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Abstract

Given an infinite hereditary property of graphs P, the principal extremal pa-
rameter of P is the value

π (P) = lim
n→∞

(
n

2

)−1
max{e (G) : G ∈ P and v (G) = n}.

The Erdős-Stone theorem gives π (P) if P is monotone, but this result does not
apply to hereditary P. Thus, one of the results of this note is to establish π (P) for
any hereditary property P.

Similar questions are studied for the parameter λ(p) (G) , defined for every real
number p > 1 and every graph G of order n as

λ(p) (G) = max
|x1|p + ··· + |xn|p = 1

2
∑

{u,v}∈E(G)

xuxv.

It is shown that the limit

λ(p) (P) = lim
n→∞

n2/p−2 max{λ(p) (G) : G ∈ P and v (G) = n}

exists for every hereditary property P.
A key result of the note is the equality

λ(p) (P) = π (P) ,

which holds for all p > 1. In particular, edge extremal problems and spectral ex-
tremal problems for graphs are asymptotically equivalent.

Keywords: extremal problems; Turán problems; hereditary property; largest eigen-
value.
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1 Introduction and main results

In this note we study problems stemming from the following one:

Problem 1. What is the maximum number of edges in a graph G of order n if G belongs
to some hereditary property P .

Let us recall the basics of graph properties: A graph property is just a family of
graphs closed under isomorphisms. A property is called monotone if it is closed under
taking subgraphs, and hereditary if it is closed under taking induced subgraphs. Given
a set of graphs F , the family of all graphs that do not contain any F ∈ F as a subgraph is
a monotone property, denoted by Mon (F) . Likewise, the family of all graphs that do not
contain any F ∈ F as an induced subgraph is a hereditary property, denoted as Her (F) .

It seems that the classically shaped Problem 1 has been disregarded in the rich litera-
ture on hereditary properties, so in this paper we shall fill in this gap. Note, however, that
for monotone properties the theorem of Erdős and Stone provides a well-known solution,
outlined in Proposition 3 below.

Writing Pn for the set of all graphs of order n in a property P , now Problem 1 reads
as:

Given a hereditary property P, find

ex (P , n) = max
G∈Pn

e (G) . (1)

Finding ex (P , n) exactly seems hopeless for arbitrary P . A more feasible approach
has been suggested by Katona, Nemetz and Simonovits in [8] who proved the following
fact:

Proposition 2. If P is a hereditary property, then the limit

π (P) = lim
n→∞

ex (P , n)

(
n

2

)−1
exists.

In particular, for monotone properties Erdős and Simonovits [6] observed the following
consequence of the Erdős-Stone theorem [5]:

Proposition 3. If a monotone property P is given as P = Mon (F) for some nonempty
family F , then

π (Mon (F)) = 1− 1/χ,

where χ = min {χ (F ) : F ∈ F} .

Unfortunately, π (P) cannot be determined in the same simple way for a general
hereditary property P , and so one of the aims of this note is to establish π (P) for such P .
However, our main focus is on extremal problems about a more general graph parameter,
denoted by λ(p) (G) and defined as follows:

the electronic journal of combinatorics 21(1) (2014), #P1.17 2



Given a graph G and a real number p > 1, let

λ(p) (G) = max
|x1|p+ ··· +|xn|p=1

2
∑

{u,v}∈E(G)

xuxv.

Note that λ(2) (G) is the well-studied spectral radius of G, and also that λ(1) (G) is a
another much studied graph parameter, known as the Lagrangian1 of G. Moreover, letting
p → ∞, one can show that λ(p) (G) → e (G) . So λ(p) (G) is a common generalization of
three central parameters in extremal graph theory.

The parameter λ(p) (G) has been introduced and studied for uniform hypergraphs first
by Keevash, Lenz and Mubayi in [7], and next by the author in [12] and [13]. Here we
shall study λ(p) (G) in the same role as e (G) in equation (1), obtaining thus the following
problem.

Problem 4. Given a hereditary property P , find

λ(p) (P , n) = max
G∈Pn

λ(p) (G) . (2)

As for ex (P , n) , finding λ(p) (P , n) seems hopeless for arbitrary P , so we begin with
an analog to Proposition 2.

Theorem 5. Let p > 1. If P is a hereditary property, then the limit

λ(p) (P) = lim
n→∞

λ(p) (P , n)n(2/p)−2

exists.

The main goal of this note is to find λ(p) (P) for every P and every p > 1. It turns out
that λ(p) (P) and π (P) are almost identical. Indeed, general results proved in [12] imply
that λ(p) (P) = π (P) for every p > 1, and also λ(1) (P) > π (P) . In this note we give an
alternative direct proof of these results, and we find π (P) explicitly.

