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Abstract

Recently, Došlić, and Liu and Wang developed techniques for dealing with the
log-convexity of sequences. In this paper, we present a criterion for the log-convexity
of some combinatorial sequences. In order to prove the log-convexity of a sequence
satisfying a three-term recurrence, by our method, it suffices to compute a constant
number of terms at the beginning of the sequence. For example, in order to prove
the log-convexity of the Apéry numbers An, by our method, we just need to evaluate
the values of An for 0 6 n 6 6. As applications, we prove the log-convexity of some
famous sequences including the Catalan-Larcombe-French numbers. This confirms
a conjecture given by Sun.
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1 Introduction

A positive sequence {Sn}∞n=0 is said to be log-convex (respectively log-concave) if for n > 1,

Sn
Sn−1

6
Sn+1

Sn
(respectively

Sn
Sn−1

>
Sn+1

Sn
). (1)

Meanwhile, the sequence {Sn}∞n=0 is called strictly log-convex (log-concave) if the inequal-
ity in (1.1) is strict for all n > 1. In 1994, Engel [8] proved the log-convexity of the
Bell numbers. Recently, Došlić [4, 5, 6], Došlić and Veljan [7], and Liu and Wang [14]
developed techniques for proving the log-convexity of sequences. Došlić [4, 5, 6] presented
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several methods for dealing with the log-convexity of combinatorial sequences. He proved
that the Motzkin numbers, the Fine numbers, the Franel numbers of order 3 and 4, the
Apéry numbers, the large Schröder numbers, the derangements numbers and the central
Delannoy numbers are log-convex. In their wonderful paper [14], Liu and Wang proved
that the log-convexity is preserved under componentwise sum, under binomial convolu-
tion, and by the linear transformations given by the matrices of binomial coefficients and
Stirling numbers of two kinds. Many combinatorial sequences satisfy a three-term recur-
rence. Liu and Wang [14] presented some criterions for the log-convexity of the sequences
{zn}∞n=0 satisfying the following recurrence

a(n)zn+1 = b(n)zn + c(n)zn−1, (2)

where a(n), b(n) and c(n) are positive for n > 1, Liu and Wang [14] proved the following
theorem.

Theorem 1. Let {zn}∞n=0 be defined by (2) and

λn =
b(n) +

√
b2(n) + 4a(n)c(n)

2a(n)
. (3)

Suppose that z0, z1, z2, z3 is log-convex and that the inequality

a(n)λn−1λn+1 − b(n)λ(n− 1)− c(n) > 0 (4)

is true for n > 2. Then the sequence {zn}∞n=0 is log-convex.

Liu and Wang [14] also considered the log-convexity of the sequence {zn}∞n=0 defined
by

(αn + α0)zn+1 = (β1n+ β0)zn − (γ1n+ γ0)zn−1. (5)

for n > 1. They gave criterions for the log-convexity of the sequences {zn}∞n=0. Employing
their criterions, they proved the log-convexity of some combinatorial sequences. Liu [13]
gave sufficient conditions for the positivity of the sequences defined by (5).

Motivated by these results established by Liu and Wang [14], in this paper, we inves-
tigate the log-convexity problem of the sequence {Sn}∞n=0 having the following three-term
recurrence

Sn =

∑k
i=0 ain

i∑k
i=0 bin

i
Sn−1 −

∑l
i=0 cin

i∑l
i=0 din

i
Sn−2 (n > 2), (6)

where gcd(
∑k

i=0 ain
i,
∑k

i=0 bin
i) = gcd(

∑l
i=0 cin

i,
∑l

i=0 din
i) = 1 and k, l, ak, bk, cl and dl

are positive numbers. The authors [19] gave a criterion for the positivity of the sequence
{Sn}∞n=0 defined by (6). The aim of this paper is to present a criterion for the log-
convexity of some famous combinatorial sequences. By our method, in order to determine
the log-convexity of the sequence {Sn}∞n=0 defined by (6), it suffices to compute a constant
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number of terms at the beginning of the sequence {Sn}∞n=0. As applications, we prove
some famous combinatorial sequences are strictly log-convex. Specially, we show that
the Catalan-Larcombe-French numbers {Pn}∞n=0 is strictly log-convex which confirms a
conjecture given by Sun [18].

