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Abstract

Chen, Deng, Du, Stanley, and Yan introduced the notion of k-crossings and
k-nestings for set partitions, and proved that the sizes of the largest k-crossings
and k-nestings in the partitions of an n-set possess a symmetric joint distribution.
This work considers a generalization of these results to set partitions whose arcs
are labeled by an r-element set (which we call r-colored set partitions). In this con-
text, a k-crossing or k-nesting is a sequence of arcs, all with the same color, which
form a k-crossing or k-nesting in the usual sense. After showing that the sizes of
the largest crossings and nestings in colored set partitions likewise have a symmet-
ric joint distribution, we consider several related enumeration problems. We prove
that r-colored set partitions with no crossing arcs of the same color are in bijection
with certain paths in Nr, generalizing the correspondence between noncrossing (un-
colored) set partitions and 2-Motzkin paths. Combining this with recent work of
Bousquet-Mélou and Mishna affords a proof that the sequence counting noncrossing
2-colored set partitions is P-recursive. We also discuss how our methods extend to
several variations of colored set partitions with analogous notions of crossings and
nestings.

1 Introduction and statement of results

1.1 Introduction

A partition of a set S is a set of disjoint nonempty sets (here called blocks) whose union
is S. Given a partition P of the set [n] := {1, 2, . . . , n}, we write Arc(P ) for the set of
pairs of integers (i, j) which occur in the same block of P such that j is the least element
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of the block greater than i. One often depicts set partitions by drawing the graph whose
vertex set is [n] and whose edge set is Arc(P ); e.g.,

P = {{1, 3, 4, 7}, {2, 6}, {5}} is represented by • • • • • • •
1 2 3 4 5 6 7

.

Call this graph the standard representation of P .
Such pictures motivate the following terminology, introduced in [10]. A k-crossing

or k-nesting of a set partition P is a sequence of arcs {(it, jt)}t∈[k] ⊆ Arc(P ) satisfying
respectively

i1 < i2 < · · · < ik < j1 < j2 < · · · < jk or i1 < i2 < · · · < ik < jk < · · · < j2 < j1. (1)

In the standard representation of a set partition, k-crossings and k-nestings appear as
follows:

• • • . . . • • • • . . . •
i1 i2 i3 ik j1 j2 j3 jk

k-crossing

• • • . . . • • . . . • • •
i1 i2 i3 ik jk j3 j2 j1

k-nesting

A partition P of [n] with no k-crossing (respectively, k-nesting) is k-noncrossing (respec-
tively, k-nonnesting), and following [10] we let cr(P ) and ne(P ) denote the largest integers
k such that P has a k-crossing or k-nesting, respectively.

It is well-known that the noncrossing (i.e., 2-noncrossing) partitions of [n] and the
nonnesting (i.e., 2-nonnesting) partitions of [n] are both counted by the Catalan numbers
Cn := 1

n+1

(
2n
n

)
. In [10], Chen et al. generalized this fact considerably, proving the follow-

ing; here min(P ) and max(P ) denote the sets of minimum and maximum elements of the
blocks of a set partition P .

Theorem 1.1. Fix a positive integer n and subsets S, T ⊆ [n]. The statistics cr(P ) and
ne(P ) have a symmetric joint distribution over all partitions P of [n] with min(P ) = S
and max(P ) = T .

In other words, the number of partitions of [n] which are j-noncrossing and k-
nonnesting is equal to the number of those which are k-noncrossing and j-nonnesting
[10, Theorem 1.1]. The results of [10] have been reinterpreted and extended in
a number of ways; we mention without hope of being comprehensive the papers
[5, 6, 8, 12, 17, 18, 20, 21, 33, 34, 37]. Most recently, Chen and Guo [7] have gener-
alized the equidistribution of crossings and nestings to colored complete matchings. This
paper begins with some enumerative problems which one encounters on extending Chen
and Guo’s findings to all colored set partitions.

If r is a fixed positive integer, then an r-colored partition of [n] is a pair Λ = (P, ϕ),
consisting of a partition P of [n] together with a map ϕ : Arc(P )→ [r] labeling its arcs.
This fairly natural set partition analogue has appeared most prominently in recent years
in the study of the representation theory of the group of unipotent upper triangular n×n
matrices over a finite field; see [35] for a concise overview of this connection. On the
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other hand, this notion of a colored set partition dates at least back to [32], where it
is studied by Rogers under the name of a “colored rhyming scheme.” We also mention
that the polynomials counting the r-colored partitions of [n] (a variant of the Touchard
polynomials) define several sequences noted in [2].

Following [7], we say that an r-colored set partition Λ = (P, ϕ) has a k-crossing
(respectively, k-nesting) if P has a k-crossing (respectively, k-nesting) involving arcs all
of the same color with respect to ϕ. Define cr(Λ) and ne(Λ) as the maximum integers k
such that Λ has a k-crossing or k-nesting, respectively. As in the uncolored case we say
that Λ of [n] is k-noncrossing if cr(Λ) < k and k-nonnesting if ne(Λ) < k.

It follows as a straightforward corollary of the results in [10] that the joint distribution
of the numbers cr(Λ) and ne(Λ) over r-colored set partitions is also symmetric. We present
the derivation of this result here in the form of two short lemmas. First, we note that an
r-colored set partition may be viewed as an r-tuple of uncolored set partitions satisfying
a certain condition:

Lemma 1.2. Given an r-colored partition Λ of [n], let Λt for each t ∈ [r] be the uncolored
partition of [n] for which Arc(Λt) is the set of t-colored arcs of Λ. The map

Λ 7→ (Λ1,Λ2, . . . ,Λr)

is then a bijection from r-colored partitions of [n] to r-tuples (P1, . . . , Pr) of uncolored
partitions of [n] with the property that min(Pi) ∪min(Pj) = max(Pi) ∪max(Pj) = [n] for
any distinct i, j ∈ [r].

Proof. It is easy to see that r-colored set partitions are in bijection with r-tuples of set
partitions whose arc sets have pairwise disjoint left/right endpoints. The lemma follows
as the sets of right and left endpoints of the arcs of a set partition P are respectively
[n] \min(P ) and [n] \max(P ).

Next, we state a general corollary of Theorem 1.1. Here we let P([n]) denote the set
of all subsets of [n] and write Πn for the set of uncolored partitions of [n].

Lemma 1.3. Suppose X is a set with an injective map φ : X → (Πn)r. Let f be any
function with domain Nr and define for x ∈ X with φ(x) = (P1, . . . , Pr) ∈ (Πn)r

crφ,f (x) := f(cr(P1), . . . , cr(Pr)) and neφ,f (x) := f(ne(P1), . . . , ne(Pr)).

If the image of X under φ is equal to the inverse image in (Πn)r of some subset of (P([n])×
P([n]))r under the map (Pt)t∈[r] 7→ (min(Pt),max(Pt))t∈[r], then the statistics crφ,f (x) and
neφ,f (x) for x ∈ X possess a symmetric joint distribution.

Proof. Theorem 1.1 shows that there exists an involution of (Πn)r interchanging the cross-
ing and nesting numbers of an r-tuple (P1, . . . , Pr). The lemma follows since our condition
on φ ensures that X may be identified with a subset of (Πn)r which is invariant under this
involution.
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The point of these lemmas is the following extension of [10, Theorem 1.1]. Here,
given integers j, k and subsets S, T ⊆ [n], we write NCNS,T

j,k (n, r) for the number of r-
colored partitions Λ = (P, ϕ) of [n] with cr(Λ) < j and ne(Λ) < k and min(Λ) = S and
max(Λ) = T , where we define min(Λ) := min(P ) and max(Λ) := max(P ).

Theorem 1.4. NCNS,T
j,k (n, r) = NCNS,T

k,j (n, r) for all integers j, k and subsets S, T ⊆ [n].

Proof. In the notation of Lemma 1.2, we have min(Λ) =
⋂
t∈[r] min(Λt) and max(Λ) =⋂

t∈[r] max(Λt). Hence, the theorem follows by applying Lemma 1.3 with φ the map in

Lemma 1.2 and f(x1, . . . , xr) := max{x1, . . . , xr}. In particular, the image of φ on r-
colored partitions Λ with min(Λ) = S and max(Λ) = T is completely characterized by
conditions involving only min(·) and max(·).

Let NCNj,k(n, r) denote the number of all r-colored j-noncrossing k-nonnesting par-
titions of [n]. Summing the previous result over all S, T ⊆ [n] gives the following gen-
eralization of [10, Corollaries 1.2 and 1.3]. Here we also write NCk(n, r) and NNk(n, r)
for the number of r-colored partitions of [n] which are respectively k-noncrossing and
k-nonnesting.

Corollary 1.5. NCNj,k(n, r) = NCNk,j(n, r) and NCk(n, r) = NNk(n, r) for all j, k, n, r.

We are thus left with this motivating question: what are the numbers which appear on
either side of the equalities in this corollary? There is an established industry (see, e.g.,
[3, 19, 24, 25]) dedicated to producing formulas and generating functions for NCNj,k(n, 1)
and NCk(n, 1) and their variants. From among a plenitude of interesting facts, we mention
that {NCN2,2(n, 1)}∞n=0 gives the sequence odd-indexed Fibonacci numbers [27, A001519]
while {NC2(n, 1)}∞n=0 gives the sequence of Catalan numbers [27, A000108]. Less is known
about these numbers for values of r 6= 1, and this work represents an attempt to begin
filling this gap in our understanding.

