes of a generic corner, it is not hard to see that
there is always exactly one other block B which shares this corner with A. Note that
this will not be the corner of B closest to P . Indeed, there are 4 possibilities for relative
position of the second block with respect to the first block. They are either touching
along a face in either of the three directions, or they intersect only in the corner itself. We
say that, with respect to P , the block B is the (x/y/z/d)-parent of A in the four cases
respectively (where d stands for diagonal). Figure 7 shows the four types of adjacencies.

Definition 13. Suppose we are given a floorplan with the blocks labeled from 1 to n.
For each corner P of the host box, let TP be a tree whose vertices are the blocks, and
each block is connected by an edge to its unique parent with respect to P . Vertices are
labeled 1 to n according to the numbers in the floorplan, and edges are labeled according
to the type of the parent relation. The edge and vertex labeled tree constructed this way
is called a corner tree of the floorplan. The tree has a unique root, the block that is
adjacent to the corner P . It will also be useful to consider the corner tree without the
vertex labels. This will be denoted by T̃P .

It is easy to see that corner trees are invariant under deformations, hence topologically
equivalent floorplans have isomorphic corner trees. Furthermore, every vertex in a corner
tree can have at most four children, one for each type of edge. Thus a corner tree is a
rooted edge-labeled quaternary tree on the set {1, 2, . . . , n} with each vertex having at
most one child for each of the four possible labels.

The labeling of the blocks does not make a huge difference in this construction. For
each floorplan there are exactly n! ways to add the labels, hence enumerating labeled
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or unlabeled floorplans is equivalent. To encode labeled floorplans, we will use labeled
corner trees. To encode unlabeled floorplans one can use the same set of trees, but with
the labeling of the first tree arbitrary, and the labels are used only as an identification of
vertices among trees. In other words, instead of considering eight trees with vertex labels,
one can think of the eight trees given on the same vertex set, without any labels. This
approach will be particularly useful when dealing with 2-layer floorplans.

In 2D it turns out that two corner trees corresponding to two opposite corners com-
pletely determine the dissection graphs of the floorplan, hence also its topological equiv-
alence class. Furthermore, rather surprisingly, the vertex labeling of one tree can be
reconstructed from the vertex labeling of the other tree, hence only one of the trees have
to be vertex labeled. Since the blocks of a floorplan can be numbered arbitrarily, this
means that 2D floorplans can be encoded with a pair of binary trees with only edge-labels.
Since the number of (pairs of) binary trees is at most exponential in n, so is the number
of floorplans. This is, however, not the case in 3D.

In [8] the authors claim that, analogously to the 2D case, a pair of (vertex labeled)
corner trees corresponding to two opposite corners completely determine the dissection
graphs of the floorplan. Since there are exponentially many pairs of quaternary trees, and
n! identifications between vertices in the pair this would give an upper bound of the form
n! · expo(n) = n(1+o(1))n. However their proof is incomplete and we do not presently see if
the gap can be filled.

3 Lower bound construction

In this section we prove Theorem 2 by constructing so many distinct floorplans.
Consider an N ×N grid, and S ⊆ [N ]× [N ]. Construct a floorplan FS as follows:

Figure 5: Vertical blocks in the positions of S

Place a height two block at each position in S. The remainder of the top level is filled
in with horizontal strips, while the bottom level is filled in with vertical strips. For each
set S, this yields a unique (though not necessarily generic) floorplan. Let us now count
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the total number of blocks. This floorplan has |S| blocks of height 2. If |S| = 0, there
are N vertical and N horizontal strips. Meanwhile, each element in S which is not on
the boundary of the grid, and not immediately adjacent to another element in S adds
an additional vertical and horizontal strip. We say that S is good if this holds for every
element in S. If S is good, then there are N + |S| horizontal and vertical strips, thus
in total there are 2N + 3|S| blocks. If, in addition, there are no elements of S that are
diagonally incident then the floorplan FS is generic, thus FS represents an equivalence
class in T2N+3|S|.

It is clear that S can be recovered from FS. Thus the number of good S where there
are no diagonally incident elements gives a lower bound on |Tn|.

