
Inequivalence of
skew Hadamard difference sets and

triple intersection numbers modulo a prime

Koji Momihara∗

Faculty of Education
Kumamoto University

2-40-1 Kurokami, Kumamoto 860-8555, Japan.

momihara@educ.kumamoto-u.ac.jp

Submitted: Sep 28, 2013; Accepted: Dec 10, 2013; Published: Dec 17, 2013

Mathematics Subject Classifications: 05B10, 05E30

Abstract

Recently, Feng and Xiang [10] found a new construction of skew Hadamard
difference sets in elementary abelian groups. In this paper, we introduce a new
invariant for equivalence of skew Hadamard difference sets, namely triple intersec-
tion numbers modulo a prime, and discuss inequivalence between Feng-Xiang skew
Hadamard difference sets and the Paley difference sets. As a consequence, we show
that their construction produces infinitely many skew Hadamard difference sets in-
equivalent to the Paley difference sets.

Keywords: skew Hadamard difference set, Feng-Xiang difference set, Paley differ-
ence set

1 Introduction

Let (G,+) be an (additively written) finite group of order v. A k-subset D ⊆ G is called
a (v, k, λ) difference set if the list of differences x− y with x, y ∈ D and x 6= y covers each
nonzero element of G exactly λ times. We say that two difference sets D1 and D2 with
the same parameters in an abelian group G are equivalent if there exists an automorphism
σ ∈ Aut(G) and an element x ∈ G such that σ(D1) + x = D2. For general theory on
difference sets, we refer the reader to [1].
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A difference set D in a finite group G is called skew Hadamard if G is the disjoint union
of D, −D, and {0}. The primary example (and for many years, the only known example
in abelian groups) of skew Hadamard difference sets is the classical Paley difference set
in (Fq,+) consisting of the nonzero squares of Fq, where Fq is the finite field of order q,
and q is a prime power congruent to 3 modulo 4. This situation changed dramatically
in recent years. Skew Hadamard difference sets are currently under intensive study; see
[3, 6, 7, 8, 9, 11, 10, 14, 15, 16, 17] for recent results and the introduction of [10] for a
short survey of skew Hadamard difference sets and related problems.

There were two major conjectures in this area: (i) If an abelian groupG contains a skew
Hadamard difference set, then G is necessarily elementary abelian. (ii) Up to equivalence
the Paley difference sets mentioned above are the only skew Hadamard difference sets in
abelian groups. The former conjecture is still open in general. The latter conjecture turned
out to be false: Ding and Yuan [7] constructed a family of skew Hadamard difference sets
in (F3m ,+), where m > 3 is odd, by using Dickson polynomials of order 5 and showed that
two examples in the family are inequivalent to the Paley difference sets. Very recently,
Ding, Pott, and Wang [6] found more skew Hadamard difference sets inequivalent to
the Paley difference sets from Dickson polynomials of order 7. Muzychuk [15] gave a
prolific construction of skew Hadamard difference sets in an elementary abelian group
of order q3 and showed that his skew Hadamard difference sets are inequivalent to the
Paley difference sets. Although many other constructions have been known recently, as
far as the author knows, there has been no theoretical result on the inequivalence problem
of skew Hadamard difference sets except for [15]. Indeed, in most of recent papers, the
inequivalence of skew Hadamard difference sets were checked by computer. Here, we
should remark that some of known invariants for equivalence of ordinary difference sets
(e.g., p-ranks of the symmetric designs developed from difference sets) do not contribute
anything to the inequivalence problem of skew Hadamard difference sets D since they are
determined from only the parameters of D [1, Chapter VI, Theorem 8.22]. On the other
hand, some invariants (e.g., triple intersection numbers) are difficult to compute without
computer.

A classical method for constructing difference sets in the additive groups of finite fields
is to use cyclotomic classes of finite fields. Let p be a prime, f a positive integer, and let
q = pf . Let k > 1 be an integer such that N |(q − 1), and γ be a primitive element of

Fq. Then the cosets C
(N,q)
i = γi〈γN〉, 0 6 i 6 N − 1, are called the cyclotomic classes of

order N of Fq.
In this paper, we are particularly interested in the following construction of skew

Hadamard difference sets given by Feng and Xiang [10].

Theorem 1. ([10, Theorem 3.2]) Let p1 ≡ 7 (mod 8) be a prime, N = 2pm1 , and let
p ≡ 3 (mod 4) be a prime such that f := ordN(p) = φ(N)/2. Let s be any odd integer,

I any subset of Z/NZ such that {i (mod pm1 ) | i ∈ I} = Z/pm1 Z, and let D =
⋃
i∈I C

(N,q)
i ,

where q = pfs. Then, D is a skew Hadamard difference set.

We call the difference set in Theorem 1 as the Feng-Xiang skew Hadamard difference
set with index set I. Let t be an odd integer and γ be a primitive element of Fqt . Put
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ω = γ(qt−1)/(q−1). If D =
⋃
i∈I C

(N,q)
i =

⋃
i∈I ω

i〈ωN〉 is a Feng-Xiang skew Hadamard

difference set, then so does D′ =
⋃
i∈I C

(N,qt)
i =

⋃
i∈I γ

i〈γN〉. We call D′ the lift of D to
Fqt . Furthermore, throughout this paper, we denote the set

⋃
i∈I ω

ti〈ωN〉 by D(t). It is
clear that D(t) is also a Feng-Xiang skew Hadamard difference set if gcd (t, N) = 1.

In this paper, we introduce a new invariant for equivalence of skew Hadamard differ-
ence sets, namely triple intersection numbers modulo a prime, and show that infinitely
many Feng-Xiang skew Hadamard difference sets are inequivalent to the Paley differ-
ence sets by using “recursive” techniques. Besides the existence of infinitely many skew
Hadamard difference sets inequivalent to the Paley difference sets, our technique may
contribute to inequivalence problems on combinatorial objects defined in finite fields not
only on skew Hadamard difference sets.