1.2 Results

Our main results appear in Sections 3, 4, and 5, and are summarized as follows. In
Section 3 we adapt the results of [10] to describe a correspondence between j-noncrossing
k-nonnesting r-colored set partitions and walks on a certain multigraph (see Theorem
3.5). Using this we are able to show that for each fixed j, k, r, the ordinary generating
function

∑
n>0 NCNj,k(n, r)x

n is a rational power series (see Corollary 4.1). Moreover,
define

Cn(r) := NC2(n, r) = NN2(n, r)

as the number of r-colored noncrossing (or nonnesting) partitions of [n], so that Cn(1) =
1

n+1

(
2n
n

)
. After Theorem 3.5 below, we prove the following result, which one can view as a

generalization of the well-known fact that the Catalan number Cn is equal to the number
of 2-Motzkin paths of length n − 1. Note here that Nr denotes the set of vectors in Rr

with nonnegative integer coordinates.
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Theorem 1.6. Fix positive integers n and r and let ei denote the ith unit coordinate
vector in Rr. Then Cn(r) is equal to the number of (n − 1)-step walks in Nr from the
origin to itself using the (r + 1)2 steps given by ±ei for i ∈ [r] (contributing 2r steps),
ei − ej for i 6= j (contributing r2 − r steps), and r + 1 distinct zero steps.

Using this theorem, we can prove a more explicit result concerning the enumeration
of noncrossing 2-colored set partitions. The sequence of values of Cn(2) begins as follows
(and appears now as [27, A216947]):

{Cn(2)}∞n=0 = (1, 1, 3, 11, 47, 225, 1173, 6529, 38265, 233795, . . .) .

While these numbers seem not to have a simple closed formula, we can at least estab-
lish the following statement. There is an interesting parallel between this result and [3,
Proposition 1], which asserts something similar for the number of 3-noncrossing (uncol-
ored) partitions of [n].

Theorem 1.7. If n is a positive integer then Cn(2) is equal to the constant coefficient of(
1− x2y−1 + x3 − x2y2 + y3 − x−1y2

) (
3 + x+ y + x−1 + y−1 + xy−1 + x−1y

)n−1
,

and the following polynomial recurrence holds for all nonnegative integers n:

9n(n+ 3) · Cn(2)− 2
(
5n2 + 26n+ 30

)
· Cn+1(2) + (n+ 4)(n+ 5) · Cn+2(2) = 0.

Thus the generating function
∑

n>0Cn(2)xn is D-finite.

Our proof of this result appears at the end of Section 4, and combines work of
Bousquet-Mélou and Mishna on walks in the quarter plane [4] with Zeilberger’s algo-
rithm for creative telescoping [26, Chapter 6].

Remark 1.8. Standard techniques [36] for determining the asymptotics of solutions to
linear recurrence equations with polynomial coefficients show that

Cn(2) ∼ κ · 9n/n4 as n→∞

for some positive real constant κ. (We used Zeilberger’s Maple package AsyRec [38]
to derive this growth rate automatically.) Empirical estimates (using the AsyC command

in [38]) indicate that κ = 35

24

√
3
π

, an equality one can establish rigorously using arguments
similar to those in [3, §2.6]. Interestingly, these results show precisely that Cn(2) ∼ 3vn
as n→∞, where vn is the number of 1234-avoiding permutations of [n] [27, A005802].

Of course the generating function
∑

n>0Cn(1)xn is also D-finite, since the Catalan
numbers satisfy the polynomial recurrence 2(2n + 1)Cn = (n + 2)Cn+1 for all n ∈ N.
One naturally asks whether

∑
n>0Cn(r)xn is likewise D-finite for any integers r > 2.

Empirical evidence suggests a negative answer to this question, at least for r = 3. One
can efficiently compute values of Cn(r) using Proposition 1.6 with a standard lattice path
counting algorithm (which stores intermediate data to avoid repetitious calculations). In
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this way we have computed Cn(3) for n 6 200, which gives enough values to detect a
polynomial recurrence of order 6 12 with coefficients of degree 6 12; however, no such
recurrence exists.

This mirrors the situation for k-noncrossing (uncolored) partitions of [n]. In [3],
Bousquet-Mélou and Xin prove that the generating function

∑
n>0 NC3(n, 1)xn is D-finite,

but identify several reasons (see [3, §4]) why it seems improbable that
∑

n>0 NCk(n, 1)xn

is D-finite for any integers k > 4. Following their lead, we make this conjecture:

Conjecture 1.9. The generating function
∑

n>0Cn(r)xn is not D-finite for integers r > 3.

Several variations of the results in [10] have appeared for other objects besides set
partitions for which natural concepts of crossings and nestings exists (see, e.g., [6, 7, 8,
12, 20, 21, 37]). In Section 5, we briefly survey several colored variations of these results.
Our main finding is that many colored objects−such as matchings [7], permutations [6, 37],
and tangled diagrams [8]−can be realized as colored set partitions Λ satisfying certain
conditions on min(Λ) and max(Λ); see Propositions 5.6, 5.12, and 5.17. The techniques
we used to prove Theorem 1.4 can therefore also be used to easily derive the symmetric
joint distribution of crossing and nesting numbers in these cases. Using this idea we are
able to generalize and simplify the proofs of some related results on crossings and nestings
in the literature.

Acknowledgements

I am grateful to Cyril Banderier, Joel Brewster Lewis, Alejandro Morales, Alexander
Postnikov, Steven V Sam, and Richard P. Stanley for helpful discussions and suggestions.

2 Preliminaries

Here we briefly recollect some of the main results and notation from [10], to be adapted
to colored set partitions in the next section. Throughout, we let N and P denote the
sets of nonnegative and positive integers. For us, a partition of an integer n is a weakly
decreasing sequence of positive integers λ = (λ1, λ2, . . . , λ`) with |λ| :=

∑`
i=1 λi = n.

Define λi to be 0 for all i ∈ P exceeding `; the Young diagram of λ is then the set
{(i, j) ∈ P × P : j 6 λi}, which we represent as a left-justified array of boxes with λi
boxes in row i, as in the following example:

λ = (4, 2, 1) has Young diagram .

To “add a box” to a partition λ means to produce a partition µ whose Young diagram
is obtained by adding a single box to that of λ. Deletion of boxes is defined similarly.
Let Y denote the set of partitions of nonnegative integers; this set is partially ordered by
inclusion of Young diagrams.

In the spirit of [10], we adopt the following terminology:
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Definition 2.1. A semi-oscillating tableau (of length n) is a sequence of partitions
(λ0, λ1, . . . , λn) with λ0 = λn = ∅ such that λi is obtained from λi−1 for each i ∈ [n]
by either adding a box, deleting a box, or doing nothing (so that λi = λi−1).

For example, (∅, , , , , , , , ∅) is a semi-oscillating tableau of length n = 8.

Remark 2.2. Here we insist on the convention λn = ∅; note however that the definitions
in [10] do not make this requirement when defining various kinds of analogous tableaux.

For us, a matching is a set partition whose blocks each have either one or two elements.
(Sometimes this term refers to set partitions whose blocks all have size two, which we refer
to as complete matchings.) Given a matching M of [n], let aj for j ∈ [n] be the unique
number such that {j, aj} is a block of M . (Note it is possible to have aj = j.) Define πjM
for 0 6 j 6 n as the subsequence of a1a2 · · · aj with all letters 6 j removed, and let λjM
be the integer partition which is the common shape of the pair of SYT’s assigned to πjM
by the RSK correspondence, as defined in [29, §7.11].

Example 2.3. For the matching

M = {{1, 8}, {2, 5}, {3}, {4, 6}, {7}} = • • • • • • • •
1 2 3 4 5 6 7 8

we have
{πjM}06j68 = (∅, 8, 85, 85, 856, 86, 8, 8, ∅)
{λjM}06j68 = (∅, , , , , , , , ∅) .

The following simple statement includes several main results in [10] specialized to
the case of matchings. We will generalize this theorem to colored set partitions by a
sequence of brief lemmas, and so have sketched a proof to make everything done here
more self-contained.

Theorem 2.4 (See Chen et al. [10]). The map M 7→ (λ0
M , λ

1
M , . . . , λ

n
M) defines a bijection

from the set of matchings of [n] to the set of semi-oscillating tableaux of length n, such
that:

(a) cr(M) is the maximum number of columns occurring in any of the partitions λiM .

(b) ne(M) is the maximum number of rows occurring in any of the partitions λiM .

(c) min(M) is the set of i ∈ [n] with λi−1
M ⊆ λiM .

(d) max(M) is the set of i ∈ [n] with λi−1
M ⊇ λiM .

Proof Sketch. The given map is a bijection by arguments similar to (and easier than)
the proofs of [10, Theorems 2.4 and 3.2]. Properties (c) and (d) are immediate, while
properties (a) and (b) hold because M has a k-crossing (respectively, a k-nesting) if and
only if some sequence πjM has an increasing (respectively, a decreasing) subsequence of
length k, which occurs, by Schensted’s theorem [30], if and only if the partition λjM has k
columns (respectively, k rows).
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The preceding theorem extends from matchings to arbitrary set partitions by the
following.