Lemma 14. Fix 0 6 t 6 (N−2)2
10

and N sufficiently large. Let S ⊂ {2, . . . , N − 1} ×
{2, . . . , N − 1} be a uniformly randomly chosen set of size t. Then

P(S good and FS generic) > exp

(
−50

t2

N2

)
.

Proof. Choose S to be a uniformly randomly chosen ordered set of size t. Let Si denote
the first i elements of S, and let Ai denote the event that Si is good, and FSi

is generic.

P(At) = P(A1)P(A2|A1)P(A3|A2) · · ·P(At|At−1)

> 1 ·
(

1− 9

(N − 2)2

)
·
(

1− 18

(N − 2)2

)
· · ·
(

1− 9(t− 1)

(N − 2)2

)
> exp

(
−

t−1∑
i=1

9i

(N − 2)2 − 9i

)

> exp

(
−

t−1∑
i=1

9i

(N − 2)2 − 9t

)
= exp

(
− 9t(t− 1)

2((N − 2)2 − 9t)

)
. (1)

Here, the first inequality comes from the fact that the first i blocks forbid at most 9i blocks
for the i + 1st choice, and the second inequality comes from the real number inequality

(1 − 1
x
) > e−

1
x−1 for x > 1. The result then follows noting that we used the fact that

t 6 (N−2)2
10

and the fact that N is sufficiently large to somewhat simplify (1).

To complete the construction note that for a fixed N and t, where t < (N−2)2
10

and
n = 2N + 3t, that

|Tn| > exp

(
−50

t2

N2

)(
(N − 2)2

t

)
> exp

(
−50

t2

N2

)(
(N − 2)2

t

)t

= exp

(
t log

(
(N − 2)2

t

)
− 50

t2

N2

)
. (2)
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Fix t = N logN and note that in this regime n = (3 + o(1))t and log(n) = (1 +
o(1)) log( N

logN
). Using this in (2) gives the desired bound:

| log Tn| >
(

1

3
− o(1)

)
n log n.

4 Tree representation scheme

In this section we prove Theorem 1 by giving a representation scheme for floorplans in
Fn. We do this in two steps. First we show that the dissection graphs of a floorplan can
be reconstructed from the eight-tuple of corner trees (T1, . . . , T8) associated to the eight
corners of the host box (see Figure 6 for the numbering of the corners). Then we show
that knowing only T1, T3, T6, and T8, we can recover the four missing trees. The number of
edge-labeled quaternary trees on n vertices is exponential in n, hence this way we encode
numbered floorplans with objects in a set of size at most (n!)4cn. But numbered floorplans
are exactly n! as many as plain floorplans. Thus we get |Fn| 6 n!3cn or equivalently

log |Fn| 6 3n log n + O(n).

T1 T2

T3T4

T5 T6

T8 T7

Figure 6: Corner/Tree identification

Proposition 15. The dissection graphs can be reconstructed from the corner trees T1, . . . , T8.

Proof. The vertices of the dissection graphs are the dissection planes, and edges are given
by the blocks. If we know the list of dissection planes, and which face of which block
belongs to which dissection plane, then we know the graphs themselves. Hence it is enough
to figure out which face is in which dissection plane. But since dissection planes are defined
as unions of faces in an equivalence class, it is enough to recover these equivalence classes.
Even though the equivalence classes were defined via the attachment relation, we cannot
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x-parent y-parent z-parent d-parent
In all cases, the block in the front, upper left is the parent and the source of the arrow is
the child. In the case where the front block is a d-parent, the d-child is hidden behind

the other block, and diagonally behind the front block.

Figure 7: Parent edge labels in T1 tree

directly recover attachment from the list of corner trees. Instead, we shall use supporting
segments (Definition 12) as an auxiliary tool.

