# A Set and Collection Lemma

Vadim E. Levit

Eugen Mandrescu Department of Computer Science

Holon Institute of Technology

Department of Computer Science and Mathematics Ariel University Ariel 40700, Israel levitv@ariel.ac.il

Holon 58102, Israel eugen\_mChit.ac.il

Submitted: Oct 25, 2011; Accepted: Feb 19, 2014; Published: Feb 28, 2014 Mathematics Subject Classifications: 05C69, 05C70, 05A20

#### Abstract

A set  $S \subseteq V(G)$  is *independent* if no two vertices from S are adjacent. Let  $\alpha(G)$  stand for the cardinality of a largest independent set.

In this paper we prove that if  $\Lambda$  is a nonempty collection of maximum independent sets of a graph G, and S is an independent set, then

- there is a matching from  $S \bigcap \Lambda$  into  $\bigcup \Lambda S$ , and
- $|S| + \alpha(G) \leq \left| \bigcap \Lambda \cap S \right| + \left| \bigcup \Lambda \cup S \right|.$

Based on these findings we provide alternative proofs for a number of well-known lemmata, such as the "*Maximum Stable Set Lemma*" due to Claude Berge and the "*Clique Collection Lemma*" due to András Hajnal.

Keywords: matching; independent set; stable set; core; corona; clique

# 1 Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set V = V(G) and edge set E = E(G). If  $X \subseteq V$ , then G[X] is the subgraph of G spanned by X. By G - W we mean the subgraph G[V - W], if  $W \subseteq V(G)$ , and we use G - w, whenever  $W = \{w\}$ .

The neighborhood of a vertex  $v \in V$  is the set  $N(v) = \{w : w \in V \text{ and } vw \in E\}$ , while the neighborhood of  $A \subseteq V$  is  $N(A) = N_G(A) = \{v \in V : N(v) \cap A \neq \emptyset\}$ . By  $\overline{G}$  we denote the complement of G.

A set  $S \subseteq V(G)$  is *independent* (*stable*) if no two vertices from S are adjacent, and by Ind(G) we mean the set of all the independent sets of G. An independent set of maximum cardinality will be referred to as a *maximum independent set* of G, and the *independence number* of G is  $\alpha(G) = \max\{|S| : S \in Ind(G)\}$ .

The electronic journal of combinatorics 21(1) (2014), #P1.40

A matching (i.e., a set of non-incident edges of G) of maximum cardinality  $\mu(G)$  is a maximum matching.

If  $\alpha(G) + \mu(G) = |V(G)|$ , then G is called a König-Egerváry graph [5, 14].

**Lemma 1** (Maximum Stable Set Lemma). [1], [2] An independent set X is maximum if and only if every independent set S disjoint from X can be matched into X.

Let  $\Omega(G)$  denote the family of all maximum independent sets of G and

$$\operatorname{core}(G) = \bigcap \{S : S \in \Omega(G)\} \ [11], \text{ while}$$
$$\operatorname{corona}(G) = \bigcup \{S : S \in \Omega(G)\} \ [3].$$

A set  $A \subseteq V(G)$  is a *clique* in G if A is independent in  $\overline{G}$ , and  $\omega(G) = \alpha(\overline{G})$ .

Our main motivation has been the "*Clique Collection Lemma*" due to Hajnal [8]. Some recent applications may be found in [4, 9, 13].

**Lemma 2** (Clique Collection Lemma). [8] If  $\Gamma$  is a collection of maximum cliques in G, then

$$\left|\bigcap\Gamma\right| \ge 2 \cdot \omega(G) - \left|\bigcup\Gamma\right|.$$

In this paper we introduce the "Matching Lemma". It is both a generalization and strengthening of a number of observations including the "Maximum Stable Set Lemma" due to Berge, and the "Clique Collection Lemma" due to Hajnal.

### 2 Results

It is clear that the statement "there exists a matching from a set A into a set B" is stronger than just saying that  $|A| \leq |B|$ . The "Matching Lemma" offers a tool validating existence of matchings and their corresponding inequalities.

**Lemma 3** (Matching Lemma). Let  $S \in \text{Ind}(G), X \in \Lambda \subseteq \Omega(G)$ , and  $|\Lambda| \ge 1$ . Then the following assertions are true:

- (i) there exists a matching from  $S \bigcap \Lambda$  into  $\bigcup \Lambda S$ ;
- (ii) there exists a matching from  $S \cap X \bigcap \Lambda$  into  $\bigcup \Lambda (X \cup S)$ .