Lemma 2.5. The map sending a partition P of [n] to the unique matching M of [2n]
with

Arc(M) = {(2i, 2j − 1) : (i, j) ∈ Arc(P )}

is a bijection from the set of partitions of [n] to the set of matchings M of [2n] such that
2i ∈ min(M) and 2i − 1 ∈ max(M) for all i ∈ [n]. Furthermore, cr(P ) = cr(M) and
ne(P ) = ne(M).

Proof Sketch. The lemma is intuitively clear since our map is defined by applying the
local rules

•
7→ • •

•
7→ • •

•
7→ • •

•
7→ • •

to the standard representation of a set partition P of [n]. The details are left to the
reader.

Composing the maps in the preceding theorem and lemma gives a bijection from set
partitions of [n] to semi-oscillating tableaux (λ0, λ1, . . . , λ2n) which are vacillating in the
following sense.

Definition 2.6. A vacillating tableau is a semi-oscillating tableau (λ0, λ1, . . . , λn) which
has λi−1 ⊆ λi when i is even and λi−1 ⊇ λi when i is odd.

A vacillating tableau with length n = 11 is (∅, ∅, , , , , , , , , , ∅). The
following theorem from [10] is immediate from combining Theorem 2.4 and Lemma 2.5.

Theorem 2.7 (See Chen et al. [10]). There is a bijection from the set of j-noncrossing k-
nonnesting partitions P of [n] to the set of vacillating tableaux (λ0, λ1, . . . , λ2n) for which
every λi has fewer than j columns and fewer than k rows. Further, this bijection is such
that i ∈ min(P ) if and only if λ2i−2 = λ2i−1 and i ∈ max(P ) if and only if λ2i−1 = λ2i.

Theorem 1.1 follows as a corollary of this result on noting that the component-wise
transpose of integer partitions defines an involution of the set of vacillating tableaux,
which interchanges the maximum numbers of rows and columns and which preserves the
indices where λi−1 = λi.

the electronic journal of combinatorics 20(4) (2013), #P6 8



3 Colored set partitions and r-partite tableaux

We now describe one generalization of the results in the previous section which will prove
useful in enumerating certain classes of colored set partitions. (Chen and Guo investigate
another generalization in [7]; the relationship between our statements and those in Chen
and Guo’s work will be discussed in Section 5.1.) To begin we note the following definition:

Definition 3.1. Let r be a positive integer. An r-partite partition of n is a sequence
λ = (λ1, λ2, . . . , λr) of integer partitions such that

∑r
i=1 |λi| = n.

Remark 3.2. These sequences provide a common indexing set for the conjugacy classes and
irreducible characters of the wreath product (Z/rZ) oSn of a cyclic group by a symmetric
group; see for example [1, Section 2]. We will typically use boldface symbols to indicate
r-partite partitions.

The Young diagram of an r-partite partition is just the sequence of Young diagrams of
its components, and with respect to this convention, the addition and deletion of boxes is
defined exactly as for ordinary integer partitions. We therefore define semi-oscillating and
vacillating r-partite tableaux exactly as in Definitions 2.1 and 2.6, only now as sequences
of r-partite partitions instead of integer partitions. Let us define also an oscillating r-
partite tableaux to be a semi-oscillating tableaux (λ0,λ1, . . . ,λn) such that λi−1 6= λi for
all i.

We now have this statement extending Theorem 2.7.

Theorem 3.3. For any positive integers n and r, there are bijections

r-colored partitions of [n] ↔ vacillating r-partite tableaux of length 2n
r-colored matchings of [n] ↔ semi-oscillating r-partite tableaux of length n

r-colored complete matchings of [2n] ↔ oscillating r-partite tableaux of length 2n.

With respect to each bijection, if Λ 7→ (λ0,λ1, . . . ) then cr(Λ) < j and ne(Λ) < k if and
only if the r components of each λi all have fewer than j columns and fewer than k rows.

Proof. Fix an r-colored set partition Λ of [n]. If we first apply the map in Lemma 1.2
to split Λ into r uncolored set partitions Λ1, . . . Λr, and then apply to each of these
components the map in Theorem 2.7, we obtain a matrix of integer partitions (λi,t),
where i = 0, 1, . . . , 2n and t = 1, 2, . . . , r, such that

(i) each column (λ0,t, λ1,t, . . . , λ2n,t) is a vacillating tableaux;

(ii) in each row at most one λi,t for t ∈ [r] differs from its predecessor λi−1,t.

Indeed, since (Λ1, . . . Λr) if an arbitrary r-tuple of uncolored set partitions such that for
any distinct t, t′ ∈ [r] each number i ∈ [n] belongs to min(Λt) or min(Λt′) and also to
max(Λt) or max(Λt′), it follows from Theorem 2.7 that for each i ∈ [2n] either λi−1,t = λi,t

or λi−1,t′ = λi,t
′
. Thus at most one of λi,t or λi,t

′
can differ from λi−1,t or λi−1,t′ .
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The matrix (λi,t) consequently represents the same data as the vacillating r-partite
tableaux (λ0,λ1, . . . ,λ2n) where λi := (λi,1, . . . , λi,r), and the correspondence

Λ 7→ (λ0,λ1, . . . ,λ2n)

gives the first bijection in the theorem. It is clear from Theorem 2.7 that cr(Λ) < j and
ne(Λ) < k if and only if the r components of each λi all have fewer than j columns and
fewer than k rows. Moreover, it follows that i ∈ min(Λ) if and only if λ2i−2 = λ2i−1 and
i ∈ max(Λ) if and only if λ2i−1 = λ2i.

This last property implies that r-colored matchings of [n] (i.e., set partitions Λ
with min(Λ) ∪ max(Λ) = [n]) are in bijection with vacillating r-partite tableaux
(λ0,λ1, . . . ,λ2n) such that λ2i−2 = λ2i−1 or λ2i−1 = λ2i for each i ∈ [n]. We ob-
tain the second bijection in the theorem by noting that such tableaux are in bijection
with semi-oscillating r-partite tableaux of length n via the map (λ0,λ1, . . . ,λ2n) 7→
(λ0,λ2,λ4, . . . ,λ2n).

The construction of last bijection follows similarly on noting that r-colored complete
matchings of [2n] are in bijection with vacillating r-partite tableaux (λ0,λ1, . . . ,λ4n) such
that exactly one of the equalities λ2i−2 = λ2i−1 or λ2i−1 = λ2i holds for each i ∈ [2n].

Tracing through the details of the preceding discussion affords an explicit description
of the bijections in Theorem 3.3. One way of stating this (for colored set partitions) goes
as follows. Fix an r-colored partition Λ of [n], and for each t ∈ [r] and k ∈ [2n], let

atk =

{
j if k = 2i is even and (i, j, t) ∈ Arc(Λ) for some j,

0 otherwise.

Define πk,tΛ as the subsequence of at1a
t
2 · · · atk with all letters 6 k+1

2
(and in particular

all zeros) removed, so that π0,t
Λ = π2n,t

Λ = ∅ where ∅ denotes the empty sequence. Let

λkΛ =
(
λk,1Λ , λk,2Λ , . . . , λk,rΛ

)
be the r-partite partition whose tth component is the common

shape λk,tΛ of the pair of SYT’s assigned to πk,tΛ by the RSK correspondence. It is a
straightforward exercise to check that the rule

Λ 7→
(
λ0

Λ,λ
1
Λ, . . . ,λ

2n
Λ

)
(2)

coincides with the composition of the maps in Lemma 1.2, Theorem 2.4, and Lemma 2.5
and so has the properties described in Theorem 3.3.

Example 3.4. For the 2-colored (2-noncrossing 3-nonnesting) partition

Λ =
{
{1 1
_4

2
_5

1
_8}, {2 2

_6
1
_7}, {3}

}
= •

1

•
2

• •
2
•

1

•
1
• •

1 2 3 4 5 6 7 8

the sequences πk,tΛ and λkΛ = (λk,1Λ , λk,2Λ ) are given by
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k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

bk+1
2
c 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

πk,1Λ ∅ ∅ 4 4 4 4 4 ∅ ∅ ∅ 8 8 87 8 8 ∅ ∅
πk,2Λ ∅ ∅ ∅ ∅ 6 6 6 6 65 6 6 ∅ ∅ ∅ ∅ ∅ ∅

λk,1Λ ∅ ∅ ∅ ∅ ∅ ∅ ∅
λk,2Λ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

We may prove the rationality of some power series by translating Theorem 3.3 into
a statement concerning a bijection between colored set partitions and walks on a certain
multigraph (i.e., an undirected graph with multiple edges and loops allowed). Fix positive
integers j, k, r. Since only the trivial partition of [n] into n blocks is 1-noncrossing or 1-
nonnesting, let us assume j, k > 2. Now let Gj,k,r denote the multigraph whose vertices
consist of all r × (k − 1) integer matrices A = (Ai`) with

j > Ai,1 > Ai,2 > · · · > Ai,k−1 > 0 for each i ∈ [r],

and which has e(A,A′) undirected edges connecting any matrices A and A′, where

• e(A,A′) = 1 if A−A′ = ±Ei` or A−A′ = Ei` −Ei′`′ for some (i, `) 6= (i′, `′), where
Ei` denotes the r×(k−1) matrix with 1 in position (i, `) and 0 in all other positions.

