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Abstract

We work with a generalization of Stirling numbers of the second kind related
to the boson normal ordering problem (P. Blasiak et al.). We show that these
numbers appear as part of the coefficients of expressions in which certain sequences
of products of binomials, together with their partial sums, are written as linear
combinations of some other binomials. We show that the number arrays formed
by these coefficients can be seen as natural generalizations of Pascal and Lucas
triangles, since many of the known properties on rows, columns, falling diagonals
and rising diagonals in Pascal and Lucas triangles, are also valid (some natural
generalizations of them) in the arrays considered in this work. We also show that
certain closed formulas for hyper-sums of powers of binomial coefficients appear in
a natural way in these arrays.

Keywords: generalized Stirling numbers, powers of binomial coefficients

1 Introduction

Along the years, Stirling numbers have demonstrated to be a fundamental tool (‘of the
greatest utility’ [17]) for dealing with combinatorial problems. We can find now many
research works pursuing generalizations (in some sense) of Stirling numbers of both kinds
(some of them accompanied with the corresponding combinatorial interpretations). We
mention some: L. Carlitz [6] studied a type of λ-weighted Stirling numbers/polynomials
which have demonstrated to be useful to understand different mathematical problems
(see for example [12] and [18]); W. Lang [21] considered a (one-parameter) generalization
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of Stirling numbers, by using the language of ‘infinitesimal transformations’ (with some
flavor from Lie groups theory). Lang himself [20] studied the corresponding combinatorial
interpretation of his generalized Stirling numbers. One more generalized version of Stirling
numbers appeared in the work of T. Mansour et al. [22], and one yet more in the work of
M. Dziemiańczuk [11]. We mention also the work of Tian-Xiao He [16], which presents a
generalization that includes some other known generalizations of Stirling numbers. (See
also Remark 1 at the end of this section.) Among all these works, there is one concerning
Stirling numbers of the second kind, which has a natural connection with certain products
of binomial coefficients. Having this connection as starting point we construct some
number arrays which are natural generalizations of Pascal and Lucas triangles (and also
of the corresponding results of the previous work [24]). To study these number arrays
is the main theme of this article. The mentioned generalization of Stirling numbers of
the second kind appears in the works of P. Blasiak et al. [2, 4, 23] (see also [1]). (Two
works relating this generalization with other combinatorial-physics objects are [26, 27];
two works about the combinatorial interpretations of these generalized Stirling numbers
are [3, 10].) We devote the rest of this section to present the basic facts of Blasiak’s
generalized Stirling numbers of the second kind.

Throughout the work, p denotes a given natural number. To keep the original author’s
notation, we use r and s to denote positive integers such that r > s. The (r, s)-Stirling
numbers of the second kind Sr,s (p, k) (or simply generalized Stirling numbers of the second
kind), are introduced in the P. Blasiak’s main work [2] as certain coefficients appearing in
the so-called boson normal ordering problem. Roughly speaking, the numbers Sr,s (p, k)
are determined by the following equation:(

xr
ds

dxs

)p
= xp(r−s)

ps∑
j=s

Sr,s (p, j)xj
dj

dxj
. (1)

For example, if we set r = 4, s = 3 and p = 2, formula (1) looks as(
x4

d3

dx3

)2

= x2
6∑
j=3

S4,3 (2, j)xj
dj

dxj
. (2)

Letting act both sides of (2) on a C6 (R) function y = y (x), the left-hand side becomes

x4
d3

dx3

(
x4
d3y

dx3

)
= x2

(
24x3

d3y

dx3
+ 36x4

d4y

dx4
+ 12x5

d5y

dx5
+ x6

d6y

dx6

)
,

so we have that S4,3 (2, 3) = 24, S4,3 (2, 4) = 36, S4,3 (2, 5) = 12 and S4,3 (2, 6) = 1.
By convention one takes Sr,s (p, 0) = δp,0. It can be shown that Sr,s (p, j) 6= 0 if and

only if s 6 j 6 sp, and that Sr,s (p, ps) = 1 for p ∈ N. The standard Stirling numbers
of the second kind S (p, j) correspond to the case r = s = 1. An explicit formula for
Sr,s (p, j) is

Sr,s (p, j) =
(−1)j

j!

j∑
i=s

(−1)i
(
j

i

) p∏
l=1

(i+ (l − 1) (r − s)) s , (3)
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where m s =
∏s−1

l=0 (m− l) is the falling factorial. From (3) one can see at once that
Ss,s (p, s) = (s!)p−1. (Note that when r = s = 1, formula (3) is the known explicit formula

for Stirling numbers of the second kind S (p, k) = (−1)k
k!

∑k
i=1 (−1)i

(
k
i

)
ip.) It is possible to

see from (1) that
p∏
j=1

(x+ (j − 1) (r − s)) s =

ps∑
k=s

Sr,s (p, k)x k . (4)

Observe that the case s = r of (4) is

(x r )p =

pr∑
k=r

Sr,r (p, k)x k , (5)

and that the case r = 1 of (5) is the well-known expression

xp =

p∑
k=1

S (p, k)x k , (6)

in which the Stirling numbers of the second kind S (p, k) appear as the connecting coeffi-
cients when xp is written as a linear combination of the falling factorials x k , k = 1, 2, . . . , p.

Formula (4.56) –corrected– from Blasiak [2], gives us the recurrence relation

Sr,s (p+ 1, k) =
s∑
i=0

(
p (r − s) + k + i− s

i

)
s iSr,s (p, k + i− s) . (7)

(When r = s = 1 we have the known recurrence S (p+ 1, k) = S (p, k − 1) + kS (p, k)
for the usual Stirling numbers of the second kind.)

An interesting particular case is when r = 2s. We claim that

S2s,s (p, k) =
(sp)!

k!

(
s (p− 1)

k − s

)
. (8)

Clearly this formula is true for p = 1. Assuming the formula is true for a given p ∈ N,
we have according to (7) that

S2s,s (p+ 1, k) =
s∑
i=0

(
ps+ k + i− s

i

)
s iS2s,s (p, k + i− s) . (9)

By using the induction hypothesis together with some algebraic manipulations, we can
write (9) as

S2s,s (p+ 1, k) =
(s (p+ 1))!

k!

1(
s(p−1)+k

k

) s∑
i=0

(
s

i

)(
sp

k − i

)(
sp+ k − i
k − i− s

)
. (10)

But identity (6.47) from Gould’s book [13] gives us that

s∑
i=0

(
s

i

)(
sp

k − i

)(
sp+ k − i
k − i− s

)
=

(
sp

k − s

)(
s (p− 1) + k

k

)
, (11)
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so we conclude finally from (10) and (11) that

S2s,s (p+ 1, k) =
(s (p+ 1))!

k!

(
sp

k − s

)
, (12)

proving our claim (8). (The case s = 1 of (8) is p!
k!

(
p−1
k−1

)
, corresponding to the so-called

(unsigned) Lah numbers [25, A008297].)
In [2] there are tables for Sr,s (p, k) with r = 1, 2, 3, 1 6 s 6 r and some small values

of p and the corresponding s 6 k 6 ps. Some S4,s (p, k) for 1 6 s 6 4 are the following:

S4,1(p, k)
16k6p

p\k 1 2 3 · · ·
1 1
2 4 1
3 28 12 1 · · ·
...

...

S4,2(p, k)
26k62p

p\k 2 3 4 5 6 · · ·
1 1
2 12 8 1
3 360 480 180 24 1 · · ·
...

...

S4,3(p, k)
3 6k63p

p\k 3 4 5 6 7 8 9 · · ·
1 1
2 24 36 12 1
3 1440 5760 6120 2520 456 36 1 · · ·
...

...
...

S4,4(p, k)
4 6k64p

p\k 4 5 6 7 8 9 10 11 12 · · ·
1 1
2 24 96 72 16 1
3 576 13824 50688 59904 30024 7200 856 48 1 · · ·
...

...
...

...

Recall that the convolution of the sequences an and bn is defined as the sequence
an ∗ bn =

∑n
t=0 atbn−t; in particular an ∗ 1 is the sequence of partial sums of an, and for

a non-negative integer l, the sequence an ∗l 1 is defined recursively as an ∗0 1 = an and
an ∗l 1 =

(
an ∗l−1 1

)
∗ 1.

Beginning with the sequence np (where p ∈ N is given), written as

np =

p∑
j=1

j!S (p, j)

(
n

j

)
, (13)

(see formula (6.10) in [15]) and the partial sums of it, namely np ∗l 1, we studied in [24]
the number arrays formed by the coefficients resulting when we write these sequences as
linear combinations of binomial coefficients. We called them p-arrays. It turns out that
these arrays are natural generalizations of Pascal’s triangle (case p = 1) and Lucas triangle
(case p = 2). We showed that many of the known properties of Pascal and Lucas triangles
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(the expected generalizations of those properties) are valid for the p-arrays, including the
property on rising diagonals (recall that the sums of rising diagonals of Pascal’s triangle
are Fibonacci numbers, and in the Lucas triangle are Lucas numbers). We showed that the
sums of the rising diagonals in a p-array is equal to some constant (the Stirling-Bernoulli
transform of Fibonacci numbers, that depends only on p; see [25, A050946]) times a
Fibonacci number, when p is odd, and times a Lucas number, when p is even. In this
work we generalize the above results. Beginning with the sequence

∏p
j=1

(
n+(j−1)(r−s)

s

)
,

where r, s ∈ N are given, and 1 6 s 6 r, we show that a similar formula to (13) is valid,
namely

p∏
j=1

(
n+ (j − 1) (r − s)

s

)
=

1

(s!)p

ps∑
j=s

j!Sr,s (p, j)

(
n

j

)
. (14)

Observe that in the case r = s = 1, formula (14) is (13), and in the case r = s formula
(14) looks as (

n

s

)p
=

1

(s!)p

ps∑
j=s

j!Ss,s (p, j)

(
n

j

)
, (15)

which gives us the p-th power of the binomial coefficient
(
n
s

)
written as a linear combination

of the binomials
(
n
j

)
, s 6 j 6 sp.