Before going further we need some definitions. Recall that a complete r-partite
graph is a graph whose vertices can be split into r nonempty independent sets so that all
edges between vertices of different classes are present. In particular, an 1-partite graph is
just a set of isolated vertices.

Further, note that every hereditary property P can be represented as P = Her (F)
for some family F , so hereafter we shall assume that every hereditary property is given
as P = Her (F) for some explicit family F .

Next, for every family of graphs F , define the parameters ω (F) and β (F) as

ω (F) =

{
0, if F contains no cliques;
min {r : Kr ∈ F} , otherwise.

β (F) =

{
0, if F contains no complete partite graphs;
min {r : F contains a complete r-partite graph} , otherwise.

1Let us note that this use of the name Lagrangian is at odds with the tradition. Indeed, names
as Laplacian, Hessian, Gramian, Grassmanian, etc., usually denote a structured object like matrix,
operator, or manifold, and not just a single number.

the electronic journal of combinatorics 21(1) (2014), #P1.17 3



The parameters ω (F) and β (F) are quite informative about the hereditary property
Her (F) as seen in the following observation.

Proposition 6. If the property P = Her (F) is infinite, then ω (F) = 0 or ω (F) > 2
and β (F) > 2.

Proof. Suppose that ω (F) 6= 0. If ω (F) = 1, then P is empty, so we shall suppose that
ω (F) > 2. This implies that β (F) > 0, as F contains Kr for some r > 2 and Kr is a
complete r-partite graph. If β (F) = 1, then F contains a graph F consisting of isolated
vertices, let say s be the order of F. Choose a member G ∈ P with v (G) > r (Kr, Ks) ,
where r (Kr, Ks) is the Ramsey number of Kr vs. Ks. Thus, G contains either a Kr or
an independent set on s vertices, both of which are forbidden. This contradiction shows
that β (F) > 2, proving Proposition 6.

Clearly the study of (1) and (2) makes sense only if P is infinite, and Proposition 6 pro-
vides a necessary condition for this feature of P . Now, the following theorem completely
determines π (P) .

Theorem 7. Let F be a family of graphs. If the property P = Her (F) is infinite, then

π (P) =

{
1, if ω (F) = 0;
1− 1

β(F)−1 , otherwise.
.

Let us turn now to the study of λ(p) (P) . As mentioned above, in [12] it has been
proved that π (P) = λ(p) (P) for p > 1; however, for reader’s sake we shall establish this
identity directly.

Theorem 8. Let p > 1 and let F be a family of graphs. If the property P = Her (F) is
infinite, then

λ(p) (P) =

{
1, if ω (F) = 0;
1− 1

β(F)−1 , otherwise.
.

To complete the description of λ(p) (P) we need to determine the dependence of λ(1) (P)
on P . Using the well-known idea of Motzkin and Straus [9], we come up with the following
theorem, whose easy proof we omit.

Theorem 9. If P is an infinite hereditary property, then λ(1) (P) = 1 − 1/r if r is the
size of the largest clique in P , and λ(1) (P) = 1 if P contains arbitrary large cliques.

The next section contains proofs of Theorems 5, 7 and 8, and some auxiliary state-
ments. In the final section we outline a line of possible future research.

the electronic journal of combinatorics 21(1) (2014), #P1.17 4



2 Proofs

2.1 Some preliminary results

Below we state several results necessary for the proof of our key Theorem 8. The first one
follows from a result in [12], but for reader’s sake we give its short proof here.

Theorem 10. Let p > 1. If G is a graph with m edges and n vertices, with no Kr+1, then

λ(p) (G) 6

(
1− 1

r

)1/p

(2m)1−1/p (3)

and

λ(p) (G) 6

(
1− 1

r

)
n2−2/p. (4)

Proof. Indeed, let x = (x1, . . . , xn) be a vector such that |x1|p + · · ·+ |xn|p = 1 and

λ(p) (G) = 2
∑

{u,v}∈E(G)

xuxv.

Applying the Power Mean Inequality, we see that

λ(p) (G) = 2
∑

{u,v}∈E(G)

xuxv 6 2
∑

{u,v}∈E(G)

|xu| |xv|

6 (2m)1−1/p

2
∑

{u,v}∈E(G)

|xu|p |xv|p
1/p

.

Now, the result of Motzkin and Straus [9] impies that

2
∑

{u,v}∈E(G)

|xu|p |xv|p 6 1− 1

r
,

and inequality (3) follows. Finally, inequality (4) follows from (3) by Turán’s inequality
2m 6 (1− 1/r)n2.

Note, in particular, that λ(p) (G) 6 (2m)1−1/p . This simple bound will be used in the
proof of the following proposition.