• e(A,A′) = 1 + d1 + d2 + · · ·+ dr if A = A′, where di is the number of distinct entries
in the ith row of A which are less than j − 1;

• e(A,A′) = 0 in all other cases.

The following statement generalizes [10, Theorem 3.6].

Theorem 3.5. For any positive integers j, k, r, n with j, k > 2, the number NCNj,k(n, r)
of r-colored j-noncrossing k-nonnesting partitions of [n] is equal to the number of (n−1)-
step walks on the multigraph Gj,k,r which begin and end at the zero matrix.

Proof. First, observe that we can identify the set of r-partite partitions λ =
(λ1, λ2, . . . , λr) involving only integer partitions with fewer than j columns and fewer
than k rows with the vertices of Gj,k,r by viewing λ as the r× (k−1) integer matrix whose
ith row list the parts of λi, possibly extended by zeros.

Now, given a vacillating r-partite tableau (λ0,λ1, . . . ,λ2n) for which each λi is a vertex
of Gj,k,r, consider the sequence of n vertices in Gj,k,r given by λ1,λ3,λ5, . . . ,λ2n−1. Since
n is positive this sequence begins and ends at the r-partite empty shape, and for each
i ∈ [n − 1], λ2i+1 is obtained from λ2i−1 by either (1) adding one box, (2) deleting one
box, (3) adding one box then deleting one box, or (4) doing nothing.
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Cases (1) and (2) correspond in Gj,k,r to adding or subtracting an elementary matrix,
and if λ2i+1 6= λ2i−1 then case (3) corresponds in Gj,k,r to adding the difference of two
distinct elementary matrices. Thus if λ2i+1 6= λ2i−1 then there is exactly one edge between
the pair of associated vertices in Gj,k,r, and it follows by the definition of a vacillating
tableaux that λ2i is uniquely determined. On the other hand, the number of ways in
which one could add a box to λ2i−1 without introducing a jth column or kth row and
then delete the same box to obtain λ2i+1 = λ2i−1 is precisely the sum of the numbers of
distinct entries less than k−1 in the rows of the r× (k−1) matrix associated to λ2i−1. It
follows that if λ2i+1 = λ2i−1 then the number of allowable choices for λ2i is the number
of self-loops at the associated vertex in Gj,k,r, which suffices to complete the proof of the
theorem.

Example 3.6. The multigraphs Gj,k,r for (j, k, r) ∈ {(2, 2, 1), (2, 2, 2)} are shown below,
with the vertex corresponding to the zero matrix marked by •:

G2,2,1 : • ◦ and G2,2,2 : •
◦
◦

◦

We may explain these pictures by noting that the vertices of G2,2,1 are the matrices A =(
0
)

and A′ =
(

1
)

and we have e(A,A) = 2 and e(A,A′) = e(A′, A′) = 1. Similarly,
the vertices of G2,2,2 are the matrices

B =

(
0
0

)
, B′ =

(
1
0

)
, B′′ =

(
1
1

)
, and B′′′ =

(
0
1

)
.

One checks that e(B,B) = 3 and e(B′, B′) = e(B′′′, B′′′) = 2 and e(B′′, B′′) = 1, and that
all pairs of distinct matrices are adjacent except B and B′′.

We now have a short proof of Theorem 1.6 from the introduction.

Proof of Theorem 1.6. Fix n. For sufficiently large j, we have Cn(r) = NCNj,2(n, r) and
we may identify the (n − 1)-step paths in Gj,2,r from the zero matrix to itself with the
(n − 1)-step paths in Nr from the origin to itself using the following (r + 1)2 steps: ±ei
for i ∈ [r] (contributing 2r steps), or ei − ej for i 6= j (contributing r2 − r steps), or r+ 1
distinct zero steps. The number of such paths is therefore equal to Cn(r) by Theorem
3.5.

4 Enumerating noncrossing colored set partitions

We now prove a few enumerative results concerning the numbers NCNS,T
j,k (n, r) (as defined

before Theorem 1.4), in particular Theorem 1.7 from the introduction. To begin, recall
the following standard terminology. Let K be a field of characteristic zero. A formal
power series y ∈ K[[x]] is
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• rational if there are polynomials P,Q ∈ K[x] with Q(0) 6= 0 such that y = PQ−1 in
K[[x]];

• algebraic if the powers 1, y, y2, . . . span a finite-dimensional subspace of the set of
formal Laurent series K((x)), viewed as a vector space over the field of rational
functions K(x);

• D-finite if the derivatives y, y′, y′′, . . . span a finite-dimensional subspace of K((x))
over K(x).

A rational power series is algebraic and an algebraic power series is D-finite, and each class
of power series forms a K-subalgebra of K[[x]]. It is useful to note that y =

∑
n>0 anx

n is
D-finite if and only if the sequence of coefficients {an} is P-recursive, meaning that there
exist finitely many polynomials P0(x), . . . , Pd(x) ∈ K[x], with Pd(x) not identically zero,
such that

Pd(n)an+d + Pd−1(n)an+d−1 + · · ·+ P0(n)an = 0, for all n ∈ N.

See [28, Chapters 4] and [29, Chapter 6] as well as [22, 23] for more extensive properties
of these power series.

Since NCNj,k(n, r) counts the number of walks of a given length in some graph by
Theorem 3.5, the transfer matrix method (see [28, §4.7]) provides an explicit formula for
its generating function, and in particular we have this corollary:

Corollary 4.1. For any j, k, r ∈ P the formal power series
∑

n>0 NCNj,k(n, r)x
n is ra-

tional.

Example 4.2. Using [28, Theorem 4.7.2] to compute the generating functions for the
number of n-step walks on the graphs in Example 3.6, we obtain∑
n>0

NCN2,2(n)xn =
1− 2x

1− 3x+ x2
and

∑
n>0

NCN2,2(n, 2)xn =
1− 6x+ 7x2

1− 7x+ 11x2 − x3
.

Notably, one can derive from this that the number of partitions of [n] which are
both noncrossing and nonnesting is NCN2,2(n) = f2n−1 for all n > 0, where
{fn}∞n=0 = (0, 1, 1, 2, 3, 5, 8, 13, . . . ) is the sequence of Fibonacci numbers. The sequence
{NCN2,2(n)}∞n=0 appears as [27, A001519]. More generally, Mansour and Severini have
computed an explicit formula for the ordinary generating function of {NCN2,k(n)}∞n=0 for
any k > 2 [24, Theorem 1.1]; it would be interesting to see this result extended to describe
the ordinary generating function of {NCN2,k(n, r)}∞n=0.

We might as well also note here another basic property of the numbers NCNj,k(n, r),
which follows directly from the definitions of j-noncrossing and k-nonnesting.

Proposition 4.3. If j, k, n are fixed positive integers and S, T ⊂ [n], then NCNS,T
j,k (n, r)

is a polynomial in r with integer coefficients.
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Proof. Fix a partition P of [n] and let Vj,k(P ) be the union of the sets

{j-subsets of Arc(P ) which form a j-crossing}

and
{k-subsets of Arc(P ) which form a k-nesting}.

For each subset S ⊂ Vj,k(P ), define G(S) as the graph with vertex set S which has an
edge from s ∈ S to s′ ∈ S if and only if s 6= s′ and s∩s′ 6= ∅. Now let e(S) be the number
of connected components of G(S) minus |

⋃
S|, the number of distinct arcs occurring in

elements of S. By the inclusion-exclusion principle, the number of r-colorings of P which
have no j-crossings or k-nestings involving arcs all of the same color is the following sum
over all subsets S of Vj,k(P ): ∑

S⊂Vj,k(P )

(−1)|S|r|Arc(P )|+e(S).

In particular, this follows since r|Arc(P )|+e(S) is precisely the number of r-colorings of P
which assign the same color to every arc in each of the j-crossing or k-nesting sets s ∈ S.
Summing this polynomial expression over all P ∈ Πn with min(P ) = S and max(P ) = T
gives NCNS,T

j,k (n, r).

Summing the polynomials NCNS,T
j,k (n, r) over all S, T ⊂ [n] gives this corollary.

Corollary 4.4. When j, k > 2, the quantities NCNj,k(n, r) = NCNk,j(n, r) and
NCk(n, r) = NNk(n, r) are monic polynomials in r of degree n − 1 with integer coeffi-
cients.

Proof. The unique partition of [n] with one block and n− 1 arcs contributes the leading
term of rn−1 to each of these polynomials when j, k > 2.

The corollary requires j, k > 2 because if k = 1 (or j = 1) then NCNj,k(n, r) =
NCk(n, r) = 1 as both polynomials count only the unique partition of [n] with n blocks
and no arcs.