Moreover, we consider the partial sums of the sequence
∏p

j=1

(
n+(j−1)(r−s)

s

)
and show

that they can be written as linear combination of binomial coefficients according to

(
p∏
j=1

(
n+ (j − 1) (r − s)

s

))
∗k−pr+s−1 1 (16)

=
1

(s!)p

k−p(r−s)+s−1∑
j=s

j∑
i=s

(
k − pr + s− 1

j − i

)
i!Sr,s (p, i)

(
n

j

)
,

where k > pr − s+ 1. With the coefficients

a
(r,s)
k,j =

1

(s!)p

j∑
i=s

(
k − pr + s− 1

j − i

)
i!Sr,s (p, i) , (17)

we form the (r, s, p)-arrays (with k for lines and j for columns), which generalize the
p-arrays of [24], and then also generalize the Pascal’s triangle (case r = s = p = 1) and
Lucas triangle (case r = s = 1, p = 2). Observe that the case r = s of (16) give us
the ‘hyper-sum’ (partial sums) of powers of binomial coefficients expressed as a linear
combination of binomial coefficients, namely(

n

s

)p
∗k−pr+s−1 1 =

1

(s!)p

k+s−1∑
j=s

j∑
i=s

(
k − p (s− 1)− 1

j − i

)
i!Ss,s (p, i)

(
n

j

)
. (18)
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Expressions like (18) will appear several times in this work, with variants in the right-
hand side. What we have in the left-hand side of (18) is a (partial) sum of (partial) sums
of the sequence of p-th powers of the binomial coefficients

(
n
s

)
, in which s is fixed and n is

the running index. To find closed formulas for sums of powers of binomial coefficients of
the type

∑n
k=0

(
n
k

)p
are difficult problems (it is known that in some cases these formulas

do not exist; see for example [5]). Our sums of powers of binomial coefficients do not
belong to the difficult ones, but we believe that they are new results.

In section 2 we prove the main results of the work (formulas (14) and (16), in propo-
sitions 2 and 3, respectively). We also exhibit in this section the first few rows and
columns of some (r, s, p)-arrays. In section 3 we mention some of the ‘easy’ properties of
the (r, s, p)-arrays, related to their rows, columns, and falling diagonals. The proofs of
most of these properties are left as easy exercises to the reader. In section 4 we consider
the rising diagonals of the (r, s, p)-arrays. As in the previous work [24], this is the most
important section of the article, and justifies that our (r, s, p)-arrays can be seen as gen-
eralizations of Pascal and Lucas triangles. In this section we consider only (r, s, p)-arrays
in which r = s (see Remark 9). We prove that in the sums of rising diagonals in a (r, r, p)-
array appear Fibonacci numbers when r is even or r and p are odd (this includes the case
r = 1 and p odd of [24]), or Lucas numbers when r is odd and p is even (this includes the
case r = 1 and p even of [24]), multiplied by a constant that depends only on r and p.
The corresponding sequences of these constants (with p ∈ N and r is fixed) generalize the
sequence of Stirling-Bernoulli transform of Fibonacci numbers mentioned before. Finally,
in section 5 we use a result of section 4 to obtain a different version of (15). It turns out
that this new version can be simplified to a different expression for

(
n
s

)p
similar to (15)

but simpler than it.

Remark 1. We would like to do some comments on the direction presented in [8] for a gen-
eralization of Stirling numbers (see also the previous works related to this generalization
[9, 19], and the later work [7] containing q-versions of it). Certainly what is presented in
[8] is different to the direction contained in Blasiak’s works, but we think it is worth to
mention it since we can see some similar mathematical ingredients in both (besides the
non-mathematical fact —but a coincidence, after all— that the generalization presented
in [8] is also a two parameters one, and these parameters are also denoted by r and s
—with nothing to do with Blasiak’s parameters r and s—).

The classical definition of Stirling numbers of the second kind S (n, k) in (6) can be
generalized if the ‘central’ x (= x+0) of the left-hand side, is replaced by the ‘non-central’
x+ r, namely

(x+ r)n =
n∑
k=0

Sr (n, k)x k . (19)

The numbers Sr (n, k) are called non-central Stirling numbers of the second kind . So-
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me examples are the following

Sr (1, 0) = r Sr (2, 0) = r2 Sr (3, 0) = r3

Sr (1, 1) = 1 Sr (2, 1) = 2r + 1 Sr (3, 1) = 3r2 + 3r + 1
Sr (2, 2) = 1 Sr (3, 2) = 3r + 3

Sr (3, 3) = 1

If now the powers (x+ r)n of the left-hand side of (19) are replaced by the non-
central re-scaled falling factorials (sx+ r)n, we obtain some new coefficients in the linear
combination of the right-hand side of (19). We have

(sx+ r)n =
n∑
k=0

Cr,s (n, k)x k . (20)

The numbers Cr,s (n, k) are called non–central generalized factorial coefficients (or
Gould-Hopper numbers). Observe that (20) share with (4) the fact that both formu-
las express certain falling factorials (those of the corresponding left-hand sides) as linear
combinations of some other falling factorials (those of the corresponding right-hand sides).
So we can see the non-central generalized factorial coefficients Cr,s (n, k) of (20) as the ob-
jects playing a similar role to the generalized Stirling numbers of the second kind Sr,s (p, k)
of (4). Some examples are the following

Cr,s (1, 0) = r
Cr,s (1, 1) = s

Cr,s (2, 0) = r (r − 1)
Cr,s (2, 1) = s (2r + s− 1)
Cr,s (2, 2) = s2

Cr,s (3, 0) = r (r − 1) (r − 2)
Cr,s (3, 1) = s (3r2 + 3r (s− 2) + (s− 1) (s− 2))
Cr,s (3, 2) = 3s2 (r + s− 1)
Cr,s (3, 3) = s3

We have the explicit formula [8, p. 335, ex. 35]

Cr,s (n, k) =
1

k!

k∑
j=0

(−1)k+j
(
k

j

)
(sj + r)n . (21)

A connection of Cr,s (n, k) with Sr (n, k) is the following

lim
s→∞

s−nCr,s (n, k) = Sρ (n, k) , (22)

where lims→∞ (rs−1) = ρ [8, p. 335, ex. 37]. The particular case s = −1 of (20) gives us
the coefficients Cr,−1 (n, k), called non-central Lah numbers and denoted by Lr (n, k). We
have [8, p. 335, ex. 38]

Lr (n, k) = (−1)n
n!

k!

(
n− r − 1

k − r − 1

)
. (23)
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(Observe that we have also a relation between the Blasiak’s generalized Stirling numbers
of the second kind and some generalized Lah numbers: see (8).)

Formula (20) can be written as(
sn+ r

p

)
=

1

p!

p∑
k=0

k!Cr,s (p, k)

(
n

k

)
, (24)

which gives us the binomial coefficient
(
sn+r
p

)
written as a linear combination of the

binomial coefficients
(
n
k

)
, k = 0, 1, . . . , p. (Again we see that (24) has the same flavor of

(15).) Note that (14) contains (15) (with integer p > 1) which is not contained in (24).
On the other hand, formula (24) in the case s 6= 1, r 6= 0, is not contained in (14). In fact,
we have not any interesting intersection in both results, which reminds us that, despite
the shared flavor of both objects, they appear in different directions. Some examples from
(24) are the following(

2n+ 1

3

)
=

(
n

1

)
+ 8

(
n

2

)
+ 8

(
n

3

)
,(

2n+ 1

4

)
= 5

(
n

2

)
+ 20

(
n

3

)
+ 16

(
n

4

)
,(

3n+ 5

4

)
= 5 + 65

(
n

1

)
+ 195

(
n

2

)
+ 216

(
n

3

)
+ 81

(
n

4

)
.

2 The main results

In the following proposition we consider a version of (4) (and give a simple induction
argument to prove it). This result (25), together with the corresponding formula (28)
from proposition 3, are the starting point of the results we will obtain in the remaining
sections.

Proposition 2. The following formula holds

p∏
j=1

(
n+ (j − 1) (r − s)

s

)
=

1

(s!)p

ps∑
k=s

k!Sr,s (p, k)

(
n

k

)
. (25)

Proof. By induction on p. For p = 1 formula (25) is trivial. Suppose it is true for a given
p ∈ N. Then, by using (7) and the induction hypothesis we have

1

(s!)p+1

ps+s∑
k=s

k!Sr,s (p+ 1, k)

(
n

k

)

=
1

(s!)p+1

ps+s∑
k=s

k!
s∑
i=0

(
p (r − s) + k + i− s

i

)
s!

(s− i)!
Sr,s (p, k + i− s)

(
n

k

)
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=
1

(s!)p

ps+s∑
k=s

s∑
i=0

(
p (r − s) + k − i

s− i

)
k!

i!
Sr,s (p, k − i)

(
n

k

)

=
1

(s!)p

ps∑
k=s

s∑
i=0

(
p (r − s) + k

s− i

)
(i+ k)!

i!
Sr,s (p, k)

(
n

i+ k

)

=
1

(s!)p

ps∑
k=s

k!Sr,s (p, k)

(
n

k

) s∑
i=0

(
p (r − s) + k

s− i

)(
n− k
i

)

=

(
p∏
j=1

(
n+ (j − 1) (r − s)

s

))(
n+ p (r − s)

s

)

=

p+1∏
j=1

(
n+ (j − 1) (r − s)

s

)
,

as expected.

From expression (25), we have at once the corresponding expression of the partial
sums of the sequence

(
n
r

)p
in terms of binomial coefficients. In fact, by using that(

n

r1

)
∗
(
n

r2

)
=

(
n+ 1

r1 + r2 + 1

)
, (26)

we have for l ∈ N (
n

r

)p
∗l 1 =

1

(r!)p

pr∑
j=r

j!Sr,r (p, j)

(
n+ l

j + l

)
. (27)

However, we are interested in expressions of the partial sums
(
n
r

)p ∗l 1 as linear com-
binations of the binomials

(
n
s

)
,
(
n
s+1

)
,
(
n
s+2

)
,. . . , since we want to study the number arrays

formed by the corresponding coefficients of these expressions.

Proposition 3. For k > pr − s+ 1 we have(
p∏
j=1

(
n+ (j − 1) (r − s)

s

))
∗k−pr+s−1 1 =

k−p(r−s)+s−1∑
j=s

a
(r,s)
k,j

(
n

j

)
. (28)

where the coefficients a
(r,s)
k,j (for s 6 j 6 k − p (r − s) + s− 1) are given by

a
(r,s)
k,j =

1

(s!)p

j∑
i=s

(
k − pr + s− 1

j − i

)
i!Sr,s (p, i) . (29)

Proof. We proceed by induction on k. The case k = pr−s+1 is (25). Suppose the result
is valid for a given k > pr − s+ 1. That is, suppose that(

p∏
j=1

(
n+ (j − 1) (r − s)

s

))
∗k−pr+s−1 1 (30)
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=
1

(s!)p

k−p(r−s)+s−1∑
j=s

j∑
i=s

(
k − pr + s− 1

j − i

)
i!Sr,s (p, i)

(
n

j

)
.

By taking the convolution in both sides of (30) with 1 we obtain that(
p∏
j=1

(
n+ (j − 1) (r − s)

s

))
∗k+1−pr+s−1 1 (31)

=
1

(s!)p

k−p(r−s)+s−1∑
j=s

j∑
i=s

(
k − pr + s− 1

j − i

)
i!Sr,s (p, i)

(
n+ 1

j + 1

)
.