First we shall show that, from the list of corner trees, one can recover which edges of
which faces belong to the same supporting segment. This can be done by tracing a cycle of
blocks around a supporting segment. Suppose we want to trace the segment that contains
edge X0X1 of block B0. (See Figure 8.) Then we look up B0 in the tree corresponding to
the X1 corner, and find its parent B1. Depending on what type of parent B1 is, one of its
edges, X1X2, will belong to the same supporting segment as X0X1. Then we take the tree
corresponding to the X2 corner of B1, find the parent of B1, and denote it by B2. The
edge X2X3 in B2 then has to belong to the same supporting segment. When we reach
the end of the segment, the process naturally ‘turns around’, and starts finding blocks
backwards along the segment. Then eventually it hits the other end of the segment and
starts coming back, until it finally hits B0 again. At this point we have a complete list of
blocks adjacent to the supporting segment. Also, for each block, we know which edge of
it belongs to the segment. This whole process is depicted in Figure 8.

Now we are ready to recover dissection planes. Each dissection plane has two sides.
By the definition of attachment, a dissection plane has connected interior. Thus, any
face adjacent to one side can be reached from any other face adjacent to the same side
by jumping from face to adjacent face. (Two faces are adjacent if they share an edge.)
But when two faces are adjacent, their intersecting edges necessarily belong to the same
supporting segment. Hence, starting from a face adjacent to a supporting segment, using
the tracing method described above, one can find all other parallel faces that are adjacent
to the same supporting segment. (And all such faces are necessarily contained in the same
dissection plane!) Iterating this method, by connectivity, one eventually finds all faces on
one side of a dissection plane. Finally the sides of a dissection plane can be connected
together by tracing around a supporting segment on the boundary.
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D

E

X

C

A Y

B

e

A
(d)−→ B

(y)−→ C
(d)−→ D

(y)−→ E
(x)−→ A

Figure 8: Tracing the supporting segment e = XY

Proposition 16 (4 trees suffice). T2, T4, T5 and T7 are determined by T1, T3, T6 and T8.

Proof. The main observation is that there is a bijection between edges of the four unknown
trees and the edges of the four given trees as follows. If there is a diagonal edge in T1,
say block A is the diagonal parent of block B, then clearly there is a diagonal edge in T7,
namely block B is the diagonal parent of block A in that tree. And vice versa. Similarly,
by looking at figure 7 one can see that if and only if A is an (x/y/z)-parent of B in T1, if
and only if is then B an (x/y/z)-parent of A in T2/T4/T5 respectively. Hence each edge
in a tree can be recovered from the trees corresponding to the three adjacent vertices and
the one opposite vertex. This proves the proposition, and also completes the proof of
Theorem 1.

5 Label reconstruction

In this section we prove Theorem 3. Given a two layer floorplan F , we know that it
can be reconstructed from its eight labeled corner trees. The trees themselves can only
be of exponentially many types, however the labeling is too expensive for our purposes.
We have already seen that instead of vertex labels what we really need is bijections
between the vertex sets of the trees. Even using Proposition 16 we would need three such
bijections, and that is way more data than the nn/3 bound we are aiming for. The solution
is that instead of recording all the identifications between vertex sets, we will only record
partial identifications, and use intrinsic geometric constraints of the floorplan to recover
the missing identifications.

So let us consider the unlabeled (or, rather, only edge-labeled) versions of our corner
trees T̃1, . . . , T̃8 associated to the two-level floorplan F . The two layers will be in the z
direction. We will refer to the two layers as the top and the bottom. Corners 1, 2, 3, 4 are
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on the top, 5, 6, 7, 8 are on the bottom.

Definition 17 (Identification set). The full identification of a floorplan F is the set

FI ={(x, y) : x ∈ V (T̃i), y ∈ V (T̃j)

where x and y represent the same block of F in two different trees}.

An identification set is any subset I ⊂ FI. An identification set I is strong if, together
with the eight unlabeled trees, it determines FI.

Our goal is then to find strong identification sets as small as possible. Theorem 2
shows that any strong identification set has to be of size at least n/3 asymptotically. We
are going to show that for two-layer floorplans this can be achieved.