This paper is organized as follows. In Section 2, we introduce some preliminaries on
characters of finite fields, and present a proposition on divisibility of a character sum
over a finite field by its characteristic. In Section 3, we introduce the concept of “triple
intersection numbers modulo a prime” and we give two sufficient conditions for lifts of
Feng-Xiang skew Hadamard difference sets being inequivalent to the Paley difference
sets. As an example, we show that there are infinitely many integers t such that the
lifts of a Feng-Xiang skew Hadamard difference set in F113 to F113t are inequivalent to
the Paley difference sets. In Section 4, we conclude this paper with further examples of
skew Hadamard difference sets inequivalent to the Paley difference sets, and some open
problems.

2 Preliminaries on characters

Let p be a prime, f a positive integer, and q = pf . The canonical additive character ψ of
Fq is defined by

ψ : Fq → C∗, ψ(x) = ζ
Trq/p(x)
p ,

where ζp = exp(2πi
p

) and Trq/p is the trace from Fq to Fp. For a multiplicative character
χN of order N of Fq, we define the Gauss sum

Gq(χN) =
∑
x∈F∗q

χN(x)ψ(x),

which belongs to the ring Z[ζpN ] of integers in the cyclotomic field Q(ζpN). Let σa,b be
the automorphism of Q(ζpN) determined by

σa,b(ζN) = ζaN , σa,b(ζp) = ζbp

for gcd (a,N) = gcd (b, p) = 1. Below are several basic properties of Gauss sums [4]:

(i) Gq(χN)Gq(χN) = q if χ is nontrivial;

(ii) Gq(χ
p
N) = Gq(χN), where p is the characteristic of Fq;
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(iii) Gq(χ
−1
N ) = χN(−1)Gq(χN);

(iv) Gq(χN) = −1 if χN is trivial;

(v) σa,b(Gq(χN)) = χ−aN (b)Gq(χ
a
N).

In general, the explicit evaluation of Gauss sums is a very difficult problem. There are
only a few cases where the Gauss sums have been evaluated. The most well known case
is quadratic case, i.e., the case where N = 2. In this case, it holds that

Gf (χN) = (−1)f−1

(√
(−1)

p−1
2 p

)f
, (1)

cf. [4, Theorem 11.5.4]. The next simple case is the so-called semi-primitive case (also
referred to as uniform cyclotomy or pure Gauss sum), where there exists an integer j such
that pj ≡ −1 (mod N), where N is the order of the multiplicative character involved. The
explicit evaluation of Gauss sums in this case is given in [4]. The next interesting case
is the index 2 case, where the subgroup 〈p〉 generated by p ∈ (Z/NZ)∗ is of index 2 in
(Z/NZ)∗ and −1 6∈ 〈p〉. A complete solution to the problem of evaluating index 2 Gauss
sums was recently given in [18]. The following is the result on evaluation of index 2 Gauss
sums, which was used to prove Theorem 1.

Theorem 2. ([18], Case D; Theorem 4.12) Let N = 2pm1 , where p1 > 3 is a prime such
that p1 ≡ 3 (mod 4) and m is a positive integer. Assume that p is a prime such that
[(Z/NZ)∗ : 〈p〉] = 2. Let f = φ(N)/2, q = pf , and χ be a multiplicative character of
order N of Fq. Then, for 0 6 t 6 m− 1, we have

Gq(χ
pt1) =

 (−1)
p−1
2

( f−1
2
−1)p

f−1
2
−hpt1
√
p∗
(
b+c
√
−p1

2

)2pt1

, if p1 ≡ 3 (mod 8),

(−1)
p−1
2

f−1
2 p

f−1
2
√
p∗, if p1 ≡ 7 (mod 8);

Gq(χ
2pt1) = p

f−pt1h

2

(
b+ c

√
−p1

2

)pt1
;

Gq(χ
pm1 ) = (−1)

p−1
2

f−1
2 p

f−1
2
√
p∗,

where p∗ = (−1)
p−1
2 p, h is the class number of Q(

√
−p1), and b and c are integers deter-

mined by 4ph = b2 + p1c
2 and bp

f−h
2 ≡ −2 (mod p1).

The following theorem, called the Davenport-Hasse lifting formula, is useful for eval-
uating Gauss sums.

Theorem 3. ([12, Theorem 5.14]) Let χ be a nontrivial multiplicative character of Fq =
Fpf and let χ′ be the lifted character of χ to the extension field Fq′ = Fpfs, i.e., χ′(α) :=
χ(NormFq′/Fq(α)) for any α ∈ F∗q′. It holds that

Gq′(χ
′) = (−1)s−1(Gq(χ))s.
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In relation to Gauss sums, we need to define the Jacobi sums. Let χ and χ′ be
multiplicative characters of Fq. We define the sum

J(χ, χ′) =
∑

x∈Fq ,x 6=0,1

χ(x)χ′(1− x),

the so-called Jacobi sum of Fq. It is known [12, Theorem 5.21] that if χ, χ′, and χχ′ are
nontrivial, it holds that

J(χ, χ′) =
Gq(χ)Gq(χ

′)

Gq(χχ′)
. (2)

We will use this formula later.
Now we are interested in computing the following character sum modulo the charac-

teristic p: ∑
x∈F

pf

χ(xi1(x+ 1)i2(x+ a)i3) (mod p),

where χ is a multiplicative character of Fpf . The following theorem is well known as the
Weil theorem on multiplicative character sums.

Theorem 4. ([12, Theorems 5.39 and 5.41]) Let χ be a multiplicative character of Fq of
order N > 1 and f ∈ Fq[x] be a monic polynomial of positive degree that is not an N th
power of a polynomial. Let d be the number of distinct roots of f in its splitting field
over Fq and suppose that d > 2. Then there exist complex numbers w1, . . . , wd−1, only
depending on f and χ, such that for any positive integer t we have∑

x∈Fqt

χ′(f(x)) = −wt1 − · · · − wtd−1, (3)

where χ′ is the lift of χ to Fqt. In particular, it holds that∣∣∣∣ ∑
x∈Fqt

χ′(f(x))

∣∣∣∣ 6 (d− 1)
√
qt. (4)