Thus, we need to prove that

k−p(r−s)+s−1∑
j=s

j∑
i=s

(
k − pr + s− 1

j − i

)
i!Sr,s (p, i)

(
n+ 1

j + 1

)
(32)

=

k+1−p(r−s)+s−1∑
j=s

j∑
i=s

(
k + 1− pr + s− 1

j − i

)
i!Sr,s (p, i)

(
n

j

)
,

and this is an easy exercise left to the reader.

We form the (r, s, p)-arrays with the coefficients a
(r,s)
k,j (k for rows and j for columns).

The first (pr − s) rows are cancelled, so the first non-cancelled row is the (pr − s+ 1)-
th one, which contains the coefficients of the right-hand side of (25) (corresponding to
k = pr − s + 1 of (28)). The first (s− 1) columns are cancelled, and the corresponding
columns of the k-th row goes from the s-th column up to the (k − p (r − s) + s− 1)-

th column (with zeros in the subsequent places). Since the coefficients a
(r,s)
k,j have the

Pascal’s triangle property a
(r,s)
k,j + a

(r,s)
k,j+1 = a

(r,s)
k+1,j+1, we can also form the (r, s, p)-arrays

beginning with the first non-cancelled row, and filling-out the array with the Pascal’s
triangle recurrence.

For example, in the case r = s (formula (18)), if we set k = s (p− 1) + 2, we can write

n∑
i=0

(
i

s

)p
=

1

(s!)p

ps+1∑
j=s

(j − 1)! (jSs,s (p, j) + Ss,s (p, j − 1))

(
n

j

)
. (33)

(The case s = 1 of (33) is the well-known formula
∑n

i=0 i
p =

∑p+1
j=1 (j − 1)!S(p+1, j)

(
n
j

)
for sums of powers of integers.) In the case r = s (18), if we set p = 1 we obtain that (for
k > 1) (

n

s

)
∗k−1 1 =

k−1∑
j=0

(
k − 1

j

)(
n

j + s

)
, (34)

which gives us the partial sums of the sequence
(
n
s

)
in terms of the binomials

(
n
j+s

)
, j =

0, 1, . . . , k−1. For example,
∑n

i=0

(
i
s

)
=
(
n
s

)
+
(
n
s+1

)
,
∑n

j=0

∑j
i=0

(
i
s

)
=
(
n
s

)
+2
(
n
s+1

)
+
(
n
s+2

)
,
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∑n
k=0

∑k
j=0

∑j
i=0

(
i
s

)
=
(
n
s

)
+3
(
n
s+1

)
+3
(
n
s+2

)
+
(
n
s+3

)
, and so on. That is, the (s, s, 1)-array

is a “right-shifted Pascal’s triangle”, with its first column (the constant sequence 1) in
the s-th column of the array.

In the case r = 2s we can use (8) to write (28) as(
p∏
j=1

(
n+ s (j − 1)

s

))
∗k−2ps+s−1 1

=
(sp)!

(s!)p

k−s(p−1)−1∑
j=s

j∑
i=s

(
k − 2ps+ s− 1

j − i

)(
s (p− 1)

i− s

)(
n

j

)
.

or (
p∏
j=1

(
n+ s (j − 1)

s

))
∗k−2ps+s−1 1 =

(sp)!

(s!)p

k−s(p−1)−1∑
j=s

(
k − ps− 1

j − s

)(
n

j

)
, (35)

where k > 2ps− s+ 1. Note then that the (2s, s, p)-array is a “piece of Pascal’s triangle

multiplied by (sp)!
(s!)p

”: the first non-cancelled row of the array (the (2ps− s+ 1)-th row)

contains the s (p− 1)-th row of Pascal’s triangle (multiplied by the factor (sp)!
(s!)p

); the first

non-cancelled column of the array (the s-th column) contains the first column of Pascal’s

triangle (multiplied by the factor (sp)!
(s!)p

). That is, the s-th column of the array is the con-

stant sequence (sp)!
(s!)p

. The subsequent rows and columns of the array are the corresponding

subsequent rows and columns of Pascal’s triangle multiplied by (sp)!
(s!)p

. See for example

the (2, 1, 3)-array below, which is a Pascal’s triangle beginning in row s (p− 1) = 2 and

multiplied by (sp)!
(s!)p

= 6, and the (4, 2, 3)-array which is a Pascal’s triangle beginning in

row s (p− 1) = 4 and multiplied by (sp)!
(s!)p

= 90.

Some (r, s, p)-arrays are the following:

(2, 1, 3)-array, k > 6, 1 6 j 6 k − 3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 12 6 0 0 0 0 · · ·
6 18 18 6 0 0 0
6 24 36 24 6 0 0
6 30 60 60 30 6 0 · · ·
...

...
...

(2, 2, 3)-array, k > 5, 2 6 j 6 k + 1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 1 24 114 180 90 0 0 0 · · ·
∗ 1 25 138 294 270 90 0 0
∗ 1 26 163 432 564 360 90 0
∗ 1 27 189 595 996 924 450 90 · · ·
∗ ...

...
...
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(3, 2, 3)-array, k > 8, 2 6 j 6 k − 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ 18 126 288 270 90 0 0 0 ···

∗ 18 144 414 558 360 90 0 0

∗ 18 162 558 972 918 450 90 0

∗ ...
...

(3, 3, 2)-array, k > 4, 3 6 j 6 k + 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 1 12 30 20 0 0 0 · · ·
∗ ∗ 1 13 42 50 20 0 0
∗ ∗ 1 14 55 92 70 20 0

∗ ∗ ...
...

...

(3, 3, 3)-array, k > 7, 3 6 j 6 k + 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 1 60 690 2940 5670 5040 1680 0 0 0 0 · · ·
∗ ∗ 1 61 750 3630 8610 10710 6720 1680 0 0 0
∗ ∗ 1 62 811 4380 12240 19320 17430 8400 1680 0 0
∗ ∗ 1 63 873 5191 16620 31560 36750 25830 10080 1680 0 · · ·
∗ ∗ ...

...
...

...

(4, 1, 3)-array, k > 12, 1 6 j 6 k − 9

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
28 24 6 0 0 0 0 · · ·
28 52 30 6 0 0 0
28 80 82 36 6 0 0
28 108 162 118 42 6 0 · · ·
...

...
...

(4, 2, 3)-array, k > 11, 2 6 j 6 k − 5

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ 90 360 540 360 90 0 0 0 ···

∗ 90 450 900 900 450 90 0 0

∗ 90 540 1350 1800 1350 540 90 0

∗ ...
...

...
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(4, 3, 2)-array, k > 6, 3 6 j 6 k

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ 4 24 40 20 0 0 0 ···

∗ ∗ 4 28 64 60 20 0 0

∗ ∗ 4 32 92 124 80 20 0

∗ ∗ ...
...

(4, 4, 2)-array, k > 5, 4 6 j 6 k + 3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ 1 20 90 140 70 0 0 0 ···

∗ ∗ ∗ 1 21 110 230 210 70 0 0

∗ ∗ ∗ 1 22 131 340 440 280 70 0

∗ ∗ ∗ ...
...

...

Some examples from (30) are shown in the following table.

Array k Sequence (30)

(2, 1, 3) 7
n∑
i=1

i (i+ 1) (i+ 2) = 6
(
n
1

)
+ 18

(
n
2

)
+ 18

(
n
3

)
+ 6
(
n
4

)
(2, 2, 3) 6

n∑
i=1

(
i
2

)3
=
(
n
2

)
+ 25

(
n
3

)
+ 138

(
n
4

)
+ 294

(
n
5

)
+ 270

(
n
6

)
+ 90

(
n
7

)
(3, 2, 3) 8

(
n
2

)(
n+1
2

)(
n+2
2

)
= 18

(
n
2

)
+ 126

(
n
3

)
+ 288

(
n
4

)
+ 270

(
n
5

)
+ 90

(
n
6

)
(3, 3, 2) 5

n∑
i=1

(
i
3

)2
=
(
n
3

)
+ 13

(
n
4

)
+ 42

(
n
5

)
+ 50

(
n
6

)
+ 20

(
n
7

)
(3, 3, 3) 7

(
n
3

)3
=
(
n
3

)
+ 60

(
n
4

)
+ 690

(
n
5

)
+ 2940

(
n
6

)
+ 5670

(
n
7

)
+ 5040

(
n
8

)
+ 1680

(
n
9

)
(4, 1, 3) 12 n (n+ 3) (n+ 6) = 28

(
n
1

)
+ 24

(
n
2

)
+ 6
(
n
3

)
(4, 2, 3) 12

n∑
i=1

(
i+2
2

)(
i+4
2

)(
i+6
2

)
= 90

(
n
2

)
+ 450

(
n
3

)
+ 900

(
n
4

)
+ 900

(
n
5

)
+ 450

(
n
6

)
+ 90

(
n
7

)
(4, 3, 2) 6

(
n
3

)(
n+1
3

)
= 4
(
n
3

)
+ 24

(
n
4

)
+ 40

(
n
5

)
+ 20

(
n
6

)
(4, 4, 2) 6

n∑
i=1

(
i
4

)2
=
(
n
4

)
+ 21

(
n
5

)
+ 110

(
n
6

)
+ 230

(
n
7

)
+ 210

(
n
8

)
+ 70

(
n
9

)
Table 1: Examples of sequence (23). The coefficients come from k-th line of the (r,s,p)-
array.

3 Some properties (rows, columns, falling diagonals)

From the well-known properties of rows, columns and falling diagonals in Pascal´s triangle,
we state in this section the corresponding generalizations of them for our (r, s, p)-arrays.
Most of the proofs of these facts are easy exercises left to the reader.

We begin by considering the rows of (r, s, p)-arrays.

3.1 Rows

We mention (leaving the proofs to the reader) the generalization of two famous properties
of rows of Pascal’s triangle:
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1. In a (r, s, p)-array, the sum of the elements of the k-th row (k > pr − s + 1) is
equal to 2k−pr+s−1 times the sum of the elements of the (pr − s+ 1)-th row (the
first non-cancelled row). That is, we have

k−p(r−s)+s−1∑
j=s

a
(r,s)
k,j = 2k−pr+s−1

ps∑
j=s

a
(r,s)
pr−s+1,j, (36)

or more explicitly

k−p(r−s)+s−1∑
j=s

j∑
i=s

(
k − pr + s− 1

j − i

)
i!Sr,s (p, i) = 2k−pr+s−1

ps∑
j=s

j!Sr,s (p, j) . (37)

2. Making the row k > pr − s + 1 a single number Nk (the elements of the row being
the digits, and carrying over when appear elements with more than one digit), this
is equal to 11k−pr+s−1Npr−s+1, where Npr−s+1 is the single number corresponding to
row k = pr − s+ 1.

In Table 2 we have some examples taken from the first rows of the (4, 3, 2)-array.