Example 4.5. As in the introduction let Cn(r) := NC2(n, r) be the number of r-colored
noncrossing partitions of [n]. By the corollary this is a polynomial in r of degree n−1. The
proof of Proposition 4.3 outlines an algorithm for computing these polynomials, which we
have employed to calculate Cn(r) for n 6 8:

C1(r) = 1

C2(r) = 1 + r

C3(r) = 1 + 3r + r2

C4(r) = 1 + 5r + 7r2 + r3

C5(r) = 1 + 6r + 19r2 + 15r3 + r4

C6(r) = 1 + 10r + 22r2 + 67r3 + 31r4 + r5

C7(r) = 1 + 12r + 56r2 + 67r3 + 229r4 + 63r5 + r6

C8(r) = 1− 24r + 176r2 + 159r3 + 225r4 + 765r5 + 127r6 + r7.
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The pattern displayed by first seven lines of this computation ends at n = 8, where we
see that the coefficients of Cn(r) can be both positive and negative integers.

Before continuing we note the following lemma, which will allow us to prove by hand
that the generating function

∑
n>0Cn(2)xn in Theorem 1.7 is D-finite. This statement

is a direct consequence of the main result of [22], but we have included a proof for com-
pleteness.

Lemma 4.6. Assume K is a field of characteristic zero and let S(x) ∈
K
[
x±1

1 , x±1
2 , . . . , x±1

k

]
be a Laurent polynomial in k indeterminates. Fix e1, e2, . . . , ek ∈ Z

and define an ∈ K for n ∈ N as the coefficient of xe11 x
e2
2 · · ·x

ek
k in S(x)n. Then the power

series
∑

n>0 ant
n ∈ K[[t]] is D-finite.

Remark 4.7. If k = 1 then
∑

n>0 ant
n is in fact algebraic by [29, Exercise 6.10].

Proof. Fix e = (e1, e2, . . . , ek) ∈ Zk and define an as in the statement of the lemma.
Since an is unchanged if we simultaneously replace ei by −ei and S(x1, . . . , xi, . . . , xn) by
S(x1, . . . , x

−1
i , . . . , xn), it is no loss of generality to assume −e ∈ Nk.

Adopt the notation xn := xn1
1 x

n2
2 · · ·x

nk
k for n = (n1, n2, . . . , nk) ∈ Zk and identify Z

with the diagonal subset of elements (d, d, . . . , d) ∈ Zk. Also, write qn(j) for the coefficient
of xj in S(x)n for j ∈ Zk, so that qn(e) = an.

Choose an integer d ∈ N such that xdS(x) is a polynomial in K[x1, x2, . . . , xk], and
note that we then have qn(j − dn) = 0 for all n ∈ N and j ∈ Zk \ Nk. Since −e ∈ Nk,
so that e + j ∈ Nk only if j ∈ Nk, the following identity of formal power series in
K[[x1, x2, . . . , xk, t]] thus holds:∑

j∈Nk

∑
n∈N

qn(e+ j − dn)xjtdn =
∑
n∈N

xdn−eS(x)ntdn =
x−e

1− xdtdS(x)
.

In particular, the leftmost power series in K[[x1, x2, . . . , xk, t]] is rational, and hence D-
finite in the sense of [22]. Observe, however, that the diagonal of this power series is
precisely

∑
n∈N qn(e)tdn =

∑
n∈N ant

dn ∈ K[[t]]. [22, Theorem 1] asserts that this power
series in one variable is D-finite. This suffices to prove the lemma, finally, because a power
series F (t) ∈ K[[t]] is clearly P-recursive (and hence D-finite) if F (td) is P-recursive for
some positive integer d.

We conclude with the proof of Theorem 1.7 from the introduction.

Proof of Theorem 1.7. Let wn(i, j) denote the number of all n-step walks in Z2 from
(0, 0) to (i, j) using the six steps ±(1, 0), ±(0, 1), ±(1,−1), and let qn(i, j) denote the
number of such walks which remain in the quarter plane N2. It follows by Theorem 1.6
that Cn+1(2) =

∑n
k=0

(
n
k

)
3n−kqk(0, 0), and thus the first assertion in the proposition is

equivalent to the claim that

qn(0, 0) is the constant term of
(
1− x2y−1 + x3 − x2y2 + y3 − x−1y2

)
S(x, y)n, (3)
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where S(x, y) is the Laurent polynomial x+y+x−1 +y−1 +xy−1 +x−1y. This fact happens
to follow directly from [4, Proposition 10], which asserts more strongly that qn(i, j) is equal
to the coefficient of x−iy−j in the right expression in (3) for any i, j, n ∈ N.

Bousquet-Mélou and Mishna prove [4, Proposition 10] using the kernel method, a
general purpose algebraic argument. Alternatively, however, one can establish just (3)
directly from a “generalized reflection principle” due to Gessel and Zeilberger [14], in the
following way. Observe that (3) is equivalent to the identity

qn(0, 0) = wn(0, 0)− wn(−2, 1) + wn(−3, 0)− wn(−2,−2) + wn(0,−3)− wn(1,−2). (4)

We will realize this as a special case of [14, Theorem 1]. Let R = {±(ei − ej) ∈ R3 :
1 6 i < j 6 3} be the root system of type A2 (inheriting the standard inner product
(·, ·) on R3), where ei denotes the ith unit coordinate vector, and fix a set of simple roots
∆ = {α, β}, for example with α = e1−e2 and β = e2−e3. Define L as the lattice Zα⊕Zβ
and let S be the set of six steps

S = {±(α + γ),±(β + γ),±(α− β)} where γ := α + β.

The Weyl group W ∼= S3 of R preserves both L and S. Furthermore, one can show that
wn(i, j) is the number of all n-step walks in L from 3γ to 3γ+ i(α+γ)+j(β+γ) using the
steps in S, and that qn(i, j) is the number of such walks which stay inside the fundamental
Weyl chamber C := {x ∈ L : (x, α) > 0 and (x, β) > 0}. (These statements become clear
if one draws α and β as vectors in the plane they span and then works out the subsets
of R2 corresponding to L, S, and C; see Figure 1.) Now, for these particular choices of
R, ∆, L, S, the hypotheses of [14, Theorem 1] hold and that theorem (with a = b = 3γ)
asserts precisely the identity (4). For a more detailed discussion of this sort of argument,
see also Grabiner and Magyar’s paper [15].

It follows from (3) and Lemma 4.6 that the ordinary generating function of
{qn(0, 0)}∞n=0 is D-finite, so the exponential generating function Q(x) :=

∑
n>0 qn(0, 0)x

n

n!
is

D-finite also (as a result of the the equivalence between D-finiteness and P-recursiveness).
Let F (x) =

∑
n>0Cn(2)x

n

n!
. The formula Cn+1(2) =

∑n
k=0

(
n
k

)
3n−kqk(0, 0) shows that

d
dx
F (x) = e3xQ(x), so since e3x is D-finite it follows that the derivative d

dx
F (x) is D-finite

whence F (x) is also D-finite. The ordinary generating function
∑

n>0Cn(2)xn, finally, is
therefore D-finite too.

To derive the particular polynomial recurrence given in the proposition, we resort to
computer methods. Our argument resembles the one employed by Bousquet-Mélou and
Xin to prove [3, Proposition 1]. As a preliminary, observe that

S(x, y) + 2 = y−1(1 + x)
(

1 + x−1(1 + x)y + x−1y2
)

and hence, writing CT(f(x, y)) for the constant term of a polynomial f(x, y), we can
directly compute (by considering first the contribution of the x−1y2 term, then the x−1(1+
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Figure 1: Comparing walks in C and in N2. On the left, the •’s are the lattice points in
the intersection C of L and the fundamental Weyl chamber of R; the solid lines form the
boundary of the fundamental chamber; and the dashed arrows, all emanating from the
point 3γ, are the six steps in S. On the right, the •’s are the integer lattice points in N2;
the solid lines are x = −1 and y = −1; and the dashed lines, all emanating from the origin,
are the six steps ±(1, 0), ±(0, 1), ±(1,−1). It is intuitively clear that “compressing” and
“dilating” these pictures defines a bijection between the walks in C using the steps on the
left and the walks in N2 using the steps on the right.

x)y term, then the remaining terms involving only x) that

CT
(
xiyj(S(x, y) + 2)n

)
=
∑
k∈Z

(
n

k

)
CT
(
xi−kyj+2k−n · (1 + x)n ·

(
1 + x−1(1 + x)y

)n−k)
=
∑
k∈Z

(
n

k

)(
n− k

n− j − 2k

)
CT
(
xi+j+k−n · (1 + x)2n−j−2k

)
=
∑
k∈Z

(
n

k

)(
n− k

n− j − 2k

)(
2n− j − 2k

n− i− j − k

)
.

(5)
Let bn denote the constant term of (1− x2y−1 + x3 − x2y2 + y3 − x−1y2) (S(x, y)+2)n for
n ∈ N, and note that Cn+1(2) =

∑n
k=0

(
n
k

)
bk. Equation (5) allows us to write bn as a sum

of expressions given by fractions of factorials, to which we can apply Zeilberger’s algorithm
for creative telescoping [26, Chapter 6]. In particular, using the Maple package Ekhad
[39], we obtain the following polynomial recurrence for the numbers bn:

(n+ 5)(n+ 6)bn+2 = 8(n+ 2)(n+ 1)bn + (7n2 + 49n+ 82)bn+1, for all n ∈ N.