With the notations above, we set d = 3. By Warning’s formula [12, Theorem 1.76],
wt1 + wt2 can be expressed as follows:

wt1 + wt2 =

bt/2c∑
j=0

(−1)j
t

t− j

(
t− j
j

)
(w1 + w2)t−2j(w1w2)j, (5)

where each coefficient of (w1 + w2)t−2j(w1w2)j takes an integral value. We assume that
f(x) can be decomposed as f(x) = (x−a)i1(x−b)i2(x−c)i3 ∈ Fq[x] for distinct a, b, c ∈ Fq
and i1, i2, i3 6≡ 0 (mod N). As found in the proof of Theorem 5.39 (also Eqs. (5.19) and
(5.23)) in [12], we have

w1w2 =
∑
g∈Φ2

λ(g), (6)
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where Φ2 is the set of all monic polynomials of degree 2 over Fq and λ is defined by
λ(g) = χi1(g(a))χi2(g(b))χi3(g(c)) for g(x) ∈ Φ2. Note that if t is an odd prime, by
Eq. (5) we obviously have

wt1 + wt2 ≡ (w1 + w2)t (mod t)

since w1 + w2, w1w2 ∈ Z[ζN ].
We will use the following proposition in the next section.

Proposition 5. Let χ be a multiplicative character of Fq of order N > 1 and f(x) =
xi1(x + 1)i2(x + a)i3 ∈ Fq[x] for a ∈ F∗p \ {1} and i1, i2, i3 6≡ 0 (mod N). Assume that p
divides J(χi2 , χi3)J(χi1 , χi2i3) for i2 and i3 such that χi2i3 is nontrivial. Then, for any odd
integer t it holds that ∑

x∈Fqt

χ′(f(x)) ≡
(∑
x∈Fq

χ(f(x))

)t
(mod p),

where χ′ is the lift of χ to Fqt.

Proof: By Eq. (3) of Theorem 4 and Eq. (5), it is enough to show that w1w2 ≡
0 (mod p). By Eq. (6), we need to compute the sum

∑
g∈Φ2

λ(g). By the definition of λ,
we have∑
g∈Φ2

λ(g) =
∑
x∈Fq

∑
y∈Fq

χi1(y)χi2(1− x+ y)χi3(a2 − ax+ y)

=
∑
z∈Fq

∑
y∈Fq

χi1(y)χi2(z)χi3(a2 + y(1− a)− a+ az)

=
∑
z∈Fq

∑
y∈Fq\{a}

χi1(y)χi2(z)χi3(a2 + y(1− a)− a)χi3
(

1 +
a

a2 + y(1− a)− a
z

)
(7a)

+
∑
z∈Fq

χi1(a)χi2(z)χi3(az). (7b)

It is clear that

(7b) =

{
χi1(a)χ−i2(a)(q − 1) if χi2i3 is trivial,
0 if χi2i3 is nontrivial.

Next, we compute the sum (7a). By the definition of Jacobi sums, we have

(7a) = J(χi2 , χi3)
∑

y∈Fq\{a}

χi1(y)χ−i2
(

−a
a2 + y(1− a)− a

)
χi3(a2 + y(1− a)− a)

= J(χi2 , χi3)χ−i2(−a)
∑

y∈Fq\{a}

χi1(y)χi2i3(a2 + y(1− a)− a)

= J(χi2 , χi3)χ−i2(−a)χi2i3(a2 − a)χ−i1
(
a− 1

a2 − a

) ∑
w∈Fq\{−1}

χi1(−w)χi2i3(1 + w). (8)
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If χi2χi3 is nontrivial, we have

(8) = χ−i2(−a)χi2i3(a2 − a)χi1(a)J(χi2 , χi3)J(χi1 , χi2i3).

If χi2χi3 is trivial, by J(χi2 , χi3) = −χi2(−1), we have

(8) = χ−i2(−a)χi1(a)J(χi2 , χi3)
∑

w∈Fq\{−1}

χi1(−w)

= −χ−i2(−a)χi1(a)J(χi2 , χi3) = χ−i2(a)χi1(a).

By the assumption that p | J(χi2 , χi3)J(χi1 , χi2i3) for i2 and i3 such that χi2i3 is nontrivial,
we finally obtain∑
g∈Φ2

λ(g) =

{
χi1(a)χ−i2(a)q if χi2i3 is trivial,
χ−i2(−a)χi2i3(a2 − a)χi1(a)J(χi2 , χi3)J(χi1 , χi2i3) if χi2i3 is nontrivial,

≡ 0 (mod p).

Then the proof is complete.

Remark 6. Let q and N be defined as in Theorem 1. Assume that i1, i2, and i3 are odd
and χi2i3 is nontrivial. Note that χi1i2i3 is nontrivial since i1, i2, and i3 are odd. Then, by
Eq. (2), we have

J(χi2 , χi3)J(χi1 , χi2i3) =
G(χi2)G(χi3)

G(χi2i3)
· G(χi1)G(χi2i3)

G(χi1i2i3)
=
G(χi1)G(χi2)G(χi3)

G(χi1i2i3)
.

By Theorems 2 and 3, we have

J(χi2 , χi3)J(χi1 , χi2i3) =

(
(−1)

p−1
2

f−1
2 p

f−1
2
√
p∗
)2s

≡ 0 (mod p),

i.e., the condition of Proposition 5 is satisfied.

3 Triple intersection numbers modulo a prime

Let D ⊆ Fq be a skew Hadamard difference set and ω a primitive element of Fq. For
a ∈ F∗p \ {1}, let

Tω`,a(D) := |D ∩ (D − ω`) ∩ (D − aω`)|.
The set {Tω`,a(D) | 0 6 ` 6 q − 2} is an invariant for equivalence of skew Hadamard
difference sets. In fact, if D′ is a skew Hadamard difference set equivalent to D, namely
σ(D) = D′ + x for σ ∈ Aut(Fq,+) and x ∈ Fq, we have

{Tω`,a(D) | 0 6 ` 6 q − 2}
= {|σ(D ∩ (D − ω`) ∩ (D − aω`))| : 0 6 ` 6 q − 2}
= {|σ(D) ∩ (σ(D)− σ(ω`)) ∩ (σ(D)− aσ(ω`))| : 0 6 ` 6 q − 2}
= {|D′ ∩ (D′ − ω`) ∩ (D′ − aω`)| : 0 6 ` 6 q − 2}.
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If D is the Paley difference set in Fq, then |{Tω`,a(D) | 0 6 ` 6 q − 2}| 6 2 since
T1,a(D) = Tω2`,a(D) and Tω,a(D) = Tω2`+1,a(D) for all 0 6 ` 6 (q − 3)/2. Hence, if a
skew Hadamard difference set D′ satisfies |{Tω`,a(D

′) | 0 6 ` 6 q − 2}| > 3, then D′ is
inequivalent to the Paley difference set D.