Beginning
in column
j = 3
and row k

The row is
Sum of the
elements

As a single
number

k = 6 (4, 24, 40, 20) 88 6820
k = 7 (4, 28, 64, 60, 20) 176 = 2 (88) 75020 = 11 (6820)
k = 8 (4, 32, 92, 124, 80, 20) 352 = 22 (88) 825220 = 112 (6820)

...
...

...
...

Table 2: Properties of rows in the (4,3,2)-array.

A more interesting question arises when one considers the sequence of alternating
sums of rows of a (r, s, p)-array. In the case r = s = 1, we proved that this sequence is
((−1)p , 0, 0, 0, . . .) (see formula (26) in [24]). In general, for a (r, s, p)-array, we have only
some partial answers, as we show next.

First to all note that for k > pr− s+ 1, the alternating row sums of the (r, s, p)-array
are equal to 0 (easy proof left to the reader). The alternating sum of the elements of row
k = pr − s+ 1 is equal to

αr,s,p =
1

(s!)p

ps∑
j=s

(−1)j j!Sr,s (p, j) . (38)

Thus, (ignoring the cancelled rows) the alternating sums of rows in a (r, s, p)-array,
are sequences of the form (αr,s,p, 0, 0, 0, . . .). Let us see some particular cases in which the
term αr,s,p has a simple closed formula.
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If s = r we have αs,s,p = (−1)ps. That is, we have

1

(s!)p

ps∑
j=s

(−1)j j!Ss,s (p, j) = (−1)ps . (39)

In fact, proceeding by induction on p, we see at once that this formula is trivial if
p = 1. If it is true for a given p ∈ N, then (according to the recurrence (7))

1

(s!)p+1

(p+1)s∑
j=s

(−1)j j!Ss,s (p+ 1, j)

=
1

(s!)p+1

(p+1)s∑
j=s

(−1)j j!
s∑
i=0

(
j + i− s

i

)
s!

(s− i)!
Ss,s (p, j + i− s)

=
(−1)s

(s!)p

ps∑
j=s

s∑
i=0

(−1)j−i (j − i+ s)!j!

(s− i)!i! (j − i)!
Ss,s(p, j)

=
(−1)s

(s!)p

ps∑
j=s

(−1)j j!
s∑
i=0

(−1)i
(
s

i

)(
j − i+ s

s

)
Ss,s(p, j) .

But we have
∑s

i=0 (−1)i
(
s
i

)(
j−i+s
s

)
= 1 (see identity (53) below, or identity (1.83) in

[14]). Thus, by using the induction hypothesis we have

1

(s!)p+1

(p+1)s∑
j=s

(−1)j j!Ss,s (p+ 1, j) =
(−1)s

(s!)p

ps∑
j=s

(−1)j j!Ss,s (p, j)

= (−1)s (−1)ps = (−1)(p+1)s ,

as expected. That is, the alternating sum of rows in the (s, s, p)-arrays is the sequence
((−1)ps , 0, 0, 0, . . .).

Other interesting particular case is when s = 1. We claim that

αr,1,p =

p∑
j=1

(−1)j j!Sr,1 (p, j) =

p∏
i=1

((r − 1) i− r) . (40)

The case p = 1 is obvious. If this formula is true for a given p ∈ N, we have (by using
the recurrence (7))

p+1∑
j=1

(−1)j j!Sr,1 (p+ 1, j)

=

p+1∑
j=1

(−1)j j! (Sr,1 (p, j − 1) + (p (r − 1) + j)Sr,1 (p, j))
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=

p∑
j=1

(−1)j+1 j! (j + 1)Sr,1 (p, j) + p (r − 1)

p∑
j=1

(−1)j j!Sr,1 (p, j)

+

p∑
j=1

(−1)j j!jSr,1 (p, j)

= (p (r − 1)− 1)

p∑
j=1

(−1)j j!Sr,1 (p, j)

= (p (r − 1)− 1)

p∏
i=1

((r − 1) i− r) =

p+1∏
i=1

((r − 1) i− r) .

as expected. Some examples (within the particular case s = 1 we are considering) are the
following:

• If r = 1 we have α1,1,p = (−1)p (as we obtained before).

• If r = 2 we have α2,1,p =
∏p

i=1 (i− 2), so α2,1,p = −1 if p = 1 and α2,1,p = 0 if
p > 1. That is, the alternating sums of rows in the (2, 1, p)-arrays is the sequence
(−1, 0, 0, 0, . . .) when p = 1, and the constant sequence 0 when p > 1.

• For r > 2, we see from (40) that αr,1,p is the (r − 1)-fold factorial:

– With r = 3 we have the p-sequence

(α3,1,p)p∈N =

(
p∏
i=1

(2i− 3)

)
p∈N

= (−1,−1,−3,−15, . . .)

formed by the (negatives of the) double factorials (2p− 3)!! (see [25, A001147]
for (2p− 1)!!). For example, the alternating sums of rows in the (3, 1, 2)-array
is the sequence (−1, 0, 0, 0, . . .), and the alternating sums of rows in the (3, 1, 3)-
array is the sequence (−3, 0, 0, 0, . . .).

– With r = 4 we have the p-sequence

(α4,1,p)p∈N =

(
p∏
i=1

(3i− 4)

)
p∈N

= (−1,−2,−10,−80, . . .)

formed by the (negatives of the) triple factorials (3p− 4)!!! (see [25, A008544]
for (3p− 1)!!!). For example, the alternating sums of rows in the (4, 1, 2)-
array is the sequence (−2, 0, 0, 0, . . .), and the alternating sums of rows in the
(4, 1, 3)-array is the sequence (−10, 0, 0, 0, . . .).

– With r = 5 we have the p-sequence

(α5,1,p)p∈N =

(
p∏
i=1

(4i− 5)

)
p∈N

= (−1,−3,−21,−231, . . .)
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of the (negatives of the) quadruple factorials (4p− 5)!!!! (see [25, A008545]
for (4p− 1)!!!!). For example, the alternating sums of rows in the (5, 1, 2)-
array is the sequence (−3, 0, 0, 0, . . .), and the alternating sums of rows in the
(5, 1, 3)-array is the sequence (−21, 0, 0, 0, . . .).

3.2 Columns

According to (29), the s-th column (first non-cancelled column) in the (r, s, p)-array is
the (constant) sequence

a
(r,s)
k,s =

1

(s!)p

s∑
i=s

(
k − pr + s− 1

s− i

)
i!Sr,s (p, i) =

Sr,s (p, s)

(s!)p−1
. (41)

For j > s, the j-th column is(
1

(s!)p

j∑
i=s

(
l − 1

j − i

)
i!Sr,s (p, i)

)
l∈N

. (42)

If j > ps, we can shift the corresponding sequence in order to show only the non-zero
terms: (

1

(s!)p

j∑
i=s

(
l + j − ps− 1

j − i

)
i!Sr,s (p, i)

)
l∈N

. (43)

For j > ps, we have the hockey-stick property (proof left to the reader)

m∑
l=1

j∑
i=s

(
l + j − ps− 1

j − i

)
i!Sr,s (p, i) =

j+1∑
i=s

(
m+ j − ps
j + 1− i

)
i!Sr,s (p, i) . (44)

In general we have for j > ps and t,m ∈ N,

m∑
it=1

· · ·
i3∑
i2=1

i2∑
i1=1

j∑
i=s

(
i1 + j − ps− 1

j − i

)
i!Sr,s (p, i) =

j+t∑
i=s

(
m+ t− 1 + j − ps

j + 1− t

)
i!Sr,s (p, i) .

(45)

3.3 Falling Diagonals

We consider first falling diagonals of the (r, s, p)-array, beginning in row k > pr − s + 1
and column j = s. According to (29) these diagonals are the sequences (where n ∈ N)

a
(r,s)
k+n−1,s+n−1 =

1

(s!)p

ps∑
i=s

(
k + n− pr + s− 2

s+ n− 1− i

)
i!Sr,s (p, i) . (46)
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In particular, observe that the falling diagonal beginning in row k = pr + 1 is

a
(r,s)
pr+n,s+n−1 =

1

(s!)p

ps∑
i=s

(
n+ s− 1

s+ n− 1− i

)
i!Sr,s (p, i) =

1

(s!)p

ps∑
i=s

(
n+ s− 1

i

)
i!Sr,s (p, i) .

(47)
That is, the falling diagonal beginning in row k = pr + 1 and column j = s in the

(r, s, p)-array is, according to (25), the sequence(
p∏
j=1

(
n+ s− 1 + (j − 1) (r − s)

s

))
n∈N

, (48)

(the original sequence involved in the array). For example, let us consider the (3, 2, 3)-
array: the starting point of this array is the sequence

((
n+1
2

)(
n+2
2

)(
n+3
2

))
n∈N. When writ-

ing this sequence in terms of the binomials
(
n
2

)
,
(
n
3

)
, . . . ,

(
n
6

)
, we obtain the coefficients

18, 126, 288, 270, 90 (which form the “first” –non-cancelled– row of the array). Then we
form the (3, 2, 3)-array by using the Pascal’s triangle recurrence. In this array, the falling
diagonal beginning in row k = pr+ 1 = 10 and column j = s = 2 is precisely the original
sequence

((
n+1
2

)(
n+2
2

)(
n+3
2

))
n∈N = (18, 180, 900, 3150, . . .).

From the falling diagonal beginning in row k = pr+1, the subsequent diagonals can be
obtained as the partial sums of the previous diagonal. That is, we have the hockey-stick
property (proof left to the reader)

n∑
il=1

· · ·
i3∑
i2=1

i2∑
i1=1

p∏
j=1

(
i1 + s− 1 + (j − 1) (r − s)

s

)
=

1

(s!)p

ps∑
i=s

(
n+ s+ l − 1

i+ l

)
i!Sr,s (p, i) ,

(49)
where l ∈ N. In fact, observe that the falling diagonal beginning in row k = pr (and
column j = s) is

a
(r,s)
pr+n−1,s+n−1 =

1

(s!)p

ps∑
i=s

(
n+ s− 2

s+ n− 1− i

)
i!Sr,s (p, i)

=
1

(s!)p

ps∑
i=s

(
n+ s− 2

i− 1

)
i!Sr,s (p, i)

=
1

(s!)p

ps∑
i=s

((
n+ s− 1

i

)
−
(
n+ s− 2

i

))
i!Sr,s (p, i)

=
1

(s!)p

ps∑
i=s

(
n+ s− 1

i

)
i!Sr,s (p, i)− 1

(s!)p

ps∑
i=s

(
n+ s− 2

i

)
i!Sr,s (p, i)

=

p∏
j=1

(
n+ s− 1 + (j − 1) (r − s)

s

)
−

p∏
j=1

(
n+ s− 2 + (j − 1) (r − s)

s

)
,

and then the falling diagonal beginning in row k = pr + 1 and column j = s, that is, the
sequence

∏p
j=1

(
n+s−1+(j−1)(r−s)

s

)
, can also be obtained as the partial sums of the falling
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diagonal beginning in the previous row (the one beginning in row k = pr and column
j = s).