This will complete the proof of Theorem 3, by giving an injection from floorplans into
the space of 8-tuples of {x, y, z, d}-edge labeled quaternary trees and strong identification
sets of size n/3. Note that a identification set consists of pairs (x, y) so that no x and no
y is in more than 8 pairs. Therefore the number of identification set of size t is given by a
two (multi)sets of size t and a bijection between them. The number of such possibilities
is at most

expo(n)× (n/3)! = n(1+o(1))n/3.

Since the number of {x, y, z, d}-edge labeled quaternary trees is also exponential, we will
have given an injection into a space of size n(1+o(1))n/3, which will complete the proof.

First we need some notation. Blocks of a floorplan F ∈ Tn can be broken into three
classes, T,B,D (as in top, bottom, double), denoting the blocks occupying only the top,
only the bottom, or both layers. For a block x ∈ F let xi ∈ T̃i(i = 1, . . . , 8) denote
the vertex in T̃i which represents x. It is in general impossible, given an xi ∈ T̃i to
determine xj ∈ T̃j only knowing the unlabeled trees. However certain elements of FI can
be automatically reconstructed, as the following proposition shows.

Proposition 18. If x ∈ T ∪ D, and i, i′ ∈ {1, 2, 3, 4}, xi can be determined from x′i.
Likewise, if x ∈ B ∪D, and i, i′ ∈ {5, 6, 7, 8} then xi can be determined from x′i.

Proof. The top and bottom planes are 2D floorplans with blocks from T ∪D and B ∪D
respectively. The rooted subtree of T̃i, 1 6 i 6 4 obtained by deleting all z- and d-edges
are precisely the corner trees associated the corners of this 2D floorplan. We know from [7]
that a 2D floorplan can be reconstructed from two of its corner trees corresponding to
opposite corners. Furthermore, these trees do not have to be vertex-labeled. The bijection
between their vertex sets can be recovered from the tree structure and edge-labeling.
Hence looking at the subtrees obtained from T̃1 and T̃3 one can find the identification
between the vertices in these two subtrees. Then the 2D floorplan can be reconstructed
(up to topological equivalence). Finally, since the appropriate subtrees of T̃2 and T̃4 are
corner trees of the same 2D floorplan, their vertices can be identified with the blocks in
this floorplan, and hence to the vertices of T̃1 and T̃3. The second part of the proposition
follows identically.
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For the remainder, we prove the following:

Proposition 19. There exists a strong identification set I such that |I| 6 n/3.

This means that knowing the eight edge-labeled trees and n/3 well chosen identifi-
cations is enough to encode the floorplan. The cost of recording the trees is exponen-
tial, while the cost of writing down n/3 identifications is nn/3cn, hence this proves that
|Tn| 6 nn/3cn and thus completes the proof of Theorem 3.

Proof of Proposition 19. We begin by showing that identifying the double blocks allows
one to reconstruct all identifications. For any pair i, j let us define

I i,jD = {(xi, xj) : x ∈ D} and ID = ∪i,jI i,jD .

Lemma 20. For any i ∈ {1, 2, 3, 4} and j ∈ {5, 6, 7, 8}, the identification set I i,jD is
strong.

Remark 21. Note that by Proposition 18 knowing I i,jD is equivalent to knowing I i
′,j′

D for
any pair of i′, j′ where i′ ∈ {1, 2, 3, 4} and j′ ∈ {5, 6, 7, 8}, and also equivalent to knowing
ID. Hence we can assume that the whole ID is given.

y edge

x edge

d edge
in T5

in T2

in T7

y edge

x edge

z edge
in T5

in T2

in T5

Figure 9: Identification loops

Proof of Lemma 20. Our job is to find FI using I i,jD . By Remark 21 and by the symmetric
role of the top and bottom layers, it is sufficient to show that we can find the part of FI
corresponding to blocks in the top layer. By Proposition 18 it is sufficient to find for each
block x ∈ T and each j ∈ {5, 6, 7, 8} the identification of xj with xi for some i ∈ {1, 2, 3, 4}.
Again, by symmetry, we can concentrate on j = 5, the other cases follow similarly.