Proposition 11. Let p > 1, k > 1 and G1 and G2 be graphs on the same vertex set. If
G1 and G2 differ in at most k edges, then∣∣λ(p) (G1)− λ(p) (G2)

∣∣ 6 (2k)1−1/p .
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Proof. Let V = V (G1) = V (G2) and write G12 for the graph with V (G12) = V and
E (G12) = E (G1) ∩ E (G2) . We may and shall assume that λ(p) (G1) > λ(p) (G2) . Write
G3 for the graph with V (G3) = V and E (G3) = E (G1) \E (G2) . In view of G12 ⊂ G2,
we have

0 6 λ(p) (G1)− λ(p) (G2) = λ(p) (G1)− λ(p) (G12)−
(
λ(p) (G2)− λ(p) (G12)

)
6 λ(p) (G1)− λ(p) (G12) 6 λ(p) (G3) 6 (2e (G3))

1−1/p

6 (2k)1−1/p ,

proving Proposition 11.

Further, let us recall the following particular version of the Removal Lemma, which is
a consequence of the Szemerédi Regularity Lemma ([15], [1]):

Removal Lemma For all r > 3 and ε > 0, there exists δ = δ (r, ε) > 0 such that
if G is a graph of order n, with kr (G) < δnr, then there is a graph G0 ⊂ G such that
e (G0) > e (G)− εn2 and kr (G0) = 0.

Finally, we shall need the following theorem proved in [10]:

Theorem A For all r > 2 and ε > 0, there exists δ = δ (r, ε) > 0 such that if G a
graph of order n with kr (G) > εnr, then G contains a Kr (s) with s = bδ log nc .

2.2 Proof of Theorem 5

Proof. Set for short λ
(p)
n = λ(p) (P , n) . Let G ∈ Pn be such that λ

(p)
n = λ(p) (G) and let

x = (x1, . . . , xn) be a vector with |x1|p + · · ·+ |xn|p = 1 and

λ(p)n = λ(p) (G) = 2
∑

{u,v}∈E(G)

xuxv.

If p = 1, we obviously have λ
(1)
n > λ

(1)
n−1 and in view of

λ(1)n = 2
∑

{u,v}∈E(G)

xuxv 6 2
∑

16i<j6n

xixj < (x1 + · · ·+ xn)2 = 1,

the sequence
{
λ
(1)
n

}∞
n=1

converges to some λ. We have

λ = lim
n→∞

λ(1)n n2−2 = λ(1) (P) ,

proving the theorem for p = 1.
Now suppose that p > 1. Since |x1|p + · · ·+ |xn|p = 1, there is a vertex k ∈ V (G) such

that |xk|p 6 1/n. Write G − k for the graph obtained from G by omitting the vertex k,
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and let x′ =
(
x′1, . . . , x

′
n−1
)

be the (n− 1)-vector obtained from x by omitting the entry

xk. The eigenequation for λ(p) (G) and the vertex k is

λ(p) (G)xk |xk|p−2 =
∑

{k,i}∈E(G)

xi.

Hence, we see that

2
∑

{u,v}∈E(G−k)

x′ux
′
v = 2

∑
{u,v}∈E(G)

xuxv − 2xk
∑

{k,i}∈E(G)

xi

= λ(p) (G)− 2xk
(
λ(p) (G)xk |xk|p−2

)
= λ(p)n (1− 2 |xk|p) .

Since P is a hereditary property, G− k ∈ Pn−1, and therefore,

2
∑

{u,v}∈E(G−k)

x′ux
′
v 6 λ(p) (G− k) |x′|2p = λ(p) (G− k) (1− |xk|p)2/p 6 λ

(p)
n−1 (1− |xk|p)2/p .

Thus, we obtain

λ(p)n 6 λ
(p)
n−1

(1− |xk|p)2/p

(1− 2 |xk|p)
. (5)

Note that the function

f (y) =
(1− y)2/p

1− 2y

is nondecreasing in y for 0 6 y 6 1/n and n sufficiently large. Indeed,

df (y)

dy
=
−2
p

(1− y)2/p−1 (1− 2y) + 2 (1− y)2/p

(1− 2y)2

=

(
−1

p
(1− 2y) + (1− y)

)
2 (1− y)2/p−1

(1− 2y)2

=

(
−
(

1

p
− 1

)
+

(
2

p
− 1

)
y

)
2 (1− y)2/p−1

(1− 2y)2
> 0

Here we use the fact that 1/p− 1 > 0 and that (2/p− 1) y tends to 0 when n →∞.
Hence, in view of (5), we find that for n large enough

λ(p)n 6 λ
(p)
n−1f (|xk|p) 6 λ

(p)
n−1f

(
1

n

)
= λ

(p)
n−1

n (1− 1/n)2/p

(n− 2)
,

and so
λ
(p)
n n2/p

n (n− 1)
6
λ
(p)
n−1 (n− 1)2/p

(n− 1) (n− 2)
.

