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Abstract

Robertson conjectured that the only 3-connected, internally 4-connected graph

of girth 5 in which every odd cycle of length greater than 5 has a chord is the

Petersen graph. We provide a counterexample to this conjecture.

1 Introduction and Terminology

A 3-connected graph G is said to be internally 4-connected if every cutset of three vertices
is the neighborhood set of a fourth vertex. In [2] it was shown, by providing a counterex-
ample, that the conclusion of the Robertson conjecture [3] stated in the Abstract is false,
if the assumption that the graph is internally 4-connected is dropped.

As also shown in [2], Robertson’s Conjecture is true for many graphs; for example, for
all cubic graphs and for those graphs which contain a girth cycle C such that N(C)−V (C)
contains a path of length 2. (Here N(C) denotes the neighborhood of C, namely, the set
of all vertices adjacent to at least one vertex of C.) It was also proved in [2] that given
any 5-cycle C in a counterexample to Robertson’s Conjecture, N(C) − V (C) cannot be
an independent set.

Thus if G is any counterexample to Robertson’s Conjecture, G must have the following
property:

(∗) For every girth cycle C in G, N(C) consists of a matching of size at least 1, together
with a set in independent vertices.

Note, however, that Robertson’s conjecture is true for many graphs having property
(∗). On the other hand, this all shows that any counterexample to Robertson’s Conjecture
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must possess a rather specific structure. Indeed, the counterexample in the present paper,
which is internally 4-connected, was constructed based on this structure.

We describe the construction of our counterexample in several steps due to its size
and complexity. Our first building block is the Heawood graph shown in Figure 1.1.
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Figure 1.1: The Heawood graph

This 3-connected internally 4-connected bipartite graph on fourteen vertices has girth 6
and has arisen in a number of graph theory settings such as vertex and edge coloring,
factorization, automorphism groups and topological embedding. (Cf. [4].)

Next we connect three copies of the Heawood graph, H1, H2 and H3, to build a larger
graph which we call a Heawood triple. It is displayed in Figure 1.2. This graph is formed
by joining the three copies of the Heawood graph in a circular manner where we join each
of the three to its successor via a matching of size 2. (Cf. Figure 1.2.)
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Figure 1.2: A Heawood triple

Our next building block graph is called the frame graph and will be denoted by F . This
graph is shown in Figure 1.3.
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Figure 1.3: The frame graph F

Next we attach twenty-one vertices of degree 1 to F as shown in Figure 1.4. The set of
these vertices will be denoted by V21.

We now add six edges from {k1, k2, k3} to six vertices of V21 to obtain the graph shown
in Figure 1.5.
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Figure 1.4: The frame graph with 21 vertices attached

Finally, we arrive at our counterexample, which we shall denote by G0, by attaching
four Heawood triples to six of the seven copies of K1.3 via the additional edges shown in
Figure 1.6. We define these additional edges as follows. First consider the edges joining
the Heawood triple 3H1 to the set V21. Join vertex m1 to vertices 1 in H3 and 11 in H1;
vertex m2 to vertices 1 in H2 and 11 in H3 and vertex m3 to vertices 1 in H1 and 11 in
H2. Join vertex ℓ1 to vertices 4 in H1 and 8 in H2; vertex ℓ2 to vertices 4 in H3 and 8 in
H1 and vertex ℓ3 to vertices 4 in H2 and 8 in H3.

Now we prescribe the edges joining the Heawood triple 3H2 to V21. Join vertex n1 to
vertices 1 in H3 and 11 in H1; vertex n2 to vertices 1 in H2 and 11 in H3 and vertex n3

to vertices 1 in H1 and 11 in H2. Join vertex ℓ1 to vertices 4 in H1 and 8 in H2; vertex ℓ2
to vertices 4 in H3 and 8 in H1 and vertex ℓ3 to vertices 4 in H2 and 8 in H3.
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Figure 1.5: The frame graph with 21 vertices attached and six edges added

The nine vertices in V21 which lie below the XY -axis are joined to Heawood triples
3H3 and 3H4 by reflecting in the XY -axis the edges which join V21 to 3H1 ∪ 3H2 already
constructed in the preceding two paragraphs.