Let D =
⋃
i∈I C

(N,q)
i ⊆ Fpfs = Fq be a Feng-Xiang skew Hadamard difference set. It is

clear that
|{Tω`,a(D) | 0 6 ` 6 q − 2}| = |{Tω`,a(D) | 0 6 ` 6 N − 1}|.

In this section, we compute the size of the set {Tω`,a(D) (mod t) | 0 6 ` 6 N − 1} for a
prime t. It is clear that this set is also an invariant for equivalence of skew Hadamard dif-
ference sets. Hence, if the set above contains at least three numbers, then D is inequivalent
to the Paley difference set.

Let χN be the multiplicative character of order N of Fq such that χN(ω) = ζN and
let ηp be the quadratic character of Fp. Note that χN |Fp = ηp. Since the characteristic

function of D =
⋃
i∈I C

(N,q)
i is given by

f(x) =
1

N

∑
h∈I

N−1∑
i=0

ζ−ihN χiN(x),

we have

N3 · Tω`,a(D)

=
∑

x∈Fq\{0,−1,−a}

∑
h1,h2,h3∈I

(N−1∑
i1=0

ζ−i1h1

N χi1
N (x)

)(N−1∑
i2=0

ζ−i2h2

N χi2
N (x+ ω`)

)(N−1∑
i3=0

ζ−i3h3

N χi3
N (x+ aω`)

)

=
∑

x∈Fq\{0,−1,−a}

∑
h1,h2,h3∈I

N−1∑
i1,i2,i3=0

ζ−i1h1−i2h2−i3h3

N χi1
N (x)χi2

N (x+ ω`)χi3
N (x+ aω`).

Write M = N/2. By noting that
∑

h∈I ζ
2h
N = 0, the above is expanded as follows:

M
∑

h2,h3∈I

N−1∑
i2,i3=0

ζ
−i2h2−i3h3+`(i2+i3)
N

∑
x∈Fq\{−1,−a}

χi2
N (x+ 1)χi3

N (x+ a)

−M
∑

h2,h3∈I

∑
i2,i3∈A

ζ
−i2h2−i3h3+`(i2+i3)
N ηp(a)

+M
∑

h1,h3∈I

N−1∑
i1,i3=0

ζ
−i1h1−i3h3+`(i1+i3)
N

∑
x∈Fq\{0,−a}

χi1
N (x)χi3

N (x+ a)

−M
∑

h1,h3∈I

∑
i1,i3∈A

ζ
−i1h1−i3h3+`(i1+i3)
N ηp(−a+ 1)

+M
∑

h1,h2∈I

N−1∑
i1,i2=0

ζ
−i1h1−i2h2+`(i1+i2)
N

∑
x∈Fq\{0,−1}

χi1
N (x)χi2

N (x+ 1)

−M
∑

h1,h2∈I

∑
i1,i2∈A

ζ
−i1h1−i2h2+`(i1+i2)
N ηp(a2 − a)

−M2
∑
h1∈I

N−1∑
i1=0

ζ−i1h1+`i1
N

∑
x∈Fq\{0}

χi1
N (x) +M2

∑
h1∈I

∑
i1∈A

ζ−i1h1+`i1
N

(
ηp(−1) + ηp(−a)

)
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−M2
∑
h2∈I

N−1∑
i2=0

ζ−i2h2+`i2
N

∑
x∈Fq\{−1}

χi2
N (x+ 1) +M2

∑
h2∈I

∑
i2∈A

ζ−i2h2+`i2
N (ηp(1) + ηp(−a+ 1))

−M2
∑
h3∈I

N−1∑
i3=0

ζ−i3h3+`i3
N

∑
x∈Fq\{−a}

χi3
N (x+ a) +M2

∑
h3∈I

∑
i3∈A

ζ−i3h3+`i3
N (ηp(a) + ηp(−1 + a))

+
∑

h1,h2,h3∈I

∑
i1,i2,i3∈A

ζ
−i1h1−i2h2−i3h3+`(i1+i2+i3)
N

∑
x∈Fq

χi1
N (x)χi2

N (x+ 1)χi3
N (x+ a) + (q − 3)M3,

where A = {2j + 1 | 0 6 j 6 (q − 3)/2}. Then, by
∑

x∈F∗q
χN(x) = 0 and

|D ∩ (D + a)| = 1

N2

∑
h,h′∈I

N−1∑
i,i′=0

ζ−ih−i
′h′

N

∑
x∈Fq\{0,a}

χiN(x)χi
′

N(x− a),

the above is also reformulated as

MN2
(
|(D − ω`) ∩ (D − aω`)|+ |D ∩ (D − aω`)|+ |D ∩ (D − ω`)|

)
−M(ηp(a) + ηp(−a+ 1) + ηp(a

2 − a))

(∑
h∈I

∑
i∈A

ζ
i(`−h)
N

)2

− 3M3(q − 1)

−M2 (ηp(−1) + ηp(−a) + ηp(1) + ηp(−a+ 1) + ηp(a) + ηp(−1 + a))

(∑
h∈I

∑
i∈A

ζ−ih+`i
N

)
+

∑
h1,h2,h3∈I

∑
i1,i2,i3∈A

ζ
−i1h1−i2h2−i3h3+`(i1+i2+i3)
N

∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a) + (q − 3)M3.

(9)

Let

Si1,i2,i3(ω
`, I) =

∑
h1,h2,h3∈I

ζ
−i1h1−i2h2−i3h3+`(i1+i2+i3)
N

∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a).