In order to state our main result, we first introduce some notations. Given a polynomial
f(n) defined by

f(n) =
k∑
i=0

fin
i, (7)

where fi (0 6 i 6 k) are real numbers and fk > 0. Define an operator L on f(n) by

L(f(n)) =
1

fk

∑
06i6k−1, fi<0

|fi|. (8)

For example,

L(5n4 − 2n3 + 4n2 − 6n− 3) =
11

5
. (9)

It is easy to see that f(n) > 0 for n > [L(f(n))] + 1.
Throughout this paper, we always let∑k

i=0 ai(n+ 2)i∑k
i=0 bi(n+ 2)i

−
∑k

i=0 ai(n+ 1)i∑k
i=0 bi(n+ 1)i

=

∑r
j=0 ejn

j∑s
t=0 htn

t
, (10)

∑l
i=0 ci(n+ 2)i∑l
i=0 di(n+ 2)i

−
∑l

i=0 ci(n+ 1)i∑l
i=0 di(n+ 1)i

=

∑u
j=0 pjn

j∑v
t=0 qtn

t
, (11)

and ∑k
i=0 ai(n+ 2)i∑k
i=0 bi(n+ 2)i

−
∑l

i=0 ci(n+ 2)i∑l
i=0 di(n+ 2)i

(
∑v

t=0 qtn
t)
(∑r

j=0 ejn
j
)

(∑u
j=0 pjn

j
)

(
∑s

t=0 htn
t)

−

(∑u
j=0 pj(n+ 1)j

)
(
∑s

t=0 ht(n+ 1)t)

(
∑v

t=0 qt(n+ 1)t)
(∑r

j=0 ej(n+ 1)j
) =

∑α
i=0 xin

i∑β
i=0 yin

i
, (12)

where hs > 0, qv > 0, yβ > 0 and

gcd

(
r∑
j=0

ejn
j,

s∑
t=0

htn
t

)
= gcd

(
u∑
j=0

pjn
j,

v∑
t=0

qtn
t

)
= gcd

(
α∑
i=0

xin
i,

β∑
i=0

yin
i

)
= 1.

Our main result can be stated as follows.
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Theorem 2. Let {Sn}∞n=0 be a positive sequence and satisfy (6). If pu > 0, er > 0, xα > 0
and there exists an integer N0 such that

N0 > r1 = max

{[
L(

l∑
i=0

cin
i)

]
,

[
L(

l∑
i=0

din
i)

]
,

[
L(

r∑
j=0

ejn
j)

]
,

[
L(

s∑
t=0

htn
t)

]
,

[
L(

u∑
j=0

pjn
j)

]
,

[
L(

v∑
t=0

qtn
t)

]
,

[
L(

α∑
i=0

xin
i)

]
,

[
L(

β∑
i=0

yin
i)

]}
+ 1 (13)

and

SN0

SN0−1
<
SN0+1

SN0

, (14)

SN0+1

SN0

>

(∑u
j=0 pjN

j
0

)
(
∑s

t=0 htN
t
0)

(
∑v

t=0 qtN
t
0)
(∑r

j=0 ejN
j
0

) , (15)

then the sequence {Sn}∞n=N0
is strictly log-convex, namely,

Sn
Sn−1

<
Sn+1

Sn
, (n > N0). (16)

This paper is organized as follows. We give the proof of Theorem 2 in Sections 2.
As applications of Theorem 2, in Section 3, we prove the log-convexity of some famous
sequences including the Catalan-Larcombe-French numbers. This confirms a conjecture
given by Sun [18].

2 Proof of Theorem 2

In this section, we present the proof of Theorem 2.