Let B(x) =
∑

n>0 bn
xn

n!
∈ Q[[x]] so that exB(x) =

∑
n>0Cn+1(2)x

n

n!
. It is a routine exercise
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to check that the preceding recurrence is equivalent to the statement that the formal power
series B(x) lies in the kernel of the differential operator(

d4

dx4
− 7 d3

dx3
− 8 d2

dx2

)
x2 +

(
4 d3

dx3
− 14 d2

dx2

)
x+

(
6 d2

dx2
− 12 d

dx

)
.

Since ( d
dx
−1)exA(x) = ex d

dx
A(x) for any power series A(x) ∈ Q[[x]], it follows that exB(x)

lies in the kernel of the differential operator(
d4

dx4
− 11 d3

dx3
+ 19 d2

dx2
− 9 d

dx

)
x2 +

(
4 d3

dx3
− 26 d2

dx2
+ 40 d

dx
− 18

)
x+

(
6 d2

dx2
− 24 d

dx
+ 18

)
,

which in turn implies that the following recurrence holds for all n ∈ N:

0 = 9n(n+ 3)Cn(2)− (96 + 97n+ 19n2)Cn+1(2) + (142 + 81n+ 11n2)Cn+2(2)

− (n+ 5)(n+ 6)Cn+3(2).

This recurrence, with the initial conditions C0(2) = C1(2) = 1 and C2(2) = 3, uniquely
determines the sequence {Cn(2)}∞n=0, and it is easy to check that the unique sequence
with the same initial conditions satisfying the three-term polynomial recurrence in the
proposition statement also satisfies this four-term recurrence.

5 Some extensions

In this final section we discuss a few variations of set partitions with natural notions of
crossings, nestings, and colorings. Our discussion here is partially expository, surveying
results from [6, 7, 8, 9, 37]. In each case our noncrossing and nonnesting colored objects
are in bijection with certain classes of noncrossing and nonnesting colored set partitions.
On noting these bijections, we are often able to derive the symmetric joint distribution of
crossing and nesting numbers by applying the following variant of Lemma 1.3. (Here, as
in the introduction, we let P([n]) denote the set of all subsets of [n]. We also write Πn,r

for the set of r-colored partitions of [n].)

Lemma 5.1. Suppose X is a set with an injective map φ : X → Πn,r. If the image of X
under φ is equal to the inverse image in Πn,r of some subset of P([n])×P([n]) under the
map Λ 7→ (min(Λ),max(Λ)), then the statistics cr(φ(x)) and ne(φ(x)) for x ∈ X possess
a symmetric joint distribution.

Proof. Our argument is almost identical to the short proof of Lemma 1.3. Theorem
1.1 shows that there exists an involution of Πn,r interchanging all crossing and nesting
numbers, and our condition on φ ensures that X may be identified with a subset of Πn,r

which is invariant under this involution. The lemma therefore follows.
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5.1 Matchings

A colored set partition Λ of [n] is a matching if and only if min(Λ) ∪ max(Λ) = [n]
(and a complete matching if and only if furthermore min(Λ) ∩ max(Λ) = ∅). Thus,
it is immediate from Lemma 5.1, taking φ to be the natural inclusion map, that the
statistics cr(M) and ne(M) have a symmetric joint distribution over r-colored matchings
(respectively, complete matchings) M of [n]. This result is due originally to Chen and
Guo [7], who derive it in a considerably different way, by generalizing Theorem 2.4 to the
colored matchings using r-rim hook tableaux in place of r-partite tableaux. We briefly
review their methods here and explain how we may recover the main results in [7] from
what is done here by applying a theorem of Fomin and Stanton [13].

To this end, recall that if µ ⊆ λ are integer partitions then the skew shape λ/µ is an
r-rim hook if the skew diagram of λ/µ consists of r contiguous squares located on distinct
diagonals. Let RHr denote the set of integer partitions λ for which there exists a sequence
of partitions

∅ = λ0 ⊂ λ1 ⊂ · · · ⊂ λk = λ

such that λi/λi−1 is an r-rim hook for each i ∈ [k]. The set RHr, with respect to the
partial order in which λ covers µ if and only if µ ⊆ λ and λ/µ is an r-rim hook, is called
the r-rim hook lattice.

Chen and Guo [7] define an oscillating r-rim hook tableau as a sequence (λ0, λ1, . . . , λn)
of integer partitions λi ∈ RHr such that λ0 = λn = ∅ and either λi covers λi−1 or λi−1

covers λi in RHr for each i ∈ [n]. Let us define a semi-oscillating r-rim hook tableau as
a sequence satisfying the same conditions except that it is also allowed that λi−1 = λi,
and in turn, we define a vacillating r-rim hook tableau as a semi-oscillating r-rim hook
tableau (λ0, λ1, . . . , λn) with λi−1 ⊆ λi when i is even and λi−1 ⊇ λi when i is odd. For
example,

T = (∅, ∅, , , , , , , , , , ∅)

is a vacillating 2-rim hook tableau of length n = 11. These objects are in natural bijec-
tion with oscillating, semi-oscillating, and vacillating r-partite tableaux by the following
theorem of Fomin and Stanton. Here, we view the cartesian product of r copies of the
Young lattice Yr as the lattice of r-partite partitions in which λ covers µ if and only if λ
is obtained from µ by adding one square.

Theorem 5.2 (Fomin and Stanton [13]). There is a lattice isomorphism RHr
∼= Yr such

that if µ ∈ RHr has k rows and ` columns and λ ∈ Yr is the associated r-partite partition,
then the maximum numbers of rows and columns in the components of λ are dk

r
e and d `

r
e,

respectively.

Proof. Fomin and Stanton describe a lattice isomorphism Yr ∼= RHr in the proof of [13,
Theorem 1.2]. Given an integer partition λ, let fλ : Z → Z>0 be the function whose
value at i ∈ Z is the number of squares in the Young diagram of λ on the ith diagonal.
If λ = (λ1, . . . , λr) ∈ Yr and µ ∈ RHr is the corresponding partition under Fomin and

Stanton’s isomorphism, then fµ(i) =
∑r

k=1 fλk

(⌊
i+(k−1)

r

⌋)
for i ∈ Z [13, Definition 2.4].
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Noting this formula, the second assertion in the theorem follows from that fact that the
number of rows (respectively, columns) in a nonempty partition λ is the maximum value
of i for which fλ(−i+ 1) (respectively, fλ(i− 1)) is nonzero.

Given a semi-oscillating r-rim hook tableau T , let row(T ) and col(T ) denote the
respective maximum number of rows and columns in any partition in RHr occurring in
T . The following corollary slightly generalizes [7, Theorem 3.1], which Chen and Guo
prove by explicitly describing a bijection from r-colored complete matchings to oscillating
r-rim hook tableaux in terms of Stanton and White’s Schensted algorithm for rim hook
tableaux [31].

Corollary 5.3. For any positive integers n and r, there are bijections

r-colored partitions of [n] ↔ vacillating r-rim hook tableaux of length 2n
r-colored matchings of [n] ↔ semi-oscillating r-rim hook tableaux of length n

r-colored complete matchings of [2n] ↔ oscillating r-rim hook tableaux of length 2n

and with respect to each bijection, if Λ 7→ T then cr(Λ) = dcol(T )/re and ne(Λ) =
drow(T )/re.

Proof. Compose the maps in Theorem 3.3 with the bijection between r-partite tableaux
and r-rim hook tableaux afforded by Theorem 5.2.

Let NCNMatching
j,k (n, r) (respectively, NCMatching

k (n, r)) denote the number of j-
noncrossing k-nonnesting (respectively, k-noncrossing) r-colored tangled diagrams on [n].
The following corollary follows by arguments similar to the proofs of Theorem 3.5 and
Corollary 4.1, which we have left to the reader.

Corollary 5.4. For all j, k, r ∈ P the formal power series
∑

n>0 NCNMatching
j,k (n, r)xn is

rational.

In turn we have this corollary:

Corollary 5.5 (See Chen and Guo [7]). For all k, r ∈ P,
∑

n>0 NCMatching
k (n, r)xn is

D-finite.

Proof. Let an denote the number of r-colored complete matchings of [n], so that an = 0
whenever n is odd. Chen and Guo [7, Corollary 3.3] show that the exponential generating
function

∑
n>0 an

xn

n!
is given by the rth power of the determinant of a matrix whose

entries are linear combinations of hyperbolic Bessel functions of the first kind In(2x) :=∑
i>0

xn+2i

i!(n+i)!
. As In(2x) is D-finite and D-finite power series form a ring,

∑
n>0 an

xn

n!
is

D-finite. It follows that ∑
n>0

NCMatching
k (n, r)x

n

n!
= ex ·

∑
n>0

an
xn

n!

is D-finite, so
∑

n>0 NCMatching
k (n, r)xn is also D-finite.
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5.2 Enhanced set partitions

In this section we examine a colored version of the enhanced crossing and nesting statistics
considered in [10, Section 4]. Given a partition P of [n], let

Arc(P ) = Arc(P ) ∪ {(i, i) : i ∈ min(P ) ∩max(P )}

denote the set of enhanced arcs of P . In turn, define an r-colored enhanced partition
of [n] to be a pair Λ = (P, ϕ) consisting of a partition P of [n] together with a map
ϕ : Arc(P )→ [r].