Recall that D is a skew Hadamard difference set, i.e., |D ∩ (D + x)| = q−3
4

for all x ∈ F∗q.
Then, by ηp(−1) = −1, the sum (9) is reformulated as∑

i1,i2,i3∈A

Si1,i2,i3(ω
`, I) + (q − 3)M3 + 3MN2 q − 3

4
− 3M3(q − 1)

−M(ηp(a) + ηp(−a+ 1) + ηp(a
2 − a))

(∑
h∈I

∑
i∈A

ζ
i(`−h)
N

)2

.

Since I (mod pm1 ) = Z/pm1 Z, there is exactly one h′ ∈ I such that ` − h′ ≡ 0 (mod pm1 ).
Write `− h′ = εpm1 . Then, by noting that A = {2j + 1 | 0 6 j 6 pm1 − 1}, we have(∑

h∈I

∑
i∈A

ζ
i(`−h)
N

)2

=

(∑
h∈I

ζ`−hN

pm1 −1∑
j=0

ζ
j(`−h)
pm1

)2

=

(
pm1 ζ

εpm1
N

)2

= p2m
1 .
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Thus, we finally have

N3 · Tω`,a(D) =
∑

i1,i2,i3∈A

Si1,i2,i3(ω
`, I) + (q − 3)M3 + 3MN2 q − 3

4
− 3M3(q − 1)

−M(ηp(a) + ηp(−a+ 1) + ηp(a
2 − a))p2m

1 . (10)

3.1 Triple intersection numbers modulo a prime extension de-
gree

The following theorem gives a sufficient condition for lifts of Feng-Xiang skew Hadamard
difference sets being inequivalent to the Paley difference sets.

Theorem 7. Let t be an odd prime with gcd (t, p1) = 1. Let D =
⋃
i∈I C

(N,q)
i be

a Feng-Xiang skew Hadamard difference set and D′ be the lift of D to Fqt. If the
set {Tω`,a(D

(t−1)) (mod t) | 0 6 ` 6 N − 1} contains u distinct numbers, then so does
{Tγ`,a(D′) (mod t) | 0 6 ` 6 N − 1}, where ω and γ are primitive elements of Fq and Fqt,
respectively.

Proof: Without loss of generality, we can assume that ω = γ(qt−1)/(q−1). Let χN be
a multiplicative character of order N of Fq such that χN(ω) = ζN and χ′N be the lift of
χN to Fqt . Define

S
(t)
i1,i2,i3

(γ`, I) =
∑

h1,h2,h3∈I

ζ
−i1h1−i2h2−i3h3+`(i1+i2+i3)
N

∑
x∈Fqt

χ′
i1
N(x)χ′

i2
N(x+ 1)χ′

i3
N(x+ a).

Then, by Eq. (10), we have

N3 · Tγ`,a(D′) =
∑

i1,i2,i3∈A

S
(t)
i1,i2,i3

(γ`, I) + (qt − 3)M3 + 3MN2 q
t − 3

4
− 3M3(qt − 1)

−M(ηp(a) + ηp(−a+ 1) + ηp(a
2 − a))p2m

1 .

By Eq. (3) of Theorem 4, there are two complex numbers w1, w2 such that∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a) = −w1 − w2

and ∑
x∈Fqt

χ′
i1
N(x)χ′

i2
N(x+ 1)χ′

i3
N(x+ a) = −wt1 − wt2.
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Since t is an odd prime satisfying gcd (t, p1) = 1, we have∑
x∈Fqt

χ′
i1
N(x)χ′

i2
N(x+ 1)χ′

i3
N(x+ a) = −wt1 − wt2

≡ (−w1 − w2)t (mod t)

≡
(∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a)

)t
(mod t)

≡
∑
x∈Fq

χti1N (x)χti2N (x+ 1)χti3N (x+ a) (mod t)

Therefore, we obtain

S
(t)
i1,i2,i3

(γ`, I)

≡
∑

h1,h2,h3∈I

ζ
−ti1(t−1h1)−ti2(t−1h2)−ti3(t−1h3)+(`·t−1)(ti1+ti2+ti3)
N

·
∑
x∈Fq

χti1N (x)χti2N (x+ 1)χti3N (x+ a) (mod t)

= Sti1,ti2,ti3(ω
t−1`, t−1I).

Hence, it holds that{ ∑
i1,i2,i3∈A

S
(t)
i1,i2,i3

(γ`, I) | 0 6 ` 6 N − 1

}
≡
{ ∑
i1,i2,i3∈A

Sti1,ti2,ti3(ω
t−1`, t−1I) | 0 6 ` 6 N − 1

}
(mod t)

≡
{ ∑
i1,i2,i3∈A

Si1,i2,i3(ω
`, t−1I) | 0 6 ` 6 N − 1

}
(mod t). (11)

By the assumption that the set {Tω`,a(D
(t−1)) (mod t) | 0 6 ` 6 N −1} contains u distinct

numbers, we have∣∣∣∣{ ∑
i1,i2,i3∈A

Si1,i2,i3(ω
`, t−1I) (mod t) | 0 6 ` 6 N − 1

}∣∣∣∣ = u.

Then, by Eq. (11), we also have∣∣∣∣{ ∑
i1,i2,i3∈A

S
(t)
i1,i2,i3

(γ`, I) (mod t) | 0 6 ` 6 N − 1

}∣∣∣∣ = u,

i.e., the set {Tγ`,a(D′) (mod t) | 0 6 ` 6 N − 1} contains u distinct numbers.
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Remark 8. (i) Let D =
⋃
i∈I C

(N,q)
i be defined as in Theorem 7. Assume that

{Tω`,a(D
(t−1)) | 0 6 ` 6 N − 1}

contains u(> 3) distinct numbers, say, a1 < a2 < · · · < au. Put

v = min{aj+2 − aj | 1 6 j 6 u− 2}.

Let t be any odd prime satisfying t > v and gcd (t, p1) = 1 and let D′ be the lift of
D to Fqt . Then, we have∣∣∣∣{Tω`,a(D

(t−1)) (mod t) | 0 6 ` 6 N − 1}
∣∣∣∣ > 3.

Hence, by Theorem 7, we have |{Tγ`,a(D′) (mod t) | 0 6 ` 6 N − 1}| > 3. (More
roughly, one may take t so as t > au − a1.)