*Proof.* (i) In order to prove that there is a matching from  $S - \bigcap \Lambda$  into  $\bigcup \Lambda - S$ , we use Hall's Theorem, i.e., we show that for every  $A \subseteq S - \bigcap \Lambda$  we must have

$$|A| \leqslant \left| N\left(A\right) \cap \left(\bigcup \Lambda\right) \right| = \left| N\left(A\right) \cap \left(\bigcup \Lambda - S\right) \right|.$$

Assume, by way of contradiction, that Hall's condition is not satisfied. Let us choose a minimal subset  $\tilde{A} \subseteq S - \bigcap \Lambda$ , for which  $\left| \tilde{A} \right| > \left| N \left( \tilde{A} \right) \cap \left( \bigcup \Lambda \right) \right|$ .

The electronic journal of combinatorics  $\mathbf{21(1)}$  (2014), #P1.40

There exists some  $W \in \Lambda$  such that  $\tilde{A} \nsubseteq W$ , because  $\tilde{A} \subseteq S - \bigcap \Lambda$ . Further, the inequality  $\left| \tilde{A} \cap W \right| < \left| \tilde{A} \right|$  and the inclusion

$$N(\tilde{A} \cap W) \cap \left(\bigcup \Lambda\right) \subseteq N(\tilde{A}) \cap \left(\bigcup \Lambda\right) - W$$

imply

$$\left|\tilde{A} \cap W\right| \leqslant \left|N(\tilde{A} \cap W) \cap \left(\bigcup\Lambda\right)\right| \leqslant \left|N(\tilde{A}) \cap \left(\bigcup\Lambda\right) - W\right|,$$

because we have selected  $\tilde{A}$  as a minimal subset satisfying  $\left|\tilde{A}\right| > \left|N\left(\tilde{A}\right) \cap \left(\bigcup\Lambda\right)\right|$ .

On the other hand,

$$\left|\tilde{A} \cap W\right| + \left|\tilde{A} - W\right| = \left|\tilde{A}\right| > \left|N(\tilde{A}) \cap \left(\bigcup\Lambda\right)\right| = \left|N(\tilde{A}) \cap \left(\bigcup\Lambda\right) - W\right| + \left|N(\tilde{A}) \cap W\right|.$$

Consequently, since  $|\tilde{A} \cap W| \leq |N(\tilde{A}) \cap (\bigcup \Lambda) - W|$ , we can infer that  $|\tilde{A} - W| > |N(\tilde{A}) \cap W|$ . Therefore,

$$\tilde{A} \cup \left(W - N(\tilde{A})\right) = W \cup \left(\tilde{A} - W\right) - \left(N(\tilde{A}) \cap W\right)$$

is an independent set of size greater than  $|W| = \alpha(G)$ , which is a contradiction that proves the claim.

(*ii*) By part (*i*), there exists a matching from  $S - \bigcap \Lambda$  into  $\bigcup \Lambda - S$ . Since X is independent, there are no edges between

$$(S - \bigcap \Lambda) - (S - X) = (S \cap X) - \bigcap \Lambda \text{ and } X - S.$$

Therefore, there exists a matching

from 
$$(S \cap X) - \bigcap \Lambda$$
 into  $\left(\bigcup \Lambda - S\right) - (X - S) = \bigcup \Lambda - (X \cup S)$ ,

as claimed.



Figure 1:  $\{v_1, v_2, v_3, v_6, v_8, v_{10}, v_{12}\}, \{v_1, v_2, v_4, v_6, v_7, v_{10}, v_{13}\}, \{v_1, v_2, v_4, v_6, v_7, v_{10}, v_{12}\}$  are maximum independent sets.

The electronic journal of combinatorics  $\mathbf{21(1)}$  (2014), #P1.40

**Example 4.** Let us consider the graph G from Figure 1 and  $S = \{v_1, v_4, v_7\} \in \text{Ind}(G)$ ,  $\Lambda = \{S_1, S_2\}$ , where  $S_1 = \{v_1, v_2, v_3, v_6, v_8, v_{10}, v_{12}\}$  and  $S_2 = \{v_1, v_2, v_4, v_6, v_7, v_{10}, v_{13}\}$ . Then there is a matching from  $S - \bigcap \Lambda = \{v_4, v_7\}$  into  $\bigcup \Lambda - S = \{v_2, v_3, v_6, v_8, v_{10}, v_{12}, v_{13}\}$ , namely,  $M = \{v_3v_4, v_7v_8\}$ .