The case r = s of (49) give us the “hyper-sums of powers of binomial coefficients”,
namely

n∑
il=1

· · ·
i3∑
i2=1

i2∑
i1=1

(
i1 + s− 1

s

)p
=

1

(s!)p

ps∑
i=s

(
n+ s+ l − 1

i+ l

)
i!Ss,s (p, i) , (50)

Some examples from (49) are given in the following table:

(r, s, p) l Sequence (49)

(3, 2, 2) 1
n∑
i=1

(
i+1
2

)(
i+2
2

)
= 3
(
n+2
3

)
+ 9
(
n+2
4

)
+ 6
(
n+2
5

)
.

(4, 3, 2) 2
n∑
j=1

j∑
i=1

(
i+2
3

)(
i+3
3

)
= 4
(
n+4
5

)
+ 24

(
n+4
6

)
+ 40

(
n+4
7

)
+ 20

(
n+4
8

)
.

(2, 2, 2) 1
n∑
i=0

(
i+1
2

)2
=
(
n+2
3

)
+ 6
(
n+2
4

)
+ 6
(
n+2
5

)
.

(3, 3, 2) 2
n∑
j=1

j∑
i=1

(
i+2
3

)2
=
(
n+4
5

)
+ 12

(
n+4
6

)
+ 30

(
n+4
7

)
+ 20

(
n+4
8

)
.

Table 3: Hockey-stick property on falling diagonals of a (r,s,p)-array.

Now let us consider the falling diagonals beginning in row k = pr− s+ 1 and column
j, where s < j 6 ps. According to (29) these are the sequences (where n ∈ N)

1

(s!)p

ps∑
i=s

(
n− 1

i− j

)
i!Sr,s (p, i) . (51)

From (51) we see at once that the falling diagonal beginning in row k = pr − s + 1

and column j = sp is the constant sequence (ps)!
(s!)p

.
It turns out that the considered falling diagonals can be described in a different way.

Proposition 4. For l = s, s+ 1, . . . , sp, and n ∈ N we have the identity

1

(s!)p

ps∑
i=s

(
n− 1

i− l

)
i!Sr,s (p, i) =

l∑
i=0

(−1)i
(
l

i

) p∏
j=1

(
n+ l − 1− i+ (j − 1) (r − s)

s

)
. (52)

Proof. By induction on n. For n = 1 we have to prove that (for s 6 l 6 sp)

l∑
i=0

(−1)i
(
l

i

) p∏
j=1

(
l − i+ (j − 1) (r − s)

s

)
=

l!

(s!)p
Sr,s (p, l) .

the electronic journal of combinatorics 21(1) (2014), #P1.10 19



But this is an easy exercise left to the reader (by using the explicit formula (3) for
Sr,s (p, l)). If (52) is true for all positive integers 6 n, where n ∈ N is given, then

1

(s!)p

ps∑
i=s

(
n

i− l

)
i!Sr,s (p, i)

=
1

(s!)p

ps∑
i=s

(
n− 1

i− l

)
i!Sr,s (p, i) +

1

(s!)p

ps∑
i=s

(
n− 1

i− l − 1

)
i!Sr,s (p, i)

=
l∑

i=0

(−1)i
(
l

i

) p∏
j=1

(
n+ l − 1− i+ (j − 1) (r − s)

s

)

+
l+1∑
i=0

(−1)i
(
l + 1

i

) p∏
j=1

(
n+ l − i+ (j − 1) (r − s)

s

)

=
l+1∑
i=0

(−1)i
((

l + 1

i

)
−
(

l

i− 1

)) p∏
j=1

(
n+ l − i+ (j − 1) (r − s)

s

)

=
l∑

i=0

(−1)i
(
l

i

) p∏
j=1

(
n+ l − i+ (j − 1) (r − s)

s

)
,

as wanted.

The case p = 1 of (52) says that for any n, s ∈ N we have

s∑
i=0

(−1)i
(
s

i

)(
n+ s− 1− i

s

)
= 1. (53)

Also, if we set l = sp in (52) (and use that the corresponding falling diagonal is the

constant sequence (sp)!
(s!)p

), we obtain the following identity valid for any n ∈ N

sp∑
i=0

(−1)i
(
sp

i

) p∏
j=1

(
n+ sp− 1− i+ (j − 1) (r − s)

s

)
=

(sp)!

(s!)p
. (54)

The case r = s of (54) is

sp∑
i=0

(−1)i
(
sp

i

)(
n− 1 + i

s

)p
= (−1)sp

(sp)!

(s!)p
. (55)

One more particular case of (52) is when r = 2s. By using (8) we can write (52) as

l+n−1∑
i=s

(
s (p− 1)

i− s

)(
n− 1

i− l

)
=

l∑
i=0

(−1)i
(
l

i

)(
n+ l − 1− i+ s (p− 1)

sp

)
. (56)
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4 Rising diagonals

In this section, related to rising diagonals of the (r, s, p)-arrays, Fibonacci and Lucas
numbers will appear in a natural way. Recall that the Fibonacci numbers sequence Fn
and Lucas numbers sequence Ln satisfy the same second-order recurrence an+2 = an+1+an,
with initial conditions F0 = 0 and F1 = 1 in the Fibonacci case, and L0 = 2 and L1 = 1 in
the Lucas case. We will use without further comments the Binet’s formulas for Fn and Ln,
namely Fn = 1√

5
(αn − βn) and Ln = αn + βn, where α = 1

2

(
1 +
√

5
)

and β = 1
2

(
1−
√

5
)

(observe that α + β = 1; we will use this in the proof of lemma 6).
We consider the polynomials

rp∑
k=r

k!Sr,r (p, k)xk−r. (57)

Proposition 5. The following formula holds

rp∑
k=r

k!Sr,r (p, k)xk−r =

rp∑
k=r

(−1)k−rp k!Sr,r (p, k) (x+ 1)k−r . (58)

Proof. By induction on p. For p = 1 it is easy to see that both sides of (58) are equal to
r!. Let us assume that (58) is true for a given p ∈ N. Then, by using (7) we have that

r(p+1)∑
k=r

k!Sr,r (p+ 1, k)xk−r =

r(p+1)∑
k=r

k!
r∑
i=0

(
k + i− r

i

)
r iSr,r (p, k + i− r)xk−r

=
r∑
i=0

(
r

i

) rp∑
k=r

(k + r − i)!
(k − i)!

k!Sr,r (p, k)xk−i

=
r∑
i=0

(
r

i

) rp∑
k=r

(
dr

dxr
xk+r−i

)
k!Sr,r (p, k)

=
dr

dxr

(
x2r

r∑
i=0

(
r

i

)
x−i

rp∑
k=r

k!Sr,r (p, k)xk−r

)

=
dr

dxr

(
xr (x+ 1)r

rp∑
k=r

k!Sr,r (p, k)xk−r

)

=
dr

dxr

(
xr (x+ 1)r

rp∑
k=r

(−1)k−rp k!Sr,r (p, k) (x+ 1)k−r
)
.

Some further simplifications give us

r(p+1)∑
k=r

k!Sr,r (p+ 1, k)xk−r
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=
dr

dxr

(
xr

rp∑
k=r

(−1)k−rp k!Sr,r (p, k) (x+ 1)k
)

=
dr

dxr

(
r∑
i=0

(
r

i

)
(−1)i (x+ 1)r−i

rp∑
k=r

(−1)k−rp k!Sr,r (p, k) (x+ 1)k
)

=
r∑
i=0

(
r

i

) rp∑
k=r

(−1)k−i−rp k!Sr,r (p, k)
dr

dxr
(x+ 1)k+r−i

=
r∑
i=0

(
r

i

) rp∑
k=r

(−1)k+r−i−r(p+1) (k + r − i)! k!

(k − i)!
Sr,r (p, k) (x+ 1)k−i

=

r(p+1)∑
k=r

(−1)k−r(p+1) k!
r∑
i=0

(
k + i− r

i

)
r!

(r − i)!
Sr,r (p, k + i− r) (x+ 1)k−r

=

r(p+1)∑
k=r

(−1)k−r(p+1) k!Sr,r (p+ 1, k) (x+ 1)k−r ,

as wanted (we used (7) in the last step) .

Lemma 6. (a) If r is even, or r and p are odd, we have

rp∑
k=r

(−1)k k!Sr,r (p, k)Fk−r = 0. (59)

(b) If p is even and r is odd, we have

rp∑
k=r

(−1)k k!Sr,r (p, k)Lk−r = 0. (60)

Proof. In (58) set x = −α to obtain

rp∑
k=r

(−1)k−r k!Sr,r (p, k)αk−r =

rp∑
k=r

(−1)k−rp k!Sr,r (p, k) βk−r. (61)

The desired formulas (59) and (60) are obtained from (61) and the hypotheses made
on r and p in each case.

Lemma 7. (a) The following identity holds

r(p−1)−1∑
j=0

r+j∑
i=r

(
r (p− 1)− j − 1

r + j − i

)
i!Sr,r (p, i) =

rp−1∑
i=r

i!Sr,r (p, i)Frp−i. (62)

(b) Let r, l ∈ N be given, such that l > r. Then

l∑
i=0

(−1)i+1

(
r

l − i

)
Fi = F2r−l. (63)
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Proof. (a) Some simple manipulations on the left hand side of (62) give us

r(p−1)−1∑
j=0

r+j∑
i=r

(
r (p− 1)− j − 1

r + j − i

)
i!Sr,r(p, i)

=

r(p−1)−1∑
j=0

r(p−1)−1∑
i=0

(
r (p− 1)− j − 1

j − i

)
(i+ r)!Sr,r(p, i+ r)

=

r(p−1)−1∑
i=0

(i+ r)!Sr,r (p, i+ r)

r(p−1)−1−i∑
j=0

(
r (p− 1)− j − i− 1

j

)

=

rp−1∑
i=r

i!Sr,r (p, i)Frp−i,

as wanted.
(b) We begin with the left-hand side of (63) and Binet’s formulas to write

l∑
i=0

(−1)i+1

(
r

l − i

)
Fi =

(−1)l+1

√
5

r∑
i=0

(−1)i
(
r

i

)(
αl−i − βl−i

)
=

(−1)l+1

√
5

(
αl−r

r∑
i=0

(−1)i
(
r

i

)
αr−i − βl−r

r∑
i=0

(−1)i
(
r

i

)
βr−i

)

=
(−1)l+1

√
5

(
αl−2r − βl−2r

)
= F2r−l,

as wanted.

In the following proposition we will use the identities

Fr(p−1)F2r−l = FrFrp−l + (−1)r Fr(p−2)Fr−l, (64)

Lr(p−1)F2r−l = LrFrp−l − (−1)r Lr−lFr(p−2), (65)

which are consequences of the index-reduction formula

GMFN −GM+KFN−K = (−1)N−K GM+K−NFK ,

where G = F or G = L.