Note that G0 is not bipartite, but if the single edge ij is deleted, the resulting graph is
bipartite. The black and white vertices in Figure 1.6 denote the corresponding bipartition
of graph G0 − ij. Note also that the graph G− i is symmetric about the XY -axis.

2 Properties of the graph G0

Lemma 2.1. The girth of G0 is five.

Proof. Easily checked.

Lemma 2.2. Every odd cycle of length greater than 5 in G0 has a chord.

Proof. Suppose Z is an odd cycle of length greater than 5 which has no chord. Then Z

must use edge ij, since G− ij is bipartite.
Moreover, cycle Z cannot contain two vertices from G − i − j − k1 − k2 − k3, one

lying above the XY -axis and the other below, because any path between such a pair of
vertices which does not contain i and j must contain a neighbor of j and hence Z contains
a chord and we have a contradiction. So without loss of generality, let us suppose that
the part of Z not containing any of the vertices i, j, k1, k2 or k3 has no vertex below the
XY -axis. Then the edge bi belongs to Z and the next vertex after i and j on Z must be
either g, h or one of k1, k2 or k3. But then Z also contains either a, c or one of l1, l2 or
l3, respectively. Together with vertex b, this produces a chord in Z and again we have a
contradiction.

Lemma 2.3. The graph G0 is internally 4-connected.
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Figure 1.6: The counterexample graph G0

Proof. This proof essentially amounts to case checking and we offer one approach to
carrying this out. Let the four Heawood triples in G0 be labeled 3Hi, 1 6 i 6 4 as shown
in Figure 1.6. By symmetry, without loss of generality, let us focus on the Heawood
graph H1 belonging to the Heawood triple 3H1 and having the vertex labeling shown in
Figure 1.6. Claim 2.3.1: H1 is internally 4-connected.

This is easily checked.

Claim 2.3.2: Every edge in H1 is incident with four internally disjoint paths ending in
vertices 1, 4, 8 and 11, respectively. Such a path may consist of a single vertex in the case
when the edge is incident with vertices 1, 4, 8 and 11.

This follows from Claim 2.3.1.

Claim 2.3.3: 3H1 is internally 4-connected.
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This too is easy to verify using Claim 2.3.2 and the fact that H1 is internally 4-
connected and that there is a matching of size 4 joining vertices 1, 4, 8 and 11 in H1 to
the rest of 3H1 − V (H1).

Claim 2.3.4: Each edge in 3H1 has four internally disjoint paths to every edge in the
frame subgraph F . More particularly, there is one such path entering F at vertex a and
three entering at vertices ℓ1, ℓ2 and ℓ3. Of the latter three paths, one continues to vertex
b and the other two use two disjoint edges to some two of k1, k2 and k3.

Again, this is easily checked.

Henceforth, by way of contradiction, let S = {s1, s2, s3} denote a 3-cut in G0 which is
not the neighborhood set of any single vertex.

Claim 2.3.5: S 6⊆ V (H1); that is, |S ∩ V (H1)| 6= 3.
Suppose to the contrary, that S ⊆ V (H1). Let x be any vertex in V (H1) − S and

xy be any edge in H1 − S incident with vertex x. Note that such an edge xy exists by
the definition of S. Then xy is incident with four paths going to the vertices 1, 4, 8 and
11. Hence there is a path from x to the subgraph G − S − V (H1). But then G − S is
connected, a contradiction.

Claim 2.3.6: |S ∩ V (H1)| 6= 2.
Suppose to the contrary that S ∩ V (H1) = {s1, s2}. Since H1 is 3-connected, H1 − S

is connected. Again, any edge xy in H1 is incident with four paths to vertices 1, 11, 4
and 8 and these paths intersect only at a subset of {x, y}. But S = {s1, s2} can block at
most two of these paths. Now any edge in H1 sends at least two internally disjoint paths
to two vertices in the set {1, 4, 8, 11}. Call these two vertices z1 and z2.

Now let J denote the subgraph of G0 induced by (V (G0−V (H1))∪{1, 4, 8, 11}. Since
J is 2-connected, for any vertex w ∈ V (J) there are two internally disjoint paths from
w to z1 and z2. At most one of these two paths can contain vertex s3 and so G0 − S is
connected, a contradiction.