Proof. By the definition of r1, we see that for all n > N0 > r1,∑l
i=0 cin

i∑l
i=0 din

i
> 0, (17)

∑k
i=0 ai(n+ 2)i∑k
i=0 bi(n+ 2)i

−
∑k

i=0 ai(n+ 1)i∑k
i=0 bi(n+ 1)i

=

∑r
j=0 ejn

j∑s
t=0 htn

t
> 0, (18)

∑k
i=0 ci(n+ 2)i∑k
i=0 di(n+ 2)i

−
∑k

i=0 ci(n+ 1)i∑k
i=0 di(n+ 1)i

=

∑u
j=0 pjn

j∑v
t=0 qtn

t
> 0, (19)

and ∑α
i=0 xin

i∑β
i=0 yin

i
> 0. (20)
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We first give a lower bound for Sn+1

Sn
. Moreover, we prove that for n > N0,

Sn+1

Sn
>

(∑u
j=0 pjn

j
)

(
∑s

t=0 htn
t)

(
∑v

t=0 qtn
t)
(∑r

j=0 ejn
j
) . (21)

We prove (21) by induction on n. By (15), we see that (21) holds for n = N0. Suppose
that (21) holds for n = m > N0, that is,

Sm+1

Sm
>

(∑u
j=0 pjm

j
)

(
∑s

t=0 htm
t)

(
∑v

t=0 qtm
t)
(∑r

j=0 ejm
j
) . (22)

It follows from (17), (18) and (22) that for m > N0,

−
∑l

i=0 ci(m+ 2)i∑l
i=0 di(m+ 2)i

Sm
Sm+1

> −
∑l

i=0 ci(m+ 2)i∑l
i=0 di(m+ 2)i

(
∑v

t=0 qtm
t)
(∑r

j=0 ejm
j
)

(∑u
j=0 pjm

j
)

(
∑s

t=0 htm
t)
. (23)

Now, we are ready to show that (21) also holds for n = m + 1. Employing (6) and (23),
we deduce that

Sm+2

Sm+1

=

∑k
i=0 ai(m+ 2)i∑k
i=0 bi(m+ 2)i

−
∑l

i=0 ci(m+ 2)i∑l
i=0 di(m+ 2)i

Sm
Sm+1

>

∑k
i=0 ai(m+ 2)i∑k
i=0 bi(m+ 2)i

−
∑l

i=0 ci(m+ 2)i∑l
i=0 di(m+ 2)i

(
∑v

t=0 qtm
t)
(∑r

j=0 ejm
j
)

(∑u
j=0 pjm

j
)

(
∑s

t=0 htm
t)
. (24)

In view of (12), (20) and (24), we find that for m > N0

Sm+2

Sm+1

−

(∑u
j=0 pj(m+ 1)j

)
(
∑s

t=0 ht(m+ 1)t)

(
∑v

t=0 qt(m+ 1)t)
(∑r

j=0 ej(m+ 1)j
)

>

∑k
i=0 ai(m+ 2)i∑k
i=0 bi(m+ 2)i

−
∑l

i=0 ci(m+ 2)i∑l
i=0 di(m+ 2)i

(
∑v

t=0 qtm
t)
(∑r

j=0 ejm
j
)

(∑u
j=0 pjm

j
)

(
∑s

t=0 htm
t)

−

(∑u
j=0 pj(m+ 1)j

)
(
∑s

t=0 ht(m+ 1)t)

(
∑v

t=0 qt(m+ 1)t)
(∑r

j=0 ej(m+ 1)j
)

=

∑α
i=0 xim

i∑β
i=0 yim

i
> 0, (25)

the electronic journal of combinatorics 20(4) (2013), #P3 5



which implies that (21) is true for n = m + 1. By induction, we have proved (21) holds
for n > N0.

Now, we turn to prove (16). We also prove (16) by induction on n. It follows from
(14) that (16) holds for n = N0. Assume that (16) is true for n = m > N0, namely,

Sm
Sm−1

<
Sm+1

Sm
. (26)

By (17) and (26), we find that for m > N0∑l
i=0 ci(m+ 1)i∑l
i=0 di(m+ 1)i

Sm−1
Sm

>

∑l
i=0 ci(m+ 1)i∑l
i=0 di(m+ 1)i

Sm
Sm+1

. (27)