(ii) If two Feng-Xiang skew Hadamard difference sets D1 and D2 in Fq satisfy

{Tω`,a(D
(t−1)
1 ) (mod t) | 0 6 ` 6 N − 1} 6= {Tω`,a(D

(t−1)
2 ) (mod t) | 0 6 ` 6 N − 1},

then by the proof of Theorem 7 their lifts D′1 and D′2 to Fqt also satisfy

{Tγ`,a(D′1) (mod t) | 0 6 ` 6 N − 1} 6= {Tγ`,a(D′2) (mod t) | 0 6 ` 6 N − 1},

i.e., D′1 and D′2 are inequivalent.

Corollary 9. Let D =
⋃
i∈I C

(N,q)
i be a Feng-Xiang skew Hadamard difference set. Let t

be any odd prime greater than 4N3√q and D′ be the lift of D to Fqt. If {Tω`,a(D
(t−1)) | 0 6

i 6 N − 1} contains u distinct numbers, then so does {Tγ`,a(D′) (mod t) | 0 6 ` 6 N − 1},
where ω and γ are primitive elements of Fq and Fqt, respectively.

Proof: Assume that {Tω`,a(D
(t−1)) | 0 6 i 6 N −1} contains u distinct numbers. By

Remark 8 (i), it is enough to show that au − a1 6 4N3√q. By Eq. (10), it is clear that

au − a1 6
2

N3
max

{∣∣∣∣ ∑
i1,i2,i3∈A

Si1,i2,i3(ω
`, t−1I)

∣∣∣∣ : 0 6 ` 6 N − 1

}
.

Now we estimate |
∑

i1,i2,i3∈A Si1,i2,i3(ω
`, t−1I)|. By Eq. (4) of Theorem 4, we have∣∣∣∣ ∑

i1,i2,i3∈A

Si1,i2,i3(ω
`, t−1I)

∣∣∣∣
6

∑
i1,i2,i3∈A

∑
h1,h2,h3∈t−1I

ζ
−i1h1−i2h2−i3h3+`(i1+i2+i3)
N

∣∣∣∣∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a)

∣∣∣∣
6 |A|3|I|3√q = 2N6√q.
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Thus, we obtain

au − a1 6
2

N3
max

{∣∣∣∣ ∑
i1,i2,i3∈A

Si1,i2,i3(ω
`, t−1I)

∣∣∣∣ : 0 6 ` 6 N − 1

}
6 4N3√q.

This completes the proof of the corollary.

Corollary 9 implies that for any sufficiently large prime t the lift of a Feng-Xiang
skew Hadamard difference set D in Fq to Fqt is inequivalent to the Paley difference set if
|{Tω`,a(D

(t−1)) | 0 6 ` 6 N − 1}| > 3.

Example 10. Let p = 11, N = 2p1 = 14, f = 3, and I = 〈p〉 ∪ −2〈p〉 ∪ {0} (mod N).
Then, we have I(mod p1) = Z/p1Z and the conditions of Theorem 1 are satisfied. Thus,

D =
⋃
i∈I C

(N,pf )
i =

⋃
i∈I ω

i〈ωN〉 is a Feng-Xiang skew Hadamard difference set, where ω is

a primitive element of Fpf . Now, we consider the triple intersection numbers Tω`,a(D
(t−1)),

0 6 ` 6 N − 1, with a = 3. By Magma, the author checked that

{Tω`,a(D
(t−1)) | 0 6 ` 6 N − 1} = {147, 158, 164, 167, 173, 184}

for any odd 1 6 t < N with gcd (t, p1) = 1. This implies that D(t−1) is inequivalent to the
Paley difference set.

It is clear that for any odd prime t with gcd (t, p1) = 1 it holds that∣∣∣∣{Tω`,a(D
(t−1)) (mod t) | 0 6 ` 6 N − 1}

∣∣∣∣ > 3.

Hence, by Theorem 7, the lift D′ of D to Fpft for any odd prime t with gcd (p1, t) = 1
satisfies ∣∣∣∣{Tγ`,a(D′) (mod t) | 0 6 ` 6 N − 1}

∣∣∣∣ > 3,

where γ is a primitive element of Fpft. Thus, D′ is also inequivalent to the Paley difference
set. Furthermore, by applying Theorem 7 recursively, the lift D′′ of D to F

pfth
for any

h > 1 is also inequivalent to the Paley difference set. The extension degrees th less that
50 covered by Theorem 7 in this case are listed below:

th = 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49.

3.2 Triple intersection numbers modulo the characteristic p

The extension degree t in Theorem 7 is limited to a prime. The following theorem allows
us to take t as an arbitrary odd integer.

Theorem 11. Let t be any odd positive integer and consider the p-adic expansion t =∑r
h=0 xhp

h with 0 6 xh 6 p− 1. Write e(t) =
∑r

h=0 xh and then there is an odd integer t′

such that t′ = e(e(· · · e(t) · · · )) and 1 6 t′ 6 p− 2. Let D =
⋃
i∈I C

(N,q)
i be a Feng-Xiang
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skew Hadamard difference set and let D′ and D′′ be its lifts to Fqt and Fqt′ , respectively.
If the set {Tβ`,a(D

′′) (mod p) | 0 6 ` 6 N − 1} contains u distinct numbers, then so does
{Tγ`,a(D′) (mod p) | 0 6 ` 6 N − 1}, where β and γ are primitive elements of Fqt′ and
Fqt, respectively.

Proof: Let ω be a primitive element of Fq. Without loss of generality, we can

assume that ω = β(qt
′−1)/(q−1) = γ(qt−1)/(q−1). Let χN be a multiplicative character of

order N of Fq such that χN(ω) = ζN and let χ′N and χ′′N be the lifts of χN to Fqt and Fqt′ ,
respectively. Define

S
(t)
i1,i2,i3

(γ`, I) =
∑

h1,h2,h3∈I

ζ
−i1h1−i2h2−i3h3+`(i1+i2+i3)
N

∑
x∈Fqt

χ′
i1
N(x)χ′

i2
N(x+ 1)χ′

i3
N(x+ a).