The standard representation of an enhanced colored partition is drawn exactly as for
uncolored set partitions, except that we include loops at isolated points (that is, elements
of min(P ) ∩max(P )) and label all arcs as in the following example:

•
a

•

c

•
b

•

e

•
d

• •
1 2 3 4 5 6 7

where a, b, c, d, e ∈ [r].

Let min(Λ) = min(P ) and max(Λ) = max(P ) and say that Λ has an enhanced k-crossing
or enhanced k-nesting if there is a sequence of k enhanced arcs {(it, jt)}t∈[k] ⊂ Arc(P ), all
labeled with the same color by ϕ, satisfying respectively

i1 < i2 < · · · < ik 6 j1 < j2 < · · · < jk or i1 < i2 < · · · < ik 6 jk < · · · < j2 < j1. (6)

Define cr(Λ) and ne(Λ) as the largest integers k such that Λ has an enhanced k-crossing or
enhanced k-nesting, respectively. Observe that 1-colored enhanced set partitions represent
the same data as uncolored set partitions; in the case r = 1, the enhanced crossing and
nesting statistics given here coincide with those defined for (uncolored, unenhanced) set
partitions in [10].

We now have this variant of Lemma 2.5:

Proposition 5.6. Given an r-colored enhanced partition Λ = (P, ϕ), define M = (P ′, ϕ′)
as the r-colored matching of [2n] such that

• Arc(P ′) =
{

(2i− 1, 2j) : (i, j) ∈ Arc(P )
}

;

• ϕ′(2i− 1, 2j) = ϕ(i, j) for (i, j) ∈ Arc(P ).

The map Λ 7→M is then a bijection from r-colored enhanced partitions of [n] to r-colored
partitions M of [2n] such that 2i − 1 ∈ min(M) and 2i ∈ max(M) for all i ∈ [n].
Furthermore cr(Λ) = cr(M) and ne(Λ) = ne(M).
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Proof Sketch. Like Lemma 2.5, this result is intuitively clear since our map defines M as
the colored matching whose standard representation is formed by applying the local rules

•
a b 7→ •

a

•
b

•
a 7→ • •

a

•
a 7→ •

a

•

•

a

7→ •

a

•

to the standard representation of Λ. The details are left to the reader.

The next theorem generalizes [10, Theorem 4.3].

Theorem 5.7. Let S, T ⊂ [n]. The enhanced crossing and nesting numbers cr(Λ) and
ne(Λ) have a symmetric joint distribution over all r-colored enhanced partitions Λ of [n]
with min(Λ) \max(Λ) = S and max(Λ) \min(Λ) = T .

Proof. Define φ as the map in Proposition 5.6. One checks that if Λ has min(Λ)\max(Λ) =
S and max(Λ) \min(Λ) = T then M = φ(Λ) has min(M) = {odd i ∈ [2n]} ∪ {2i : i ∈ S}
and max(M) = {even i ∈ [2n]} ∪ {2i− 1 : i ∈ T}, so we may invoke Lemma 5.1.

While on this topic we mention a result obtained in a similar way which does not
seem to be noted in the literature. Here, we let NCNj,k(n, r) = NCNk,j(n, r) denote the
number of r-colored enhanced partitions Λ of [n] with cr(Λ) < j and ne(Λ) < k.

Proposition 5.8. For all j, k, n, r ∈ P, we have NCNj,k(n+1, r) =
∑n

i=0

(
n
i

)
NCNj,k(i, r).

This statement is equivalent to the identity of exponential generating functions

d
dx

(∑
n>0 NCNj,k(n)x

n

n!

)
= ex

(∑
n>0 NCNj,k(n)x

n

n!

)
(7)

which in the case r = 1 provides a way of deriving either of the two main propositions in
Bousquet-Mélou and Xin’s paper [3] from the other.

Proof. Consider, in slight contrast to Proposition 5.6, the map sending an r-colored en-
hanced partition Λ = (P, ϕ) of [n] to the unique r-colored matching Λ′ = (P ′, ϕ′) of
[2n + 2] with Arc(P ′) =

{
(2i, 2j + 1) : (i, j) ∈ Arc(P )

}
and ϕ′(2i, 2j + 1) = ϕ(i, j). One

checks that this is a bijection from r-colored enhanced partitions Λ with cr(Λ) < j and
ne(Λ) < k to r-colored j-noncrossing k-nonnesting matchings M of [2n+ 2] such that

(i) 2i ∈ min(M) and 2i− 1 ∈ max(M) for all i ∈ [n+ 1];

(ii) 2i and 2i+ 1 are never both isolated points of M for any i ∈ [n].
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Lemma 2.5 (which is stated in terms of uncolored partitions but extends easily to the
colored case) affords a bijection from r-colored j-noncrossing k-nonnesting partitions of
[n+1] to the set of r-colored j-noncrossing k-nonnesting matchings M of [2n+2] satisfying
only condition (i). Given this observation the proposition follows by a basic counting
argument.

Before proceeding to our next topic, we observe a few corollaries of this proposition.

Corollary 5.9. For any j, k, r ∈ P the formal power series
∑

n>0 NCNj,k(n, r)x
n is ra-

tional.

Proof. This follows from Corollary 4.1 since the proposition shows that if

F (x) =
∑
n>0

NCNj,k(n, r)x
n

then
∑

n>0 NCNj,k(n, r)x
n = 1

x

(
F ( x

x+1
)− 1

)
.

Let NCk(n, r) and NCk(n, r) denote the number of k-noncrossing (equivalently, k-
nonnesting) r-colored partitions of [n]. The next corollary is immediate from (7):

Corollary 5.10. If either of∑
n>0

NCk(n, r)x
n or

∑
n>0

NCk(n, r)x
n

is D-finite then both formal power series are D-finite.

In particular, let Cn(r) = NC2(n, r). By Theorem 1.7 we then have:

Corollary 5.11. The formal power series
∑

n>0Cn(2)xn is D-finite.

It is straightforward but not very instructive to derive an exact polynomial recurrence
for Cn(r) from Theorem 1.7, and we omit these details.

5.3 Permutations

Corteel [11] first introduced crossings and nestings for permutations (i.e., bijections [n]→
[n]). Burill, Mishna, and Post [6] extended Corteel’s notion to defines k-crossings and k-
nestings in permutations, and Yen [37] has recently considered such crossings and nestings
in colored permutations. In this section we connect some of the results in [37] to our
methods here.

Given a permutation σ of [n]:

• Let A+
σ denote the set {(i, σ(i)) : i ∈ [n] such that i 6 σ(i)}.

• Let A−σ denote the set {(σ(i), i) : i ∈ [n] such that σ(i) < i}.
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Following Yen, an r-colored permutation of [n] is a triple Σ = (σ, ϕ+, ϕ−) where σ is a
permutation of [n] and ϕ± are maps A±σ → [r]. The standard representation of such
a triple is given by drawing n dots • in increasing order on a horizontal line, with the
arcs A+

σ and A−σ labeled by ϕ± drawn in the upper and lower half plane respectively to
connect the corresponding dots (counted as 1,2,. . . ,n from left to right). For example, if
a, b, c, d, e, f, g, h, i ∈ [r] then

•

b

d

•

a

•

f

c

•
e

•
g

• •
h

i

• •

j

•

is the standard representation of an r-colored permutation Σ with

σ = (1, 4, 6, 5, 3, 8)(2)(7, 9, 10)

(written in cycle notation). Observe that (A−σ , ϕ
−) represents the same data as an r-

colored partition of [n], while (A+
σ , ϕ

+) is an object intermediate between a colored par-
tition and a colored enhanced partition. We mention that the number of r-colored per-
mutations of [n] is rnn!, and that these objects are naturally identified with elements of
the wreath product (Z/rZ) o Sn.

Following [6, 37], we say that an r-colored permutation Σ = (σ, ϕ+, ϕ−) has a k-
crossing (respectively, k-nesting) if either of the following holds:

• There is a sequence of arcs {(it, jt)}t∈[k] ⊂ A+
σ , all labeled by ϕ+ with the same

color, which form an enhanced k-crossing (respectively, enhanced k-nesting) in the
sense of (6).

• There is a sequence of arcs {(it, jt)}t∈[k] ⊂ A−σ , all labeled by ϕ− with the same
color, which form a k-crossing (respectively, k-nesting) in the usual sense of (1).

Let cr(Σ) and ne(Σ) be the largest integers k such that P has a k-crossing or k-nesting,
respectively. Say that Σ is j-noncrossing or k-nonnesting if cr(Σ) < j or ne(Σ) < k.

The following result does not appear to be noted in the literature, and allows us to
give an alternate proof of theorems in [6] and [37] directly from Lemma 5.1.