Remark 5. The conclusions of the Matching Lemma may be false, if the family  $\Lambda$  is not included in  $\Omega(G)$ . Note that in Figure 1, if  $S = \{v_1, v_2, v_4, v_7, v_9, v_{12}\} \in \text{Ind}(G)$ ,  $\Lambda = \{S_1, S_2\}$ , where  $S_1 = \{v_2, v_3, v_7\}$  and  $S_2 = \{v_1, v_2, v_4, v_6, v_7, v_{10}, v_{12}\}$ , then there is no matching from  $S - \bigcap \Lambda = \{v_1, v_4, v_9, v_{12}\}$  into  $\bigcup \Lambda - S = \{v_3, v_6, v_{10}\}$ .

The Matching Lemma allows us to give an alternative proof of the following result due to Berge.

**Lemma 6** (Maximum Stable Set Lemma). [1, 2] An independent set X is maximum if and only if every independent set S disjoint from X can be matched into X.

*Proof.* The "only if" part follows from the Matching Lemma (i), by taking  $\Lambda = \{X\}$ .

For the "if" part we proceed as follows. According to the hypothesis, there is a matching from  $S - X = S - S \cap X$  into X, in fact, into  $X - S \cap X$ , for each  $S \in \text{Ind}(G)$ . Let  $S \in \Omega(G)$ . Hence, we obtain

$$\alpha(G) = |S| = |S - X| + |S \cap X| \le |X - S \cap X| + |S \cap X| = |X| \le \alpha(G),$$

which clearly implies  $X \in \Omega(G)$ .

Applying the Matching Lemma (i) to  $\Lambda = \Omega(G)$  we immediately obtain the following.

**Corollary 7.** [3] For every  $S \in \Omega(G)$ , there is a matching from  $S - \operatorname{core}(G)$  into  $\operatorname{corona}(G) - S$ .

The following inequality is a numerical interpretation of the Matching Lemma.

**Lemma 8** (Set and Collection Lemma). If  $S \in \text{Ind}(G)$ ,  $\Lambda \subseteq \Omega(G)$ , and  $|\Lambda| \ge 1$ , then

$$|S| + \alpha(G) \leq \left| \bigcap \Lambda \cap S \right| + \left| \bigcup \Lambda \cup S \right|.$$

*Proof.* Let  $X \in \Lambda$ . By the Matching Lemma *(ii)*, there is a matching from  $S \cap X - \bigcap \Lambda$  into  $\bigcup \Lambda - (X \cup S)$ . Hence we infer that

$$|S \cap X| - \left| \bigcap \Lambda \cap S \right| = |S \cap X| - \left| \bigcap \Lambda \cap S \cap X \right|$$
$$= \left| S \cap X - \bigcap \Lambda \right| \le \left| \bigcup \Lambda - (X \cup S) \right|$$
$$= \left| \bigcup \Lambda \cup (X \cup S) \right| - |X \cup S| = \left| \bigcup \Lambda \cup S \right| - |X \cup S|.$$

The electronic journal of combinatorics 21(1) (2014), #P1.40

Therefore, we obtain

$$|S \cap X| - \left| \bigcap \Lambda \cap S \right| \leq \left| \bigcup \Lambda \cup S \right| - |X \cup S|,$$

which implies

$$|S| + \alpha (G) = |S| + |X| = |S \cap X| + |X \cup S| \leq \left| \bigcap \Lambda \cap S \right| + \left| \bigcup \Lambda \cup S \right|,$$

as claimed.

The conclusions of the Set and Collection Lemma may be false, if the family  $\Lambda$  is not included in  $\Omega(G)$ . For instance, the graph G of Figure 1 has  $\alpha(G) = 7$ , and if  $S = \{v_1, v_2, v_4, v_7, v_9, v_{12}\} \in \text{Ind}(G), \Lambda = \{S_1, S_2\}$ , where  $S_1 = \{v_2, v_3, v_7\}$  and  $S_2 = \{v_1, v_2, v_4, v_6, v_7, v_{10}, v_{12}\}$ , then

$$13 = |S| + \alpha(G) \nleq \left| \bigcap \Lambda \cap S \right| + \left| \bigcup \Lambda \cup S \right| = 11.$$

**Corollary 9.** If  $\Lambda \subseteq \Omega(G), |\Lambda| \ge 1$ , then  $2 \cdot \alpha(G) \le |\bigcap \Lambda| + |\bigcup \Lambda|$ .