Claim 2.3.7: |S ∩ V (H1)| 6= 1.
Suppose, to the contrary, that S ∩ V (H1) = {s1}. Then both H1 − {s1} and (G −

V (H1))− {s2, s3} are connected. By Claims 2.3.3 and 2.3.4, every edge in G− V (H1) is
incident with four internally disjoint paths to vertices 1, 4, 8 and 11 respectively in H1.
Therefore every vertex of H1−{s1} is connected to every vertex in (G−V (H1))−{s2, s3}
by a path. Hence S is not a vertex cut and the Claim is proved.

Claim 2.3.8: |S ∩ V (3H1)| 6= 3.

Claim 2.3.9: |S ∩ V (3H1)| 6= 2.
The proofs of these two claims are essentially the same as those of Claims 2.3.5 and

2.3.6 together with Claim 2.3.4.

Claim 2.3.10: |S ∩ V (3H1)| 6= 1.
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Assume, to the contrary, that S ∩ V (3H1) = {s1}. Now 3H1 − {s1} is connected (in
fact, 2-connected). It is easy to check that there are four vertex-disjoint paths joining
3H1 to any of the other three Heawood triples; four vertex-disjoint paths joining 3H1 to
the set V21, and four vertex-disjoint paths joining 3H1 to the frame F .

Now by Claims 2.3.8 and 2.3.9, for each of the four Heawood triples 3Hi, |V (3Hi)∩S| 6
1 and hence 3Hi−S is connected. Moreover, then, ∪4

i=1
3Hi−S is connected and it follows

that G− S is connected, a contradiction.

By symmetry, Claims 2.3.1 through 2.3.10 hold for any other Hi and any other 3Hi,
i = 2, 3, 4.

So we may now assume that the cutset S is contained in V21 ∪ V (F).
Now the subgraph spanned by ∪4

i=1
V (3Hi) is joined to the frame F through eighteen

of the twenty-one vertices of V21. Let us denote by V
a,b,c
21

the subset of V21 consisting of
the nine vertices collectively adjacent to {a, b, c} and by V

d,e,f
21

the subset of V21 consisting
of the nine vertices collectively adjacent to {d, e, f}. Then V

a,b,c
21

is joined to V
d,e,f
21

by
three vertex-disjoint paths which avoid the frame F . (These paths use the vertices k1, k2
and k3 shown in Figure 1.6.) Hence altogether there are six vertex-disjoint paths joining
V

a,b,c
21

and V
d,e,f
21

in G0 − ∪4

i=1
V (3Hi).

Claim 2.3.11: |S ∩ V (F)| 6= 3.
Suppose to the contrary that |S ∩ V (F)| = 3 and hence S ⊆ V (F). Let K =

G0[V (G0)−{b, e, g, h, i, j}] and note that K is connected. Moreover, there are two vertex-
disjoint paths P1 and P2 in K, where P1 joins vertices a and d and P2 joins vertices c and
f . But then V (F) ∪ V (P1) ∪ V (P2) induces a subdivision of the Petersen graph in which
the only subdivided edges are ad and cf . But the Petersen graph is internally 4-connected
and both P1 and P2 are contained in K, and hence S cannot be a 3-cut of G0 and the
Claim is proved.

Claim 2.3.12: |S ∩ V (F)| 6= 2.
To prove this, let us assume, by way of contradiction, that |S ∩ V (F)| = 2, that

S ∩ V (F) = {s1, s2} and S ∩ V (K ′) = {s3}, where K ′ is the subgraph spanned by
(∪4

i=1
V (3Hi))∪V21. It is easy to see that each Heawood triple has three internally disjoint

paths to any other Heawood triple which do not use any vertices in F . On the other
hand, each vertex in V21 has two internally disjoint paths to any of the four Heawood
triples where neither of these two paths uses any vertices of F . It follows that K ′ is
2-connected and hence K ′ − {s3} is connected. Claim 2.3.4 shows that each edge in F
has four internally disjoint paths to each of the four Heawood triples.

Hence F − {s1, s2} is connected. But there is a path joining F − {s1, s2} and K ′ and
it then follows that G0 − S is connected, a contradiction.

Claim 2.3.13: |S ∩ V (F)| 6= 1.
Again, by way of contradiction, assume that |S∩V (F)| = 1 and that S∩V (F) = {s1}.