Let’s take a look at T̃5. Consider the rooted forest T̃ ′5 obtained by removing all z- and
d-edges from it. As we have seen in the proof of Proposition 18, the component of T̃ ′5
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containing the original root corresponds to the blocks of B∪D. All the other components
consist of blocks from T . Now the crucial (but very easy) observation is that if a top
block has an x- or y-type parent in T̃5, then it has to have the same type of parent in
T̃1, and in fact the parent block has to be the same. Hence all these components of T̃ ′5
are isomorphically there in T̃1. If we can manage to identify the root vertex of each of
these components of T̃ ′5 with the appropriate vertex in T̃1, then the rest of the components
are automatically identified by the local isomorphisms. Hence to finish the proof of the
lemma, all we need is the following: given a vertex u5 ∈ T̃5 whose parent is of type z or
d, find the corresponding vertex u1 ∈ T̃1.

So let u5 be a root vertex of a top component in T̃ ′5. Then u5 in T̃5 has either a d- or
z-type parent. Let us denote this parent by v5 ∈ T̃5 corresponding to some block v ∈ F .
First assume it is a diagonal edge, as on the left side of Figure 9. Since v5 is in B, by
Proposition 18 we can find the corresponding v7 ∈ T̃7. The parent block of this y7 in T̃7

has to be necessarily a double block because of how the shape of a diagonal corner looks
like. Let us denote this block by w. The edge of y7w7 in T̃7 can only be an x-edge or an
y-edge. Without loss of generality we may assume the second case. (This is shown on the
left side of Figure 9.) Then the local geometry tells us that in T̃2 the parent of w is u, the
block we started from. Now since w ∈ D and we know w7, we can use the identification
set ID according to Remark 21 to find its counterpart w2 ∈ T̃2. The parent of w2 has to
be u2 in T̃2. In summary, what happened was that we took a vertex u5 ∈ T̃5, looked at a
sequence of vertices in various trees, and finally arrived at a vertex of T̃2 that represents
the same block. The sequence was

u5
d−→ v5

B−→ v7
y−→ w7

ID−→ w2
x−→ u2

where the first, third and last steps involved looking at the parent in the current tree,
the second step used Proposition 18 to find a bottom block in another tree, finally the
fourth step used ID to find a double block in another tree. (If the local configuration is
the mirror image of what is seen in Figure 9, then w5 would be an x-type parent of v5,
then u would be an y-type parent of w in T̃4, hence by a similar argument we could find
u4 ∈ T̃4.)

Now assume that v5 is a z-type parent of u5, as shown on the right side of Figure 9. In
this case we need to look at the parent of v5 in T̃5 still. It is either an x- or a y-type parent.
Again, without loss of generality, we can assume the second case, as shown in Figure 9.
Denoting by w5 the parent of v5, the local geometry says that w, the block represented
by this vertex, has to be a double block. Further, in T̃2 the parent of w has to be u. We
have found w5 ∈ T̃5. Since it is a double block, using ID according to Remark 21 we can
find w2 ∈ T̃2, and looking at its parent we find u2 ∈ T̃2. The sequence now was

u5
z−→ v5

y−→ w5
ID−→ w2

x−→ u2.

(Again, in the mirrored case, if w5 is an x-type parent of v5, then u4 would be the y-type
parent of w4 in T̃4, so we could find u4 by the same argument.)

Thus in both cases, starting from a vertex in T̃5, we have found its counterpart in T̃2

(or in the mirrored cases in T̃4). But by Proposition 18, for any block in the top layer,
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identification between T̃1 and T̃2 (or T̃4) is free. So we can finally find u1 ∈ T̃1. This
completes the proof of the lemma.

Next, we construct two more strong identification sets. To define these, we need a
final bit of notation. Consider a diagonal edge u5v5 in T̃5. As we have seen in the proof
of Lemma 20 and also in Figure 9, the parent of the block v in T̃7 is a double block w.
Depending on the type of the v7w7 edge, there are two cases. If the v7w7 edge is of type
x, then u is the y-parent of w in T̃4. If the v7w7 edge is of type y, then u is the x-parent
of w in T̃2. Let us split the diagonal edges of T̃5 into two classes, d4 and d2, according to
these two cases. (The subscript denotes the tree in which u is the parent of w.)