Therefore, the sequence {
λ
(p)
n n2/p

n (n− 1)

}∞
n=1

is nonincreasing, and so it is converging, completing the proof of Theorem 5.
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2.3 Proof of Theorem 7

Proof. Since P is infinite, Proposition 6 implies that ω (F) = 0 or ω (F) > 2 and β (F) >
2. If ω (F) = 0, then Kn ∈ Pn, because all induced subgraphs of Kn are complete and
therefore do not belong to F . Hence,

ex (P , n) =

(
n

2

)
;

and so, π (P) = 1.
Now assume that r = ω (F) > 2 and β = β (F) > 2.We shall prove that Tβ−1 (n) ∈ Pn,

where Tβ−1 (n) is the complete (β − 1)-partite Turán graph of order n. Indeed all induced
subgraphs of Tβ−1 (n) are complete r-partite graphs for some r 6 β − 1, so should one of
them belong to F , we would have β (F) 6 β − 1 = β (F) − 1, which is a contradiction.
Therefore,

ex (P , n) > e (Tβ−1 (n)) =

(
1− 1

β − 1
+ o (1)

)(
n

2

)
,

and so

π (P) > 1− 1

β (F)− 1
.

To finish the proof we shall prove the opposite inequality. Let F ∈ F be a complete
β-partite graph, which exists by the definition of β (F) ; let s be the maximum of the sizes
of its vertex classes. Let ε > 0 and set t = r (Kr, Ks) , where r (Kr, Ks) is the Ramsey
number of Kr vs. Ks. If n is large enough and G ∈ Pn satisfies

e (G) >

(
1− 1

β (F)− 1
+ ε

)(
n

2

)
,

then, by the theorem of Erdős and Stone [5], G contains a subgraph G0 = Kβ (t) , that is
to say, a complete β-partite graph with t vertices in each vertex class. Since Kr ∈ F , we
see that G0 contains no Kr. Hence each vertex class of G0 contains an independent set of
size s, and so G contains an induced subgraph Kβ (s) , which in turn contains an induced
copy of F. Thus, if n is large enough and G ∈ Pn, then

e (G)

(
n

2

)−1
6 1− 1

β (F)− 1
+ ε.

This inequality implies that

π (P) 6 1− 1

β (F)− 1
,

completing the proof of Theorem 7.
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2.4 Proof of Theorem 8

Proof. First note the inequality

λ(p) (G) > 2e (G) /n2/p,

which follows by taking (x1, . . . , xn) =
(
n−1/p, . . . , n−1/p

)
in (2). So we see that

λ(p) (P) > π (P) ,

and this inequality together with Theorem 7 gives λ(p) (P) = 1 if ω (F) = 0, and

λ(p) (P) > 1− 1

β (F)− 1

otherwise. To finish the proof we shall show that

λ(p) (P) 6 1− 1

β (F)− 1
.

For this purpose write kr (G) for the number of r-cliques of G. Let F ∈ F be a complete
β-partite graph, which exists by the definition of β (F) ; let s be the maximum of the sizes
of its vertex classes.

Now if ε > 0 and ε is sufficiently small, choose δ = δ (β, ε) as in the Removal Lemma,
and set t = r (Kr, Ks) , where r (Kr, Ks) is the Ramsey number of Kr vs. Ks. If G ∈ Pn,
then Kβ (t) * G for otherwise, as in proof of Theorem 7, we see that G contains an
induced copy of F. So if n is large enough Theorem A implies that kβ (G) 6 δnr. Now,
by the Removal Lemma, there is a graph G0 ⊂ G such that e (G0) > e (G) − εn2 and
kβ (G0) = 0.

For n sufficiently large Propositions 10 and 11 imply that

λ(p) (G) 6 λ(p) (G0) + (2εn)2−2/p 6

(
1− 1

β − 1

)
n2−2/p + (2εn)2−2/p ,

and hence,

λ(p) (P , n)n2/p−2 6 1− 1

β − 1
+ (2ε)2−2/p .

Since ε can be chosen arbitrarily small, we see that

λ(p) (P) 6 1− 1

β − 1
,

completing the proof of Theorem 8.
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3 Concluding remarks

In a sequence of papers the author has shown that many classical extremal results like the
Erdős-Stone-Bollobás theorem [2], the Stability Theorem of Erdős [3, 4] and Simonovits
[14], and various saturation problems can be strengthened by recasting them for the largest
eigenvalue instead of the number of edges; see [11] for an overview and references.

The paper [7] and the present note show that some of these edge extremal results can
be extended further to λ(p) (G) for any p > 1. A natural challenge here is to reprove all
of the above problems by substituting λ(p) (G) for the number of edges.

Theorems 5, 10, and Proposition 11 have been proved in [12] for uniform hypergraphs.
The streamlined proofs given here are for reader’s convenience.
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