*Proof.* Let  $S \in \Lambda$ . Using the Set and Collection Lemma, we obtain

$$2 \cdot \alpha \left( G \right) = \left| S \right| + \alpha \left( G \right) \leqslant \left| \bigcap \Lambda \cap S \right| + \left| \bigcup \Lambda \cup S \right| = \left| \bigcap \Lambda \right| + \left| \bigcup \Lambda \right|,$$

as required.

Since every maximum clique of G is a maximum independent set of  $\overline{G}$ , Corollary 9 is equivalent to the following result, due to Hajnal.

**Lemma 10** (Clique Collection Lemma). [8] If  $\Gamma$  is a collection of maximum cliques in G, then

$$\left|\bigcap\Gamma\right| \ge 2 \cdot \omega(G) - \left|\bigcup\Gamma\right|.$$

If  $\Lambda = \Omega(G)$ , then Corollary 9 implies the following.

Corollary 11. For every graph G, it is true that

$$2 \cdot \alpha(G) \leq |\operatorname{core}(G)| + |\operatorname{corona}(G)|.$$

The graph  $G_1$  from Figure 2 satisfies  $2 \cdot \alpha(G_1) < |\operatorname{core}(G_1)| + |\operatorname{corona}(G_1)|$ , because  $\alpha(G_1) = 4$ ,  $\operatorname{core}(G_1) = \{v_8, v_9\}$ , and  $\operatorname{corona}(G_1) = \{v_1, v_3, v_4, v_5, v_7, v_8, v_9\}$ .

The vertex covering number of G, denoted by  $\tau(G)$ , is the number of vertices in a minimum vertex cover in G, that is, the size of any smallest vertex cover in G. Thus we have  $\alpha(G) + \tau(G) = |V(G)|$ . Since

$$|V(G)| - \left|\bigcup \left\{S : S \in \Omega(G)\right\}\right| = \left|\bigcap \left\{V(G) - S : S \in \Omega(G)\right\}\right|,\$$

Corollary 11 immediately implies the following.

The electronic journal of combinatorics  $\mathbf{21(1)}$  (2014), #P1.40



Figure 2: Both  $G_1$  and  $G_2$  satisfy Corollary 11.

Corollary 12. [7] If G is a graph, then

$$\alpha(G) - |\operatorname{core}(G)| \leq \tau(G) - |\bigcap \{V(G) - S : S \in \Omega(G)\}|.$$

It is clear that  $|\operatorname{core}(G)| + |\operatorname{corona}(G)| \leq \alpha(G) + |V(G)|.$ 

**Proposition 13.** If G is a graph with a nonempty edge set, then

$$|\operatorname{core}(G)| + |\operatorname{corona}(G)| \leq \alpha(G) + |V(G)| - 1$$

*Proof.* Assume, to the contrary, that  $|\operatorname{core}(G)| + |\operatorname{corona}(G)| \ge \alpha(G) + |V(G)|$ . If  $S \in \Omega(G)$ , then

$$|\operatorname{corona}(G) - S| = |\operatorname{corona}(G)| - \alpha(G) \ge |V(G)| - |\operatorname{core}(G)| = |V(G) - \operatorname{core}(G)|.$$

Since, clearly,  $\operatorname{corona}(G) - S \subseteq V(G) - \operatorname{core}(G)$ , we obtain  $V(G) = \operatorname{corona}(G)$  and  $\operatorname{core}(G) = S$ . It follows that  $N(\operatorname{core}(G)) = \emptyset$ , since  $\operatorname{corona}(G) \cap N(\operatorname{core}(G)) = \emptyset$ .

On the other hand, since G has a nonempty edge set and S is a maximum independent set, we have  $\emptyset \neq N(S) = N(\operatorname{core}(G))$ .

This contradiction proves the claimed inequality.

*Remark* 14. The complete bipartite graph  $K_{1,n-1}$  satisfies  $\alpha(K_{1,n-1}) = n-1$ , and hence

$$|\operatorname{core}(K_{1,n-1})| + |\operatorname{corona}(K_{1,n-1})| = 2(n-1) = \alpha(G) + |V(K_{1,n-1})| - 1.$$

In other words, the bound in Proposition 13 is tight.

It has been shown in [12] that

$$\alpha(G) + \left| \bigcap \left\{ V - S : S \in \Omega(G) \right\} \right| = \mu(G) + |\operatorname{core}(G)|$$

is satisfied by every König-Egerváry graph G, and taking into account that

$$\left|\bigcap \left\{V - S : S \in \Omega(G)\right\}\right| = |V(G)| - \left|\bigcup \left\{S : S \in \Omega(G)\right\}\right|,$$

we infer that the König-Egerváry graphs enjoy the following.