We can similarly split the z-edges in T̃5 into two classes. In the z2 class the child of
the z-edge in T̃5 is the x-parent of a double block in T̃2 while in the z4 class the child of
the z-edge is the y-parent of a double block in T̃4. The various classes of edges in T̃5 are
shown in Figure 10.

The same classification can be done for T̃7 instead. If u7v7 is a diagonal (or z-) edge in
T̃7 then the parent of v in T̃5 (or in T̃7) is a double block w, and u is either the x-parent
of w in T̃4 or the y-parent in T̃2. In the first case we call the edge of type d4 (or z4
respectively) and in the second case type d2 (or z2 respectively). The local arrangements
corresponding to these situations would be mirror reflections of the ones in Figure 10
through the vertical plane adjacent to corners 2,4,6,8.

ZS-type ZF -type DS-type DF -type

Figure 10: Refined edge types in T̃5

Now we are ready to define the two identification sets.

I4T = {(u5, u4) : u5 ∈ T̃5 is a d4 or z4 child} ∪ {(u7, u4) : u7 ∈ T̃7 is a d4 or z4 child},

I2T = {(u5, u2) : u5 ∈ T̃5 is a d2 or z2 child} ∪ {(u7, u2) : u7 ∈ T̃7 is a d2 or z2 child}.

Lemma 22. The identification sets I2T and I4T are both strong.

Proof. Since the definitions of the two sets are symmetric, it suffices to show that I2T is
strong. In the light of Lemma 20 if we can show that all the vertices representing double
blocks in T̃2 can be identified with their counterparts in T̃6 then we are done.
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We do this identification recursively: if a parent of a double block w2 ∈ T̃2 is an other
double block u2 ∈ T̃2, then, since the whole floorplan has only two layers, the parent of
w6 ∈ T̃6 has to be the u6, and the two parents have to have the same type. Hence if
we could identify u2 with u6, and we find that the parent of w2 is w6 of type x, then by
looking at the x-child of u6 we can find u2. (Similarly for y-type parents.) Thus we only
have to worry about double blocks w for which the parent of w2 ∈ T̃2 is a single block
(hence of type T ) u2 ∈ T̃2.

Suppose first that u2 is an x-parent of w2. Then the local arrangement has to look
like as in Figure 10. Thus the parent v of the top block u in T̃5 has to be a z- or d-parent,
furthermore it can only be of type z2 or d2. This means that (u5, u2) ∈ I2T . We can use
this to trace an identification loop as before:

w2
x−→ u2

I2T−→ u5
d2−→ v5

B−→ v7
y−→ w7

B−→ w6,

or

w2
x−→ u2

I2T−→ u5
z2−→ v5

x−→ w5
B−→ w6,

depending on type of the u5v5 edge. In other words, starting from w2, and looking at
parents or jumping between trees using the known identifications, we find its counterpart
w6 ∈ T̃6.

Similarly, if u2 is an y-parent of w2. Then the local arrangement has to look like the
mirror image of those in Figure 10. Thus the parent v of the top block u in T̃7 has to be
a z- or d-parent, furthermore it can only be of type z2 or d2. The argument is then the
same as above. This completes the proof of the lemma.

Now it is very easy to finish proving the proposition. Clearly, |I i,jD | = |D|. On the
other hand, observe, that I2T ∪ I4T has exactly one identification written down for each
vertex having a z- or a d-parent in T̃5, and one identification for each vertex having a z-
or d-parent in T̃7. But only top blocks can have z- or d-parents, hence |I2T ∪ I4T | 6 2|T |,
and so one of them has to be at most of size |T |. Finally one could repeat the whole
argument of Lemma 22 with identifications sets I6B and I8B defined entirely analogously,
reversing top and bottom everywhere. Then one of these two strong identification sets
have to be of size at most |B|.

So we have found three identification sets of size at most |D|, |T |, and |B| respectively.
Since |D| + |T | + |B| = n, one of these have to be of size at most n/3, proving the
proposition, completing the proof of Theorem 3.
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