Proposition 8. For k > 2r (p− 1) we have

b k−1
2 c∑
j=0

r+j∑
i=r

(
k − j − r (p− 1)− 1

r + j − i

)
i!Sr,r (p, i) (66)
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=



(
1

Fr

r(p+1)∑
i=r

(−1)i+r+1 (i− r)!Sr,r (p+ 1, i)Fi−r

)
Fk−r(p−1) if

r is even
or
r and p are odd

(
1

Lr

r(p+1)∑
i=r

(−1)i (i− r)!Sr,r (p+ 1, i)Fi−r

)
Lk−r(p−1) if

r is odd
and
p is even

Proof. Let us prove first that if r is even or r and p are odd the formula

b k−1
2 c∑
j=0

r+j∑
i=r

(
k − j − r (p− 1)− 1

r + j − i

)
i!Sr,r (p, i) (67)

=

 1

Fr

r(p+1)∑
i=r

(−1)i+r+1 (i− r)!Sr,r (p+ 1, i)Fi−r

Fk−r(p−1),

holds for k > 2r (p− 1). We proceed by induction on k. For k = 2r (p− 1) we have to
prove that

r(p−1)−1∑
j=0

r+j∑
i=r

(
r (p− 1)− j − 1

r + j − i

)
i!Sr,r (p, i) (68)

=

 1

Fr

r(p+1)∑
i=r

(−1)i+r+1 (i− r)!Sr,r (p+ 1, i)Fi−r

Fr(p−1).

That is, according to (62) we have to prove that 1

Fr

r(p+1)∑
i=r

(−1)i+r+1 (i− r)!Sr,r (p+ 1, i)Fi−r

Fr(p−1) =

rp−1∑
i=r

i!Sr,r (p, i)Frp−i. (69)

We begin with the left-hand side of (69) to write 1

Fr

r(p+1)∑
i=r

(−1)i+r+1 (i− r)!Sr,r (p+ 1, i)Fi−r

Fr(p−1)

=
Fr(p−1)
Fr

r(p+1)∑
i=r

(−1)i+r+1 (i− r)!
r∑
j=0

(
i+ j − r

j

)
r!

(r − j)!
Sr,r (p, i+ j − r)Fi−r

=
Fr(p−1)
Fr

rp∑
i=0

(−1)i+1 i!
r∑
j=0

(
i+ j

j

)
r!

(r − j)!
Sr,r (p, i+ j)Fi

=
Fr(p−1)
Fr

rp∑
i=0

(−1)i+1
r∑
j=0

(
r

j

)
(i+ j)!Sr,r (p, i+ j)Fi
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=
Fr(p−1)
Fr

rp∑
i=0

(−1)i+1
rp∑
l=0

(
r

l − i

)
l!Sr,r (p, l)Fi

=
Fr(p−1)
Fr

rp∑
l=0

l!Sr,r (p, l)F2r−l

where we used (63) in the last step. Now use (64) and (59) to obtain finally that if r is
even or r and p are odd we have 1

Fr

r(p+1)∑
i=r

(−1)i+r+1(i− r)!Sr,r(p+ 1, i)Fi−r

Fr(p−1)
=

1

Fr

rp∑
l=0

l!Sr,r(p, l)
(
FrFrp−l + (−1)r Fr(p−2)Fr−l

)
=

rp∑
l=0

l!Sr,r (p, l)Frp−l,

as expected. The rest of the induction argument is an easy exercise (left to the reader)
by using the recurrence of Fibonacci numbers (see Proposition 13 in [24]).

Now we prove that if r is odd and p is even we have

b k−1
2 c∑
j=0

r+j∑
i=r

(
k − j − r (p− 1)− 1

r + j − i

)
i!Sr,r (p, i) (70)

=

 1

Lr

r(p+1)∑
i=r

(−1)i (i− r)!Sr,r (p+ 1, i)Fi−r

Lk−r(p−1).

For k = 2r (p− 1) we have to prove (according to (62)) that if r is odd and p is even: 1

Lr

r(p+1)∑
i=r

(−1)i (i− r)!Sr,r (p+ 1, i)Fi−r

Lr(p−1) =

rp−1∑
i=r

i!Sr,r (p, i)Frp−i. (71)

We have  1

Lr

r(p+1)∑
i=r

(−1)i (i− r)!Sr,r (p+ 1, i)Fi−r

Lr(p−1)

=
Lr(p−1)
Lr

rp∑
i=0

(−1)i+r i!
r∑
j=0

(
i+ j

j

)
r!

(r − j)!
Sr,r (p, i+ j)Fi

=
Lr(p−1)
Lr

rp∑
i=0

(−1)i+r
r∑
j=0

(
r

j

)
(i+ j)!Sr,r (p, i+ j)Fi
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=
Lr(p−1)
Lr

rp∑
i=0

(−1)i+r
rp∑
l=r

(
r

l − i

)
l!Sr,r (p, l)Fi

=
Lr(p−1)
Lr

rp∑
l=r

l!Sr,r (p, l)F2r−l,

where we used that r is odd and (63). Now use (65) and (60) to conclude finally that for
r odd and p even we have 1

Lr

r(p+1)∑
i=r

(−1)i (i− r)!Sr,r (p+ 1, i)Fi−r

Lr(p−1)

=
1

Lr

rp∑
l=r

l!Sr,r (p, l)
(
LrFrp−l + Lr−lFr(p−2)

)
=

rp∑
l=r

l!Sr,r (p, l)Frp−l,

as wanted. Again, the rest of the induction argument is an easy exercise left to the
reader.

According to (29), the sum of the elements of the rising diagonal beginning in row
k > 2r (p− 1) and column j = s is

1

(r!)p

b k−1
2 c∑
j=0

r+j∑
i=r

(
k − j − r (p− 1)− 1

r + j − i

)
i!Sr,r (p, i) . (72)

Thus, in proposition 8 we have proved that when r is even or r and p are odd, the
sum (72) is equal to 1

(r!)p Fr

r(p+1)∑
i=r

(−1)i+r+1 (i− r)!Sr,r (p+ 1, i)Fi−r

Fk−r(p−1), (73)

and that when r is odd and p is even, this sum is equal to 1

(r!)p Lr

r(p+1)∑
i=r

(−1)i (i− r)!Sr,r (p+ 1, i)Fi−r

Lk−r(p−1). (74)

When r = 1 the expressions in parenthesis in (73) and (74) are equal to the p-sequence(
p+1∑
i=1

(−1)i (i− 1)!S (p+ 1, i)Fi−1

)
p∈N

= (1, 1, 7, 13, 151, 421, . . .) , (75)
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called “Stirling-Bernoulli transform of Fibonacci numbers” ([25, A050946]). This is the
sequence that appears in [24] and the result is that (for k > 2 (p− 1)) the sum of rising
diagonals is equal to the Stirling-Bernoulli transform (75) times the Fibonacci number
Fk−p+1 when p is odd, and times the Lucas number Lk−p+1 when p is even. For r > 1 we
have the following generalizations of the sequence (75), which we call “r-Stirling-Bernoulli
transform of Fibonacci numbers”:

1. If r is even, the r-Stirling-Bernoulli transform of Fibonacci numbers is the p-sequence 1

(r!)p Fr

r(p+1)∑
i=r

(−1)i+r+1 (i− r)!Sr,r (p+ 1, i)Fi−r


p∈N

. (76)

For example, if r = 2 the sequence is (1, 7, 115, 3499, 170611, . . .) and if r = 4 the
sequence is (1, 91, 54091, 116359591, . . .). In this case the result on rising diagonals
is the following:

In a (r, r, p)-array, where r is even, the sum of the elements of the rising diagonals
(beginning in row k > 2r (p− 1) and column r) is equal to the r-Stirling-Bernoulli
transform of Fibonacci numbers (76) times the Fibonacci number Fk−r(p−1).

2. If r is odd, we have two versions of r-Stirling-Bernoulli transforms of Fibonacci
numbers, depending on the parity of p:

(a) For p odd the sequence is 1

(r!)p Fr

r(p+1)∑
i=r

(−1)i+r+1 (i− r)!Sr,r (p+ 1, i)Fi−r


p=1,3,5,...

, (77)

and the result is the following:

In a (r, r, p)-array, where r and p are odd, the sum of the elements of the
rising diagonals (beginning in row k > 2r (p− 1) and column r) is equal to the
r-Stirling-Bernoulli transform of Fibonacci numbers (77) times the Fibonacci
number Fk−r(p−1).

(b) For p even the sequence is 1

(r!)p Lr

r(p+1)∑
i=r

(−1)i+r+1 (i− r)!Sr,r (p+ 1, i)Fi−r


p=2,4,6,...

, (78)

and the result is the following:

In a (r, r, p)-array, where r is odd and p is even, the sum of the elements of
the rising diagonals (beginning in row k > 2r (p− 1) and column r) is equal to
the r-Stirling-Bernoulli transform of Fibonacci numbers (78) times the Lucas
number Lk−r(p−1).
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Note that in the case r = 1, the two versions of r-Stirling-Bernoulli transforms of
Fibonacci numbers (77) and (78) are the odd-indexed and even-indexed subsequences
of the sequence (75), respectively. (This is the case of [24].) However, if r > 1 these
sequences are different. For example, if r = 3 the corresponding sequences (77) and
(78) are (1, 2371, 303607891, . . .) and (11, 264431, 124768775351, . . .), respectively. Thus,
in the (3, 3, p)-array, the sum of the elements of the rising diagonals (beginning in row
k > 6 (p− 1) and 3rd column) is equal to Fk when p = 1, to 11Lk−3 when p = 2, to
2371Fk−6 when p = 3, to 264431Lk−9 when p = 4, to 303607891Fk−12 when p = 5, and so
on.

In tables 4 and 5 we have some more examples.

r p
Beginning

in row k
Rising diagonal

Sum

of

elements

Equal to

2 2 k = 4 (1, 6) 7 7F2

k = 5 (1, 7, 6) 14 7F3

k = 6 (1, 8, 12) 21 7F4

...
...

...
...

2 3 k = 8 (1, 26, 138, 180) 345 115F4

k = 9 (1, 27, 163, 294, 90) 575 115F5

k = 10 (1, 28, 189, 432, 270) 920 115F6

...
...

...
3 3 k = 12 (1, 64, 873, 4380, 8610, 5040) 18968 2371F6

k = 13 (1, 65, 936, 5191, 12240, 10710, 1680) 30823 2371F7

k = 14 (1, 66, 1000, 6064, 16620, 19320, 6720) 49791 2371F8

...
...

...
4 2 k = 8 (1, 22, 110, 140) 273 91F4

k = 9 (1, 23, 131, 230, 70) 455 91F5

k = 10 (1, 24, 153, 340, 210) 728 91F6

...
...