Then, by Eq. (10), we have

N3 · Tγ`,a(D′) =
∑

i1,i2,i3∈A

S
(t)
i1,i2,i3

(γ`, I) + (qt − 3)M3 + 3MN2 q
t − 3

4
− 3M3(qt − 1)

−M(ηp(a) + ηp(−a+ 1) + ηp(a
2 − a))p2m

1 .

By Eq. (3) of Theorem 4, there are two complex numbers w1, w2 such that∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a) = −w1 − w2,

∑
x∈Fqt

χ′
i1
N(x)χ′

i2
N(x+ 1)χ′

i3
N(x+ a) = −wt1 − wt2,

and ∑
x∈F

qt
′

χ′′
i1
N(x)χ′′

i2
N(x+ 1)χ′′

i3
N(x+ a) = −wt′1 − wt

′

2 .

By Proposition 5, we have

∑
x∈Fqt

χ′
i1
N(x)χ′

i2
N(x+ 1)χ′

i3
N(x+ a) ≡

(∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a)

)t
(mod p)

=
r∏

h=0

(∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a)

)xhph

≡
r∏

h=0

(∑
x∈Fq

χp
hi1
N (x)χp

hi2
N (x+ 1)χp

hi3
N (x+ a)

)xh
(mod p)

=
r∏

h=0

(∑
x∈Fq

χi1N(xp
h

)χi2N(xp
h

+ 1)χi3N(xp
h

+ a)

)xh
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=
r∏

h=0

(∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a)

)xh
=

(∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a)

)e(t)
.

By repeating this computation, we have

∑
x∈Fqt

χ′
i1
N(x)χ′

i2
N(x+ 1)χ′

i3
N(x+ a) ≡

(∑
x∈Fq

χi1N(x)χi2N(x+ 1)χi3N(x+ a)

)t′
(mod p)

≡
∑
x∈F

qt
′

χ′′
i1
N(x)χ′′

i2
N(x+ 1)χ′′

i3
N(x+ a) (mod p).

Therefore, we obtain

S
(t)
i1,i2,i3

(γ`, I)

=
∑

h1,h2,h3∈I

ζ
−i1h1−i2h2−i3h3+`(i1+i2+i3)
N

∑
x∈Fqt

χ′
i1
N(x)χ′

i2
N(x+ 1)χ′

i3
N(x+ a)

≡
∑

h1,h2,h3∈I

ζ
−i1h1−i2h2−i3h3+`(i1+i2+i3)
N

∑
x∈F

qt
′

χ′′
i1
N(x)χ′′

i2
N(x+ 1)χ′′

i3
N(x+ a) (mod p)

=S
(t′)
i1,i2,i3

(β`, I)

and { ∑
i1,i2,i3∈A

S
(t)
i1,i2,i3

(γ`, I) | 0 6 ` 6 N − 1

}
≡
{ ∑
i1,i2,i3∈A

S
(t′)
i1,i2,i3

(β`, I) | 0 6 ` 6 N − 1

}
(mod p). (12)

By the assumption that the set {Tβ`,a(D
′′) (mod p) | 0 6 ` 6 N − 1} contains u distinct

numbers, we have∣∣∣∣{ ∑
i1,i2,i3∈A

S
(t′)
i1,i2,i3

(β`, I) (mod p) | 0 6 ` 6 N − 1

}∣∣∣∣ = u.

Then, by Eq. (12), we also have∣∣∣∣{ ∑
i1,i2,i3∈A

S
(t)
i1,i2,i3

(γ`, I) (mod p) | 0 6 ` 6 N − 1

}∣∣∣∣ = u,

i.e., the set {Tγ`,a(D′) (mod t) | 0 6 ` 6 N − 1} contains u distinct numbers.
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Theorem 11 implies that for any odd integer t the lift D′ of a Feng-Xiang skew
Hadamard difference set D in Fq to Fqt is inequivalent to the Paley difference set if
the lift D′′ of D to Fqt′ satisfies |{Tβ`,a(D

′′) (mod p) | 0 6 ` 6 N − 1}| > 3 for every odd
1 6 t′ 6 p− 2.

Example 12. Let p, N , f , a, and I be defined as in Example 10. Then D =
⋃
i∈I C

(N,q)
i

satisfies
{Tω`,a(D) | 0 6 ` 6 N − 1} = {147, 158, 164, 167, 173, 184}.

It is clear that ∣∣∣∣{Tω`,a(D) (mod p) | 0 6 ` 6 N − 1}
∣∣∣∣ > 3.

Hence, by Theorem 11, the lift D′ of D to Fpft for any odd t with e(e(· · · e(t) · · · )) = 1
satisfies ∣∣∣∣{Tγ`,a(D′) (mod p) | 0 6 ` 6 N − 1}

∣∣∣∣ > 3,

where γ is a primitive element of Fpft. Thus, D′ is inequivalent to the Paley difference
set. The extension degrees t > 1 less than 50 covered by Theorem 11 in this case are
t = 11, 21, 31, and 41. Note that t = 21 is not covered by Theorem 7.

4 Concluding remarks

In this paper, we obtained two theorems which give sufficient conditions for lifts of Feng-
Xiang skew Hadamard difference sets being inequivalent to the Paley difference sets. As
an example, we showed that there are infinitely many integers t such that the lifts of the

Feng-Xiang difference set D =
⋃
i∈〈11〉∪−2〈11〉∪{0}C

(14,113)
i to F113t are inequivalent to the

Paley difference sets. Further small examples are listed in Table 1. (In the table, let ω
be a primitive element of Fpf , nt := |{Tω`,3(D(t−1)) (mod t) | 0 6 ` 6 N − 1}|, and t be
prime to N .) In these examples, we fixed parameters as N = 14 and f = 3 due to the
memory-capacity of computer. For each p ∈ {11, 23, 67, 79, 107}, the Feng-Xiang skew

Hadamard difference sets D =
⋃
i∈I C

(N,pf )
i for I listed in the table and their lifts to Fpft

for sufficiently large odd primes t are inequivalent to the Paley difference sets. Moreover,
the lifts are mutually inequivalent by Remark 8 (ii).

Our main theorems works well for Feng-Xiang skew Hadamard difference sets since the
difference sets have the nice property that their lifts are again skew Hadamard difference
sets. Here, we have the following natural question: are there skew Hadamard difference
sets with the “lifting” property other than Paley difference sets and Feng-Xiang skew
Hadamard difference sets? Below, we give an immediate generalization of Feng-Xiang
skew Hadamard difference sets.