Employing (6), (10), (11), (19), (21) and (27), we deduce that for m > N0,

Sm+2

Sm+1

− Sm+1

Sm
=

∑k
i=0 ai(m+ 2)i∑k
i=0 bi(m+ 2)i

−
∑l

i=0 ci(m+ 2)i∑l
i=0 di(m+ 2)i

Sm
Sm+1

−
∑k

i=0 ai(m+ 1)i∑k
i=0 bi(m+ 1)i

+

∑l
i=0 ci(m+ 1)i∑l
i=0 di(m+ 1)i

Sm−1
Sm

>

∑k
i=0 ai(m+ 2)i∑k
i=0 bi(m+ 2)i

−
∑k

i=0 ai(m+ 1)i∑k
i=0 bi(m+ 1)i

+

(∑l
i=0 ci(m+ 1)i∑l
i=0 di(m+ 1)i

−
∑l

i=0 ci(m+ 2)i∑l
i=0 di(m+ 2)i

)
Sm
Sm+1

=

∑r
j=0 ejm

j∑s
t=0 htm

t
−
∑u

j=0 pjm
j∑v

t=0 qtm
t

Sm
Sm+1

>

∑r
j=0 ejm

j∑s
t=0 htm

t
−
∑u

j=0 pjm
j∑v

t=0 qtm
t

 (
∑v

t=0 qtm
t)
(∑r

j=0 ejm
j
)

(∑u
j=0 pjm

j
)

(
∑s

t=0 htm
t)

 = 0, (28)

which implies that (16) holds for n = m + 1. Theorem 2 is proved by induction. This
completes the proof.

3 Applications of Theorem 2

In this section, employing the criterion given in this paper, we prove some results on the
log-convexity of some combinatorial sequences.

The Catalan-Larcombe-French numbers Pn for n > 0 were first defined by Catalan in
[2], in terms of the “Segner numbers”. Catalan stated that the Pn could be defined by
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the following recurrence relation:

Pn =
8(3n2 − 3n+ 1)

n2
Pn−1 −

128(n− 1)2

n2
Pn−2, (29)

for n > 2, with the initial values given by P0 = 1 and P1 = 8. Larcombe and French [12]
gave a detailed account of properties of Pn, and obtained the following formulas for these
numbers:

Pn =
n∑
k=0

(
2k
k

)2(2(n−k)
n−k

)2(
n
k

) = 2n
bn/2c∑
k=0

(
n

2k

)(
2k

k

)2

4n−2k (30)

and

Pn =
1

n!

∑
r+s=n

(
2r

r

)(
2s

s

)
(2r)!(2s)!

r!s!
=
∑
r+s=n

(
2r
r

)2(2s
s

)2(
n
r

) (31)

for n > 0. The first few Pn are 1, 8, 80, 896, 10816, 137728. This is the sequence
A053175 in Sloane’s database [16]. The sequence {Pn}∞n=0 is also related to the theory of
modular forms; see [20].

Recently, Sun [18] conjectured that

Conjecture 3. The sequences {Pn+1/Pn}∞n=0 and { n
√
Pn}∞n=1 are strictly increasing.

Employing Theorem 2, we prove that

Corollary 4. Conjecture 3 is true.

Proof. By (13), we find r1 = 3. Set N0 = 3. It is easy to check that (14) and (15) hold
for N0 = 3. By Theorem 2, we see that the sequence {Pn}∞n=3 is strictly log-convex. It is
a routine to verify that Pi+1

Pi
> Pi

Pi−1
for 1 6 i 6 3. Thus, the sequence {Pn}∞n=0 is strictly

log-convex and the sequence {Pn+1/Pn}∞n=0 is strictly increasing, namely,

Pn+1

Pn
>

Pn
Pn−1

, n > 1. (32)

By (32) and the fact P0 = 1, we deduce that

Pn = P0

n∏
i=1

Pi
Pi−1

<

(
Pn+1

Pn

)n
, (33)

which implies that

P n+1
n < P n

n+1. (34)

It follows from (34) that the sequences { n
√
Pn}∞n=1 is strictly increasing. This completes

the proof.
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The Apéry number An is defined by

An =
34n3 − 51n2 + 27n− 5

n3
An−1 −

(n− 1)3

n3
An−2, n > 2, (35)

with A0 = 1 and A1 = 5. The Apéry numbers play a key role in Apéry’s proof of the
irrationality of ζ(3) =

∑∞
n=1

1
n3 ; see [1]. The log-convexity of {An}∞n=0 was proved by

Došlić [4]. Chen and Xia [3] proved that the sequence {An}∞n=0 is 2-log-convex. Now,
we present another proof of the log-convexity of {An}∞n=0. Set k = l = 3, a3 = 34 and
b3 = c3 = d3 = 1 in Theorem 2. By the definition of r1, we obtain r1 = 5. Set N0 = 5.
We can check that (14) and (15) hold for N0 = 5. Thus, by Theorem 2, the sequence
{An}∞n=5 is log-convex. We can also verify that Ai+1

Ai
> Ai

Ai−1
for 1 6 i 6 5. Thus, the

following corollary is true.