...

Table 4: Sums of rising diagonals in a (r,r,p)-array, when r is even, or r and p are odd.

Remark 9. We believe that for the general case r > s, the sums of rising diagonals in a
(r, s, p)-arrays are also related with Fibonacci and/or Lucas numbers. Note that the sum
of the elements of the rising diagonal beginning in column s and row k > (s+ r)p− 2s is
given by

1

(s!)p

b k−1−(r−s)p
2 c∑
j=0

s+j∑
i=s

(
k − j − pr + s− 1

s+ j − i

)
i!Sr,s (p, i) . (79)

In the case r = 2s it is not difficult to see that the sum (79) is equal to (sp)!
(s!)p

Fk−sp (since,

the electronic journal of combinatorics 21(1) (2014), #P1.10 28



r p
Beginning

in row k
The rising diagonal is

Sum

of

elements

Equal to

3 2 k = 6 (1, 13, 30) 44 11L3

k = 7 (1, 14, 42, 20) 77 11L4

k = 8 (1, 15, 55, 50) 121 11L5

...
...

...
...

3 4 k = 18 (1,259,10257,150000,...,7203420,6186600,1663200) 20096756 264431L9

k = 19 (1,260,10515,160000,...,11040960,4762800,369600) 32525013 264431L10

k = 20 (1,261,10774,170257,...,18244380,10949400,2032800) 52621769 264431L11

...
...

...
5 2 k = 10 (1, 33, 271, 770, 630) 1705 155L5

k = 11 (1, 34, 303, 1010, 1190, 252) 2790 155L6

k = 12 (1, 35, 336, 1281, 1960, 882) 4495 155L7

...
...

...

Table 5: Sums of rising diagonals in a (r,r,p)-array, when r is odd and p is even.

as we noticed in section 2, the (2s, s, p)-array is a piece of Pascal’s triangle multiplied by
(sp)!
(s!)p

.) Then, we have for k > 3sp− 2s that

1

(s!)p

b k−1−sp
2 c∑
j=0

s+j∑
i=s

(
k − j − 2sp+ s− 1

s+ j − i

)
i!S2s,s (p, i) =

(sp)!

(s!)p
Fk−sp. (80)

However, formula (80) is not an interesting result, since we can write it (by using (8))
as

b k−1−sp
2 c∑
j=0

s+j∑
i=s

(
k − j − 2sp+ s− 1

s+ j − i

)(
s (p− 1)

i− s

)
= Fk−sp, (81)

and one can see at once that (81) is consequence of the following two easy to prove
identities

m∑
j=0

(
m− j
j

)
= Fm+1, and

m∑
i=0

(
m

i

)
Fr−i = Fm+r, (82)

where m is a non-negative integer and r ∈ Z. We obtained explicit values of the sum (79)
for some concrete values of r, s, p, k in the remaining cases (when 1 6 s < r, r 6= 2s) and
observed that Fibonacci and/or Lucas numbers appear in these sums. In table 6 we have
some examples.

We mention that we were not able to propose and prove the results (of the last column
of Table 6) corresponding to this general situation. We believe that they are not as nice
and simple as those we showed in this section for the case r = s.
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r s p
Beginning in

column j
and row k

The rising diagonals are
Sum of ele-
ments

Equals to

3 1 2
k = 6,
k = 7,
k = 8, . . .

(3),
(3, 2),
(3, 5), . . .

3,
5,
8, . . .

F4,
F5,
F6, . . .

3
k = 10,
k = 11,
k = 12, . . .

(15, 18),
(15, 33, 6),
(15, 48, 24), . . .

33,
54,
87, . . .

3L5,
3L6,
3L7, . . .

2 3
k = 11,
k = 12,
k = 13, . . .

(18, 162, 414, 270),
(18, 180, 558, 558, 90),
(18, 198, 720, 972, 360), . . .

864,
1404,
2268, . . .

108F6,
108F7,
108F8, . . .

4 1 2
k = 8,
k = 9,
k = 10, . . .

(4),
(4, 2),
(4, 6), . . .

4,
6,
10, . . .

2F3,
2F4,
2F5, . . .

3
k = 13,
k = 14,
k = 15, . . .

(28, 24),
(28, 52, 6),
(28, 80, 30), . . .

52,
86,
138, . . .

2(7F4 + F5),
2(7F5 + F6),
2(7F6 + F7), . . .

3 3
k = 15,
k = 16,
k = 17, . . .

(40, 800, 5440, 15840, 19040, 6720),

(40, 840, 6200, 20560, 30840, 17360, 1680),

(40, 880, 7000, 26000, 46680, 36400, 8400),. . .

47880,
77520,
125400, . . .

2280F8,
2280F9,
2280F10, . . .

Table 6: Sums of rising diagonals in (r,s,p)-arrays.

5 Some additional results

By equating coefficients of similar powers of x in both sides of (58) we see that

Sr,r (p, j) =
1

j!

rp∑
i=j

(−1)i−rp
(
i− r
j − r

)
i!Sr,r (p, i) . (83)

In this section we want to obtain some consequences of this identity. First of all,
observe that (15) and (83) give us that(

n

s

)p
=

1

(s!)p

sp∑
k=s

sp∑
i=k

(−1)i−sp i!Ss,s (p, i)

(
i− s
k − s

)(
n

k

)
, (84)

which can be written as(
n

s

)p
=

(−1)sp

(s!)p

sp∑
k=s

(−1)k k!Ss,s (p, k)

(
n+ k − s

k

)
. (85)

After a simplification procedure (that we describe next), using Pascal’s triangle recur-
rence, the right-hand side of (85) can be written in a simpler form, in which we need only
‘the half’ of the number of coefficients involved in (85). To prove this fact is one of the
goals of this section, and it is contained in corollary 11.

The mentioned simplification procedure is as follows.
Procedure: Begin with expression (85) (this is our “starting point” expression) and

perform steps 1,2,3.
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Step 1 Write the last (the k = sp-th) term of the right-hand side of (85), namely the

term (sp)!
(s!)p

Ss,s(p, sp)
(
n+sp−s

sp

)
, as

(sp)!

(s!)p
Ss,s (p, sp)

((
n+ sp− s− 1

sp− 1

)
+

(
n+ sp− s− 1

sp

))
. (86)

Step 2 Write together the first summand of (86), namely (sp)!
(s!)p

Ss,s (p, sp)
(
n+sp−s−1

sp−1

)
, and

the k = (sp− 1)-th summand of (85), namely − (sp−1)!
(s!)p

Ss,s (p, sp− 1)
(
n+sp−s−1

sp−1

)
, to

get the new k = (sp− 1)-th summand of (85) as(
(sp)!

(s!)p
Ss,s (p, sp)− (sp− 1)!

(s!)p
Ss,s (p, sp− 1)

)(
n+ sp− s− 1

sp− 1

)
. (87)

Step 3 Return to Step 1 with the new k = (sp− 1)-th summand (87), to get (after the
new Step 2) the new k = (sp− 2)-th summand as(

(sp)!

(s!)p
Ss,s (p, sp)− (sp− 1)!

(s!)p
Ss,s (p, sp− 1) +

(sp− 2)!

(s!)p
Ss,s (p, sp− 2)

)
(88)

×
(
n+ sp− s− 2

sp− 2

)
,

and so on. That is, return to Step 1 with the new (sp− 2)-th summand (88) to
get a new (sp− 3)-th summand. Continue in this way until you perform Step 2
involving the first term (the k = s-th term) of the right-hand side of (85).

At the end of Procedure we have the expression (85) transformed in(
n

s

)p
=

(−1)sp

(s!)p

1∑
t=0

sp∑
j=s+t

(−1)j j!Ss,s (p, j)

(
n

s+ t

)
(89)

+
(−1)sp

(s!)p

s(p−1)∑
t=2

(
sp∑

j=s+t

(−1)j j!Ss,s (p, j)

)(
n+ t− 1

s+ t

)
.

Now we take (89) as the starting point and repeat Procedure, beginning with the
last term of the right-hand side of (89) and going backwards, up to the third term (that
is, we leave the first two summands of the right-hand side of (89) as they appear in

this expression, namely (−1)sp
(s!)p

∑1
t=0

∑sp
j=s+t (−1)j j!Ss,s (p, j)

(
n
s+t

)
). (The reason why we

stop now in the third term will become clear shortly, and will be explained correctly in
Proposition 10.) We get the expression(

n

s

)p
=

(−1)sp

(s!)p

1∑
t=0

sp∑
j=s+t

(−1)j j!Ss,s (p, j)

(
n

s+ t

)
(90)
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+
(−1)sp

(s!)p

3∑
t=2

sp∑
j=s+t

(−1)j j! (j − s− t+ 1)Ss,s (p, j)

(
n+ 1

s+ t

)

+
(−1)sp

(s!)p

s(p−1)∑
t=4

(
sp∑

j=s+t

(−1)j j! (j − s− t+ 1)Ss,s (p, j)

)(
n+ t− 2

s+ t

)
.

And again, we repeat Procedure with (90) as starting point, beginning with the
last term and going backwards, up to the fifth term.

After
⌊
1
2
s (p− 1)

⌋
times of applying Procedure as described above, we obtain the

expression

(
n

s

)p
=

(−1)sp

(s!)p

b 12 s(p−1)c∑
t=0

sp∑
j=s+2t

(−1)j j!

(
j − s− t

t

)
Ss,s (p, j)

(
n+ t

s+ 2t

)
(91)

+
(−1)sp

(s!)p

b 12 s(p−1)c∑
t=0

sp∑
j=s+2t+1

(−1)j j!

(
j − s− t− 1

t

)
Ss,s (p, j)

(
n+ t

s+ 2t+ 1

)
.

Let us see a concrete example. For s = 4 and p = 3, expression (85) says that(
n

4

)3

=

(
n

4

)
− 120

(
n+ 1

5

)
+ 2640

(
n+ 2

6

)
− 21840

(
n+ 3

7

)
+ 87570

(
n+ 4

8

)
−189000

(
n+ 5

9

)
+ 224700

(
n+ 6

10

)
− 138600

(
n+ 7

11

)
+ 34650

(
n+ 8

12

)
. (92)

We begin Procedure writing the term 34650
(
n+8
12

)
as 34650

((
n+7
11

)
+
(
n+7
12

))
and

simplifying to(
n

4

)3

=

(
n

4

)
− 120

(
n+ 1

5

)
+ 2640

(
n+ 2

6

)
− 21840

(
n+ 3

7

)
+ 87570

(
n+ 4

8

)
−189000

(
n+ 5

9

)
+ 224700

(
n+ 6

10

)
− 103950

(
n+ 7

11

)
+ 34650

(
n+ 7

12

)
. (93)

Now we write the term 103950
(
n+7
11

)
of (93) as 103950

((
n+6
10

)
+
(
n+6
11

))
and simplify to(

n

4

)3

=

(
n

4

)
− 120

(
n+ 1

5

)
+ 2640

(
n+ 2

6

)
− 21840

(
n+ 3

7

)
+ 87570

(
n+ 4

8

)
−189000

(
n+ 5

9

)
+ 120750

(
n+ 6

10

)
− 103950

(
n+ 6

11

)
+ 34650

(
n+ 7

12

)
.