By Claims 2,3,8, 2.3.9, and 2.3.10, S ∩ (∪4

i=1
V (3Hi)) = ∅ for i = 1, . . . , 4. Therefore,

{s2, s3} ⊆ V21. Clearly,
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F − {s1} is connected. (**)

We now claim that K ′ − {s2, s3} is connected.
Suppose to the contrary that {s2, s3} separates K ′. Graph K ′ is a subdivision of a

3-connected graph in which the only degree 2 vertices lie among the fifteen white vertices
of V21. (Cf. Figure 1.6.) All possible 2-vertex cuts of K ′ consist of neighbor sets of the
fifteen degree 2 vertices of K ′. Twelve of these 2-vertex cuts are contained in ∪4

i=1
V (3Hi),

while the remaining three 2-vertex cuts consist of neighbors in K ′ of vertices in the set
{h, j, k}. But since S ∩ (∪4

i=1
V (3Hi)) = ∅, the set {s2, s3} must be the neighbor set of

one of the vertices in {h, j, k}. It is easy to check that in this case,

K ′ − {s2, s3} is connected. (***)

But now by Claims 2.3.4, (**) and (***), it follows that G0 − S is connected, a
contradiction. This proves Claim 2.3.13.

But then it must be the case that S ∩ V (F) = ∅ and hence that S ⊆ V21. However,
the reader can easily check that no subset of V21 of size 3 disconnects G0.

3 Concluding Remarks

We would like to conclude by raising some questions and posing four conjectures for
future study. Let us define the class G to be the class of those graphs G which are (a)
3-connected, (b) internally 4-connected, (c) of girth 5 and (d) such that every odd cycle
of length greater than 5 has a chord.

We adopt two somewhat different approaches.

(1) Suppose G ∈ G and C is a girth cycle in G. During our approach to Robertson’s
Conjecture, we noted that the subgraph induced by C ∪ N(C) must be very close in
structure to certain subgraphs of the Petersen graph. Let F be the frame graph introduced
in Section 1 (cf. Figure 1.3) which consists of the Petersen graph with two disjoint edges
at distance 2 deleted. We propose the following conjectures.

Conjecture 3.1. Suppose G ∈ G and C is any 5-cycle in G. Then G contains a subgraph
which, in turn, contains C and is isomorphic to F .

Conjecture 3.2. Suppose G ∈ G and let C be any 5-cycle of G. Then G contains a
subgraph that contains C and is isomorphic to the Petersen graph with two edges at
distance 2 subdivided.

If both conjectures are true, it would indicate that in every counterexample graph G

and every girth cycle C in G, there is a subgraph H of G which contains C and that is
“close to” the Petersen graph.

the electronic journal of combinatorics 21(1) (2014), #P1.34 8



We understand that Robertson proposed his conjecture during his work on the Perfect
Graph Conjecture. The Strong Perfect Graph Conjecture (recently proved by Chud-
novsky, Robertson, Seymour and Thomas [1]) states that a graph H is is perfect if and
only if H contains neither an odd hole nor an odd anti-hole. (An odd hole is an induced
subgraph isomorphic to an odd cycle and an odd anti-hole is the complement of an odd
hole.)

For graphs in G, the conditions that the girth be 5 and that every odd cycle of length
at least 5 has a chord is equivalent to saying that the only odd holes in G must be of size
5. In contrast to perfect graphs which do not have any odd holes, graphs in G are allowed
odd holes of size 5 only. As viewed from this perspective, we see again that the structure
of graphs in the class G may be very close to that of perfect graphs.

(2) Secondly, we point out that the counterexample constructed in this paper is just one
edge away from being a bipartite graph; i.e., the graph G0 − ij is bipartite. We believe
that any counterexample to Robertson’s Conjecture must have a similar structure and
hence that the graphs in G are either the Petersen graph or are “close” to being bipartite.
While bipartite graphs are perfect, it is also suggested that graphs in class G, if not the
Petersen graph, should be “close” to being perfect.

Question 3.3. How close to being perfect are the graphs in class G, other than the
Petersen graph?

Certainly the term “close” is not well-defined in the preceding question.
Perfect graphs were originally defined in terms of graph coloring. That is, a graph G

is perfect if the chromatic number of G is equal to the size of a largest clique in G.
We close with the following closely related question.

Question 3.4. Must a graph in class G have small chromatic number? Bounded chro-
matic number? (We conjecture that the chromatic number of graphs in G is 3.)
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