Corollary 5. The sequence {An}∞n=0 is strictly log-convex.

The central Delannoy number Dn is defined by

Dn =
3(2n− 1)

n
Dn−1 −

n− 1

n
Dn−2, n > 2, (36)

with D0 = 1 and D1 = 3; see [15]. Došlić [4] , and Liu and Wang [14] proved the log-
convexity of the sequence {Dn}∞n=0. By (13), we find r1 = 2. Let N0 = 2. It is easy to
check that (14) and (15) hold for N0 = 2. The following corollary follows from Theorem
2 and the fact D2

D1
> D1

D0
.

Corollary 6. The sequence {Dn}∞n=0 is strictly log-convex.

The little Schröer number sn is defined by

sn =
3(2n− 1)

n+ 1
sn−1 −

n− 2

n+ 1
sn−2, n > 2, (37)

with s0 = 1 and s1 = 1; see [9, 17]. Došlić [4] , and Liu and Wang [14] proved the
log-convexity of the sequence {sn}∞n=0. It is easy to see that r1 = 3. Let N0 = 3. We can
check that (14) and (15) hold for N0 = 3. The following corollary follows from Theorem
2 and the fact s3

s2
> s2

s1
> s1

s0
.

Corollary 7. The sequence {sn}∞n=0 is strictly log-convex.

Let Rn be the number of the set of all tree-like polyhexes with n + 1 hexagons. The
sequence {Rn}∞n=0 satisfies the recurrence

Rn =
3(2n− 1)

n+ 1
Rn−1 −

5(n− 2)

n+ 1
Rn−2, n > 2, (38)

with R0 = 1 and R1 = 1; see [11]. The sequence {Rn}∞n=0 is the sequence A002212
in Sloane’s database [16]. Liu and Wang [14] proved the log-convexity of the sequence
{Rn}∞n=0. Let N0 = 3. Employing Theorem 2 and evaluating the values of R2, R3 and
R4, we can prove the following corollary.
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Corollary 8. The sequence {Rn}∞n=0 is strictly log-convex.

Let wn be the number of walks on cubic lattice with n steps, starting and finishing on
the x−y plane and never going below it. The sequence {wn}∞n=0 has three-term recurrence
relation

wn =
4(2n+ 1)

n+ 2
wn−1 −

12(n− 1)

n+ 2
wn−2, n > 2, (39)

with w0 = 1 and w1 = 4; see [10]. The sequence {wn}∞n=0 is the sequence A005572
in Sloane’s database [16]. Liu and Wang [14] proved the log-convexity of the sequence
{wn}∞n=0. Set N0 = 2. The following corollary follows from Theorem 2 and the fact
wi+1

wi
> wi

wi−1
for i = 1, 2.

Corollary 9. The sequence {wn}∞n=0 is strictly log-convex.

Let Fn be defined by

Fn =
4n4 − n3 − n2 + 3n+ 2

n4 + 2n2 − 1
Fn−1 −

2n3 − 5n2 − n+ 1

2n3 − 3n2 + 2n
Fn−2, n > 2, (40)

with F0 = 1 and F1 = 1. By (13), we find r1 = 42. Set N0 = 42. It is easy to check
that (14) and (15) hold for N0 = 42. We can also verify that Fi+1

Fi
> Fi

Fi−1
for 3 6 i 6 42.

Hence, we can prove the following corollary.

Corollary 10. The sequence {Fn}∞n=2 is strictly log-convex.

To conclude this paper, we remark that the method presented in this paper can be
used to prove the log-convexity of some combinatorial sequences satisfied longer recurrence
relations. The principle is the same.
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Amer. Math. Soc., 139: 391–400, 2011.
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