Continuing in this way we obtain(
n

4

)3

=

(
n

4

)
+ 120

(
n+ 1

6

)
− 2520

(
n+ 2

7

)
+ 19320

(
n+ 3

8

)
− 68250

(
n+ 4

9

)
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+120750

(
n+ 5

10

)
− 103950

(
n+ 6

11

)
+ 34650

(
n+ 7

12

)
. (94)

(This is (89). Observe that the coefficient of the term
(
n+1
5

)
is 0.) Now we write the

last term of the right-hand side of (94) as 34650
((
n+6
11

)
+
(
n+6
12

))
and simplify. Then,

we repeat this step with the term (−103950 + 34650)
(
n+6
11

)
, and with all the subsequent

terms obtained. We get(
n

4

)3

=

(
n

4

)
+ 120

(
n+ 1

6

)
+ 2520

(
n+ 2

8

)
− 16800

(
n+ 3

9

)
(95)

+51450

(
n+ 4

10

)
− 69300

(
n+ 5

11

)
+ 34650

(
n+ 6

12

)
.

(This is (90). Observe that the coefficient of the term
(
n+2
7

)
is 0.) And again, we write

the last term of the right-hand side of (95) as 34650
((
n+5
11

)
+
(
n+6
12

))
and simplify. And

repeat with the subsequent terms to obtain(
n

4

)3

=

(
n

4

)
+ 120

(
n+ 1

6

)
+ 2520

(
n+ 2

8

)
+ 16800

(
n+ 3

10

)
(96)

−34650

(
n+ 4

11

)
+ 34650

(
n+ 5

12

)
.

One final procedure beginning with the last term of the right-hand side of (96) take
us to the formula(

n

4

)3

=

(
n

4

)
+ 120

(
n+ 1

6

)
+ 2520

(
n+ 2

8

)
+ 16800

(
n+ 3

10

)
+ 34650

(
n+ 4

12

)
. (97)

The fact that several coefficients are equal to 0 makes (97) a simpler expression than
the original one (92). In general we have the following result.

Proposition 10. (a) If s is even or s and p are odd, the following formula holds for any
non-negative integer t

sp∑
j=s+2t+1

(−1)j j!

(
j − s− t− 1

t

)
Ss,s (p, j) = 0. (98)

(b) If s is odd and p is even, the following formula holds for any non-negative integer
t

sp∑
j=s+2t+1

(−1)j j!

(
j − s− t− 1

t

)
Ss,s (p, j) = 2

sp∑
j=s+2t

(−1)j j!

(
j − s− t

t

)
Ss,s (p, j) . (99)
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Proof. (a) Observe that (98) is equivalent to

sp∑
j=s

(−1)j j!Ss,s (p, j)
t−1∏
l=0

(j − s− t− 1− l) (100)

=
s+t∑
j=s

(−1)j j!Ss,s (p, j)
t−1∏
l=0

(j − s− t− 1− l) .

By using Gould’s identity (3.50) in [13], we see that(
j − s− t− 1

t

)
=

t∑
k=0

(−1)k+t
(

2t− k
t

)(
j − s
k

)
, (101)

which can be written as

t−1∏
l=0

(j − s− t− 1− l) =
t∑

k=0

(−1)k (t+ k)!

k! (t− k)!

t−1−k∏
l=0

(j − s− l) , (102)

Beginning with the left-hand side of (100) and using (102) we get

sp∑
j=s

(−1)j j!Ss,s (p, j)
t−1∏
l=0

(j − s− t− 1− l) (103)

=
t∑

k=0

(−1)k (t+ k)!

k! (t− k)!

sp∑
j=s+t−k

(−1)j j!Ss,s (p, j)
t−1−k∏
l=0

(j − s− l) .

By setting j = s+ t− k in (83) we see that

Ss,s (p, s+ t− k) =
(−1)sp

(t− k)! (s+ t− k)!

sp∑
j=s+t−k

(−1)j j!Ss,s (p, j)
t−1−k∏
l=0

(j − s− l) . (104)

According to (104) we can write (103) as

sp∑
j=s

(−1)j j!Ss,s (p, j)
t−1∏
l=0

(j − s− t− 1− l)

= (−1)sp
t∑

k=0

(−1)k (t+ k)!

k!
(s+ t− k)!Ss,s (p, s+ t− k) ,

or

sp∑
j=s

(−1)j j!Ss,s (p, j)
t−1∏
l=0

(j − s− t− 1− l) (105)
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= (−1)s(p+1)+t
s+t∑
j=s

(−1)j (2t+ s− j)!
(t+ s− j)!

j!Ss,s (p, j) .

The fact that
t−1∏
l=0

(j − s− t− 1− l) = (−1)t
(2t+ s− j)!
(t+ s− j)!

,

(easy proof, left to the reader), together with the hypothesis that s is even or s and p are
odd, give us from (105) the end of the proof of (100).

(b) The case t = 0 of (99) can be written as

sp∑
j=s

(−1)j j!Ss,s (p, j) = s!Ss,s (p, s) .

This is a direct consequence of (58) (with x = 0) and the fact that p is even. So let
us consider the cases when t > 1. We can write (99) as

sp∑
j=s+2t

(−1)j j!

((
j − s− t− 1

t

)
+ 2

(
j − s− t− 1

t− 1

))
Ss,s (p, j) = 0,

or
sp∑

j=s+2t

(−1)j j!Ss,s (p, j) (j − s)
t−2∏
l=0

(j − s− t− 1− l) = 0. (106)

To prove (106) is equivalent to prove that

sp∑
j=s+1

(−1)j j!Ss,s (p, j) (j − s)
t−2∏
l=0

(j − s− t− 1− l) (107)

=
s+t∑

j=s+1

(−1)j j!Ss,s (p, j) (j − s)
t−2∏
l=0

(j − s− t− 1− l) .

From Gould’s identity (3.50) in [13] we see that(
j − s− t− 1

t− 1

)
=

t−1∑
k=0

(−1)k+t+1

(
2t− 2− k
t− 1

)(
j − s− 1

k

)
,

which can be written as

t−2∏
l=0

(j − s− t− 1− l) =
t−1∑
k=0

(−1)k (t− 1 + k)!

k! (t− 1− k)!

t−2−k∏
l=0

(j − s− 1− l) . (108)

Beginning with the left-hand side of (107) we can write (by using (108))

sp∑
j=s+1

(−1)j j!Ss,s (p, j) (j − s)
t−2∏
l=0

(j − s− t− 1− l) (109)
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=

sp∑
j=s+1

(−1)j j!Ss,s (p, j) (j − s)
t−1∑
k=0

(−1)k (t− 1 + k)!

k! (t− 1− k)!

t−2−k∏
l=0

(j − s− 1− l)

=
t−1∑
k=0

(−1)k (t− 1 + k)!

k! (t− 1− k)!

sp∑
j=s+t−k

(−1)j j!Ss,s (p, j)
t−1−k∏
l=0

(j − s− l) .

Now we use (104) to write (109) as

sp∑
j=s+1

(−1)j j!Ss,s (p, j) (j − s)
t−2∏
l=0

(j − s− t− 1− l) (110)

=
t−1∑
k=0

(−1)k+sp (t− 1 + k)!

k!
(t− k) (s+ t− k)!Ss,s (p, s+ t− k)

= (−1)t+s(p−1)
s+t∑

j=s+1

(−1)j (2t− 1− j + s)!

(t− j + s)!
j! (j − s)Ss,s (p, j) .

Finally, we use that

t−2∏
l=0

(j − s− t− 1− l) = (−1)t+1 (2t− 1− j + s)!

(t− j + s)!
,

(proof left to the reader), together with the hypotheses on s and p, to obtain from (110)
the desired conclusion (107).

Corollary 11. (a) If s is even, or s and p are odd, expression (91) can be written as

(
n

s

)p
=

(−1)sp

(s!)p

1
2
s(p−1)∑
t=0

sp∑
j=s+2t

(−1)j j!

(
j − s− t

t

)
Ss,s (p, j)

(
n+ t

s+ 2t

)
. (111)

(b) If s is odd and p is even, expression (91) can be written as(
n

s

)p
(112)

=
1

(s!)p

b 12 s(p−1)c∑
t=0

sp∑
j=s+2t

(−1)j j!

(
j − s− t

t

)
Ss,s (p, j)

((
n+ t

s+ 2t+ 1

)
+

(
n+ t+ 1

s+ 2t+ 1

))
.

Proof. Follows from (91) and Proposition 10.

Of course, formulas (111) and (112) have the following versions for partial sums of(
n
s

)p
(obtained by taking the convolution ∗l1 in both sides of (111) and (112), and using

(26))
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(a) If s is even, or s and p are odd, then for any integer l > 0 we have(
n

s

)p
∗l 1 =

(−1)sp

(s!)p

1
2
s(p−1)∑
t=0

sp∑
j=s+2t

(−1)j j!

(
j − s− t

t

)
Ss,s (p, j)

(
n+ t+ l

s+ 2t+ l

)
. (113)

(b) If s is odd and p is even, then for any integer l > 0 we have(
n

s

)p
∗l1 (114)

=
1

(s!)p

b 12 s(p−1)c∑
t=0

sp∑
j=s+2t

(−1)jj!

(
j − s− t

t

)
Ss,s (p, j)

((
n+ t+ l

s+ 2t+ 1 + l

)
+

(
n+ t+ 1 + l

s+ 2t+ 1 + l

))
.

Some examples from (113) and (114) are the following (compare them with similar
expressions shown in Table 1):

n∑
k=1

k∑
j=1

j∑
i=1

(
i

2

)2

=

(
n+ 3

5

)
+ 6

(
n+ 4

7

)
.

n∑
i=1

(
i

2

)3

=

(
n+ 1

3

)
+ 24

(
n+ 2

5

)
+ 90

(
n+ 3

7

)
.

n∑
j=1

j∑
i=1

(
i

3

)3

=

(
n+ 2

5

)
+ 60

(
n+ 3

7

)
+ 630

(
n+ 4

9

)
+ 1680

(
n+ 5

11

)
.

n∑
i=1

(
i

3

)2

=

(
n+ 1

5

)
+

(
n+ 2

5

)
+ 10

((
n+ 2

7

)
+

(
n+ 3

7

))
.

n∑
i=1

(
i

4

)2

=

(
n+ 1

5

)
+ 20

(
n+ 2

7

)
+ 70

(
n+ 3

9

)
.
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