**Proposition 15.** If G is a König-Egerváry graph, then

 $2 \cdot \alpha(G) = |\operatorname{core}(G)| + |\operatorname{corona}(G)|.$ 

The converse of Proposition 15 is not true. For instance, see the graph  $G_2$  from Figure 2, which has  $\alpha(G_2) = 3$ , corona $(G_2) = \{u_2, u_4, u_6, u_7\}$ , and core $(G_2) = \{u_2, u_4\}$ .

# 3 Conclusions

In this paper we have proved the "Set and Collection Lemma", which has been employed in order to obtain a number of alternative proofs and/or strengthenings of some known results.

By Proposition 15 we know that  $2 \cdot \alpha(G) = |\operatorname{core}(G)| + |\operatorname{corona}(G)|$  holds for every König-Egerváry graph G. Therefore, it is true for each very well-covered graph G [10]. Recall that G is a very well-covered graph if it has no isolated vertices,  $2\alpha(G) = |V(G)|$ , and all its maximal independent sets are of the same cardinality [6]. It is worth noting that there are other graphs enjoying this equality, e.g., every graph G having a unique maximum independent set, because, in this case,  $\alpha(G) = |\operatorname{core}(G)| = |\operatorname{corona}(G)|$ .

**Problem 16.** Characterize graphs satisfying  $2 \cdot \alpha(G) = |\operatorname{core}(G)| + |\operatorname{corona}(G)|$ .

Let us consider a dual problem. It is clear that for every graph G there exists a collection of maximum independent sets  $\Lambda$  such that  $2 \cdot \alpha(G) = \left| \bigcup \Lambda \right| + \left| \bigcap \Lambda \right|$ . Just take  $\Lambda = \{X\}$  for some maximum independent set X.

**Problem 17.** For a given graph G find the cardinality of a largest collection of maximum independent sets  $\Lambda$  such that  $2 \cdot \alpha(G) = \left| \bigcup \Lambda \right| + \left| \bigcap \Lambda \right|$ .

#### Acknowledgements

We express our special gratitude to Pavel Dvorak for pointing out a gap in the proof of Lemma 3. We also wish to thank the anonymous referees for a very careful reading of the paper, which resulted in a clearer presentation of our findings.

## References

- C. Berge, Some common properties for regularizable graphs, edge-critical graphs and B-graphs, Lecture Notes in Computer Science 108 (1981) 108-123.
- [2] C. Berge, *Graphs*, North-Holland, New York, 1985.
- [3] E. Boros, M. C. Golumbic, V. E. Levit, On the number of vertices belonging to all maximum stable sets of a graph, *Discrete Applied Mathematics* **124** (2002) 17-25.
- [4] D. Christofides, K. Edwardsy, A. D. King, A note on hitting maximum and maximal cliques with a stable set, *Journal of Graph Theory* 73 (2013) 354-360.
- [5] R. W. Deming, Independence numbers of graphs an extension of the König-Egerváry theorem, *Discrete Mathematics* 27 (1979) 23–33.
- [6] O. Favaron, Very well-covered graphs, *Discrete Mathematics* **42** (1982) 177-187.
- [7] I. Gitler, C. E. Valencia, On bounds for the stability number of graphs, *Morfismos* 10 (2006) 41-58.

- [8] A. Hajnal, A theorem on k-saturated graphs, Canadian Journal of Mathematics 10 (1965) 720-724.
- [9] A. D. King, Hitting all maximum cliques with a stable set using lopsided independent transversals, *Journal of Graph Theory* **67** (2011) 300-305.
- [10] V. E. Levit, E. Mandrescu, Well-covered and König-Egerváry graphs, Congressus Numerantium 130 (1998) 209-218.
- [11] V. E. Levit, E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, *Discrete Applied Mathematics* 117 (2002) 149-161.
- [12] V. E. Levit, E. Mandrescu, On α-critical edges in König-Egerváry graphs, Discrete Mathematics 306 (2006) 1684-1693.
- [13] L. Rabern, On hitting all maximum cliques with an independent set, Journal of Graph Theory 66 (2011) 32-37.
- [14] F. Sterboul, A characterization of the graphs in which the transversal number equals the matching number, *Journal of Combinatorial Theory Series B* **27** (1979) 228-229.