Theorem 13. Let p1 be a prime, N = 2pm1 , and let p ≡ 3 (mod 4) be a prime such that
2 ∈ 〈p〉 (mod pm1 ), gcd (p1, p− 1) = 1, and f := ordN(p) is odd. Let s be any odd integer,

I any subset of Z/NZ such that {i (mod pm1 ) | i ∈ I} = Z/pm1 Z, and let D =
⋃
i∈I C

(N,q)
i ,

where q = pfs. Then, D is a skew Hadamard difference set.
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Table 1: Examples of Feng-Xiang skew Hadamard difference sets and their triple inter-
section numbers

(p, f,N) index set I {Tω`,3(D(t−1)) | 0 6 ` 6 N − 1} nt for odd primes t

{0, 1, 2, 3, 4, 5, 6} {159, 162, 164, 167, 169, 172} n5 = 2 and nt > 3 for any other t
(11, 3, 14) {0, 1, 2, 3, 4, 6, 12} {157, 160, 165, 166, 171, 174} n3 = 2 and nt > 3 for any other t

{0, 1, 6, 9, 10, 11, 12} {147, 158, 164, 167, 173, 184} nt > 3 for any t
{0, 1, 2, 4, 6, 10, 12} {163, 164, 167, 168} nt > 3 for any t > 3

(11, 3, 2) {0} (Paley) {157, 174} n17 = 1 and nt = 2 for any other t

{0, 1, 2, 3, 4, 5, 6} {1497, 1498, 1503, 1515, n3 = 2 and nt > 3 for any other t
1525, 1537, 1542, 1543}

(23, 3, 14) {0, 1, 2, 3, 4, 6, 12} {1498, 1503, 1508, 1514, nt > 3 for any t
1526, 1532, 1537, 1542}

{0, 1, 6, 9, 10, 11, 12} {1481, 1509, 1514, 1526, 1531, 1559} n5 = 2 and nt > 3 for any other t
{0, 1, 2, 4, 6, 10, 12} {1508, 1514, 1526, 1532} n3 = 1 and nt > 3 for any t

(23, 3, 2) {0} (Paley) {1520} nt = 1 for any t

{0, 1, 2, 3, 4, 5, 6} {37457, 37519, 37525, 37587, nt > 3 for any t
37602, 37664, 37670, 37732}

(67, 3, 14) {0, 1, 2, 3, 4, 6, 12} {37453, 37523, 37587, 37591, nt > 3 for any t
37598, 37602, 37666, 37736}

{0, 1, 6, 9, 10, 11, 12} {37526, 37587, 37594, 37595, 37602, 37663} nt > 3 for any t
{0, 1, 2, 4, 6, 10, 12} {37543, 37559, 37630, 37646} n3, n29 = 2 and nt > 3 for any other t

(67, 3, 2) {0} (Paley) {37502, 37687} nt = 2 for any t

{0, 1, 2, 3, 4, 5, 6} {61470, 61575, 61607, 61623, nt > 3 for any t
61636, 61652, 61684, 61789}

{0, 1, 2, 3, 4, 6, 12} {61398, 61535, 61549, 61552, nt > 3 for any t
(79, 3, 14) 61707, 61710, 61724, 61861}

{0, 1, 6, 9, 10, 11, 12} {61513, 61533, 61546, 61713, 61726, 61746} n3, n5 = 2 and nt > 3 for any other t
{0, 1, 2, 4, 6, 10, 12} {61434, 61511, 61748, 61825} n7, n11, n157 = 2

nt > 3 for any other t
(79, 3, 2) {0} (Paley) {61519, 61740} nt = 2 for any t

{0, 1, 2, 3, 4, 5, 6} {152751, 152895, 152976, 153021, n3 = 2 and nt > 3 for any other t
153238, 153283, 153364, 153508}

{0, 1, 2, 3, 4, 6, 12} {152969, 153065, 153092, n3 = 1 and nt > 3 for any other t
(107, 3, 14) 153167, 153194, 153290}

{0, 1, 6, 9, 10, 11, 12} {152643, 153040, 153102, n3 = 2 and nt > 3 for any other t
153157, 153219, 153616}

{0, 1, 2, 4, 6, 10, 12} {153028, 153103, 153156, 153231} n3, n5 = 2 and nt > 3 for any other t
(107, 3, 2) {0} (Paley) {152977, 153282} nt = 2 for any t

The above theorem follows immediately from [4, Theorem 11.3.5] and the proof of [10,
Theorem 3.2]. This can be seen as follows. By Theorem 11.3.5 (the Davenport-Hasse
product formula on Gauss sums) in [4] and the assumption that 2 ∈ 〈p〉 (mod pm1 ), we
have

Gf (χN) =
Gf (χpm1 )Gf (χ2)

χpm1 (2)Gf (χ2−1

pm1
)

= Gf (χ2)χ−1
pm1

(2).

By gcd (p1, p− 1) = 1, the restriction of χpm1 to Fp is trivial. Hence, we have Gf (χN) =
Gf (χ2). The remaining proof is same with that of Theorem 3.2 in [10]. For example,
the case where (p, p1, f) = (47, 127, 21) is covered by Theorem 13 but not covered by
Theorem 1.

Interesting problems which are worth looking into as future works are listed below.

(1) We showed that there are infinitely many skew Hadamard difference sets inequivalent
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to the Paley difference sets by using “recursive” techniques not saying anything
about the inequivalence of “starting” skew Hadamard difference sets theoretically.
Determine whether the “starting” skew Hadamard difference sets are inequivalent
to the Paley difference sets without using computer.

(2) Find skew Hadamard difference sets with the lifting property, i.e., their lifts are
again skew Hadamard difference sets, other than the Paley difference sets and the
difference sets of Theorem 13.

(3) Recently, several new constructions of skew Hadamard difference sets have been
known other than Feng-Xiang skew Hadamard difference sets [2, 6, 7, 8, 13, 16].
Determine whether such skew Hadamard difference sets are inequivalent to the Paley
difference sets.
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