Proposition 5.12. There is a bijection from r-colored j-noncrossing k-nonnesting per-
mutations of [n] to pairs (Λ+,Λ−) of r-colored j-noncrossing k-nonnesting matchings of
[2n] such that

(a) {1, 3, 5, . . . , 2n − 1} is the disjoint union of min(Λ+) \ max(Λ+) and max(Λ−) \
min(Λ−);

(b) {2, 4, 6, . . . , 2n} is the disjoint union of max(Λ+)\min(Λ+) and min(Λ−)\max(Λ−).
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Proof. Given an r-colored permutation Σ = (σ, ϕ+, ϕ−) of [n], let Λ± = (P±, φ±) be the
unique r-colored partitions of [2n] such that

• Arc(P+) = {(2i− 1, 2j) : (i, j) ∈ A+
σ } and φ+(2i− 1, 2j) = ϕ+(i, j) for (i, j) ∈ A+

σ ;

• Arc(P−) = {(2i, 2j − 1) : (i, j) ∈ A−σ } and φ−(2i, 2j − 1) = ϕ−(i, j) for (i, j) ∈ A−σ .

Noting Lemma 2.5 and Proposition 5.6, it is straightforward to check that Σ is j-
noncrossing and k-nonnesting if and only if both Λ± are, and that Λ± are colored match-
ings satisfying conditions (a) and (b).

To construct an inverse to the map Σ 7→ (Λ+,Λ−), fix a pair (Λ+,Λ−) of r-colored
matchings of [2n] satisfying (a) and (b). Define σ : [n] → [n] by setting σ(i) equal to
the unique j ∈ [n] such that (2i − 1, 2j) is an arc of Λ+ or (2j, 2i − 1) is an arc of Λ−;
conditions (a) and (b) ensure that exactly one of these cases occurs, and hence also that
the map σ is a permutation. Form an r-colored permutation Σ = (σ, ϕ+, ϕ−) by coloring
(i, σ(i)) or (σ(i), i) in the same way as the corresponding arc (2i− 1, 2j) or (2j, 2i− 1) in
Λ±. By construction the map (Λ+,Λ−) 7→ Σ given here and the map Σ 7→ (Λ+,Λ−) given
in the previous paragraph are inverses of each other.

As one application of the preceding proposition, we state the following theorem. Yen
proves a more detailed version of this statement by different methods in [37].

Theorem 5.13 (See Yen [37]). The crossing and nesting numbers cr(Σ) and ne(Σ) have
a symmetric joint distribution over all r-colored permutations of [n].

Proof. Lemma 5.1 implies that the numbers cr(Λ+,Λ−) := max{cr(Λ±)} and
ne(Λ+,Λ−) := max{ne(Λ±)} have a symmetric joint distribution over all pairs (Λ+,Λ−)
of r-colored matchings of [2n] for which the four sets min(Λ±) \max(Λ±) and max(Λ±) \
min(Λ±) are fixed. The theorem therefore follows by Proposition 5.12.

Let NCNPermute
j,k (n, r) (respectively, NCPermute

k (n, r)) denote the number of j-
noncrossing k-nonnesting (respectively, k-noncrossing) r-colored permutations of [n]. Yen
proves the following in [37, Section 4]:

Corollary 5.14 (See Yen [37]).
∑

n>0 NCNPermute
j,k (n, r)xn is a rational power series for

all j, k, r ∈ P.

The formal power series
∑

n>0 NCPermute
k (n, r)xn is algebraic when k = 2 and r = 1

since, as noted in [6, Table 2], the number of noncrossing uncolored permutations of [n]
is again given by the nth Catalan number; i.e., NCPermute

2 (n, 1) = 1
n+1

(
2n
n

)
. However, we

are left with this question, still open even in the case k = r = 2.

Question 5.15. For which k, r ∈ P is the power series
∑

n>0 NCPermute
k (n, r)xn D-finite?

Finally, we mention that there are also notions of crossings and nestings which have
been studied for permutations of type B; see [16]. Type B permutations are in bijec-
tion with 2-colored permutations, and it would be interesting to know of any connection
between the results in [16] and [37].
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5.4 Tangled diagrams

Chen, Qin, and Reidys introduced tangled diagrams in [8] as a combinatorial framework
for efficient prediction algorithms involved in interactions between RNA molecules. Tan-
gled diagrams a further studied, for example, in [9]. Slightly generalizing the construction
in [8], we define an r-colored tangled diagram on [n] as a labeled graph on the vertices
1, 2, . . . , n (drawn in increasing order on a horizontal line) with arcs labeled by [r] (drawn
in the upper half plane between vertices), such that at any vertex at most two arcs meet
in one of the following local configurations:

• •

a

•

a

•

a b

•

a

•

ba

•
ba

•
a b

•

a

b •

a

b • •

a

b •

b

•

a

Here the labels a, b ∈ [r] are arbitrary. While the vertices in these diagrams are labeled by
1, 2, . . . , n from left to right, we usually omit these labels from our drawings. For example,

•

c

•

b

•

d

•

a

•

e

• • •

h

•

gf

•

i

• • (8)

is an r-colored tangled diagram on [n] with n = 12 (here the letters a, b, c, . . . indicate
arbitrary elements of [r]). The notion of tangled diagrams in [8] coincides precisely with
1-colored tangled diagrams in the sense just given.

To each r-colored tangled diagram T on [n] one associates an r-colored matching η(T )
of [2n], called the inflation of T , by doubling each vertex such that the local configurations
of arcs shown above are respectively transformed to the configurations below:

• • • •

a

•

a

• •

a

•

b

•
a

• •

b

•

a

•

a

•
b

•
a

•

b

•

a

• b •b •

a

• • •b •

a

• • •

a

•

b

For example, if T is the diagram in (8) then η(T ) is given by

• •

c

•

a

•

b

• •

d

• • •
e

• • •

f

• • • •

h

•

g

• • •

i

• • • •
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Define the crossing and nesting numbers of cr(T ) and ne(T ) of a tangled diagram T to
be the numbers cr(η(T )) and ne(η(T )) respectively. In the preceding example, we have
cr(T ) = ne(T ) = 1 if the arc colors are all distinct, and cr(T ) = ne(T ) = 3 if the arc
colors all coincide.

Remark 5.16. The definition of the inflation map η here differs slightly when r = 1 from
the one given in [8, Section 2.2], but the difference is only that inflation here inserts more
isolated points into the tangled diagram T to form η(T ). Hence, the crossing and nesting
numbers in [8], which are given in exactly the same way as the crossing and nesting
numbers of the corresponding inflated diagram, coincide with our definition of cr(T ) and
ne(T ).

The following proposition highlights the utility of the inflation map η as we have
defined it.

Proposition 5.17. The inflation map η defines a bijection from the set of r-tangled
diagrams on [n] to the subset of r-colored matchings M on [2n] such that for each i ∈ [n]
if 2i is an isolated point of M then 2i− 1 ∈ max(M) and if 2i− 1 is an isolated point of
M then 2i ∈ min(M).

Proof Sketch. The proposition is intuitively clear since tangled diagrams and matchings
are completely determined by the local arc configurations in their standard representa-
tions, and since

•

a

• and • •

a

are the only arc configurations involving consecutive vertices 2i− 1 2i (for i ∈ [n]) which
can occur in a matching of [2n] but which cannot occur in the inflation η(T ) of a tangled
diagram on [n].

Taking φ = η in Lemma 5.1 thus shows:

Theorem 5.18. The crossing and nesting numbers cr(T ) and ne(T ) have a symmetric
joint distribution over all r-colored tangled diagrams T on [n].

In turn, combining Proposition 5.17 with Theorem 3.3 gives us this generalization of
[8, Theorems 3.6 and 3.7].

Theorem 5.19. There is a bijection T 7→ (λ0,λ1, . . . ,λ2n) from the set of r-colored
tangled diagrams on [n] to the subset of semi-oscillating r-partite tableaux of length 2n
such that for each i ∈ [n] the transition from λ2i−2 to λ2i−1 to λ2i does not consist of
either

• Adding a box then doing nothing;

• Doing nothing then deleting a box.

Further, T is j-noncrossing and k-nonnesting if and only if the r components of each λi

all have fewer than j rows and and fewer than k columns.
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Proof. The bijection from r-colored matchings of [2n] to semi-oscillating r-partite tableaux
of length 2n described in Theorem 3.3 is achieved explicitly by first applying the
map in Lemma 1.2 to an r-colored matching and then applying the map in Theo-
rem 2.4 to resulting r uncolored components. With respect to the resulting bijection
M 7→ (λ0,λ1, . . . ,λn), one checks that i ∈ min(M) if and only if λi−1 ⊆ λi and
i ∈ max(M) if and only if λi−1 ⊇ λi. The theorem here follows by combining this
observation with Proposition 5.17.

Let NCNTangle
j,k (n, r) (respectively, NCTangle

k (n, r)) denote the number of j-noncrossing
k-nonnesting (respectively, k-noncrossing) r-colored tangled diagrams on [n]. Given the
preceding result, the following corollary (like Corollary 5.4) follows by arguments similar
to the proofs of Theorem 3.5 and Corollary 4.1.

Corollary 5.20. For all j, k, r ∈ P the formal power series
∑

n>0 NCNTangle
j,k (n, r)xn is

rational.

The authors of [9] prove that
∑

n>0 NCTangle
k (n, 1)xn is D-finite and derive an explicit

asymptotic formula for the number of k-noncrossing (uncolored) tangled diagrams on [n].
It is expected that the methods of [9] extend to colored tangled diagrams without great
difficulty, but we relegate the working out of these details to this open question:

Question 5.21. For which k, r ∈ P is the power series
∑

n>0 NCTangle
k (n, r)xn D-finite?
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