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Abstract

A set S ⊆ V (G) is independent if no two vertices from S are adjacent. Let α (G)
stand for the cardinality of a largest independent set.

In this paper we prove that if Λ is a nonempty collection of maximum indepen-
dent sets of a graph G, and S is an independent set, then

• there is a matching from S −
⋂

Λ into
⋃

Λ− S, and

• |S|+ α(G) 6
∣∣∣⋂Λ ∩ S

∣∣∣+
∣∣∣⋃Λ ∪ S

∣∣∣.
Based on these findings we provide alternative proofs for a number of well-known

lemmata, such as the “Maximum Stable Set Lemma” due to Claude Berge and the
“Clique Collection Lemma” due to András Hajnal.
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1 Introduction

Throughout this paper G = (V,E) is a simple (i.e., a finite, undirected, loopless and
without multiple edges) graph with vertex set V = V (G) and edge set E = E(G). If
X ⊆ V , then G[X] is the subgraph of G spanned by X. By G−W we mean the subgraph
G[V −W ], if W ⊆ V (G), and we use G− w, whenever W = {w}.

The neighborhood of a vertex v ∈ V is the set N(v) = {w : w ∈ V and vw ∈ E},
while the neighborhood of A ⊆ V is N(A) = NG(A) = {v ∈ V : N(v) ∩ A 6= ∅}. By G we
denote the complement of G.

A set S ⊆ V (G) is independent (stable) if no two vertices from S are adjacent, and by
Ind(G) we mean the set of all the independent sets of G. An independent set of maximum
cardinality will be referred to as a maximum independent set of G, and the independence
number of G is α(G) = max{|S| : S ∈ Ind(G)}.
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A matching (i.e., a set of non-incident edges of G) of maximum cardinality µ(G) is a
maximum matching.

If α(G) + µ(G) = |V (G)|, then G is called a König-Egerváry graph [5, 14].

Lemma 1 (Maximum Stable Set Lemma). [1], [2] An independent set X is maximum if
and only if every independent set S disjoint from X can be matched into X.

Let Ω(G) denote the family of all maximum independent sets of G and

core(G) =
⋂
{S : S ∈ Ω(G)} [11], while

corona(G) =
⋃
{S : S ∈ Ω(G)} [3].

A set A ⊆ V (G) is a clique in G if A is independent in G, and ω (G) = α
(
G
)
.

Our main motivation has been the “Clique Collection Lemma” due to Hajnal [8]. Some
recent applications may be found in [4, 9, 13].

Lemma 2 (Clique Collection Lemma). [8] If Γ is a collection of maximum cliques in G,
then ∣∣∣⋂Γ

∣∣∣ > 2 · ω(G)−
∣∣∣⋃Γ

∣∣∣ .
In this paper we introduce the “Matching Lemma”. It is both a generalization and

strengthening of a number of observations including the “Maximum Stable Set Lemma”
due to Berge, and the “Clique Collection Lemma”due to Hajnal.

2 Results

It is clear that the statement “there exists a matching from a set A into a set B” is
stronger than just saying that |A| 6 |B|. The “Matching Lemma” offers a tool validating
existence of matchings and their corresponding inequalities.

Lemma 3 (Matching Lemma). Let S ∈ Ind(G), X ∈ Λ ⊆ Ω(G), and |Λ| > 1. Then the
following assertions are true:

(i) there exists a matching from S −
⋂

Λ into
⋃

Λ− S;

(ii) there exists a matching from S ∩X −
⋂

Λ into
⋃

Λ− (X ∪ S).

Proof. (i) In order to prove that there is a matching from S −
⋂

Λ into
⋃

Λ− S, we use

Hall’s Theorem, i.e., we show that for every A ⊆ S −
⋂

Λ we must have

|A| 6
∣∣∣N (A) ∩

(⋃
Λ
)∣∣∣ =

∣∣∣N (A) ∩
(⋃

Λ− S
)∣∣∣ .

Assume, by way of contradiction, that Hall’s condition is not satisfied. Let us choose

a minimal subset Ã ⊆ S −
⋂

Λ, for which
∣∣∣Ã∣∣∣ > ∣∣∣N (Ã) ∩ (⋃Λ

)∣∣∣.
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There exists some W ∈ Λ such that Ã * W , because Ã ⊆ S −
⋂

Λ. Further, the

inequality
∣∣∣Ã ∩W ∣∣∣ < ∣∣∣Ã∣∣∣ and the inclusion

N(Ã ∩W ) ∩
(⋃

Λ
)
⊆ N(Ã) ∩

(⋃
Λ
)
−W

imply ∣∣∣Ã ∩W ∣∣∣ 6 ∣∣∣N(Ã ∩W ) ∩
(⋃

Λ
)∣∣∣ 6 ∣∣∣N(Ã) ∩

(⋃
Λ
)
−W

∣∣∣ ,
because we have selected Ã as a minimal subset satisfying

∣∣∣Ã∣∣∣ > ∣∣∣N (Ã) ∩ (⋃Λ
)∣∣∣.

On the other hand,∣∣∣Ã ∩W ∣∣∣+
∣∣∣Ã−W ∣∣∣ =

∣∣∣Ã∣∣∣ > ∣∣∣N(Ã) ∩
(⋃

Λ
)∣∣∣ =

∣∣∣N(Ã) ∩
(⋃

Λ
)
−W

∣∣∣+
∣∣∣N(Ã) ∩W

∣∣∣ .
Consequently, since

∣∣∣Ã ∩W ∣∣∣ 6
∣∣∣N(Ã) ∩

(⋃
Λ
)
−W

∣∣∣, we can infer that
∣∣∣Ã−W ∣∣∣ >∣∣∣N(Ã) ∩W

∣∣∣. Therefore,

Ã ∪
(
W −N(Ã)

)
= W ∪

(
Ã−W

)
−
(
N(Ã) ∩W

)
is an independent set of size greater than |W | = α (G), which is a contradiction that
proves the claim.

(ii) By part (i), there exists a matching from S −
⋂

Λ into
⋃

Λ − S. Since X is

independent, there are no edges between(
S −

⋂
Λ
)
− (S −X) = (S ∩X)−

⋂
Λ and X − S.

Therefore, there exists a matching

from (S ∩X)−
⋂

Λ into
(⋃

Λ− S
)
− (X − S) =

⋃
Λ− (X ∪ S) ,

as claimed.
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Figure 1: {v1, v2, v3, v6, v8, v10, v12}, {v1, v2, v4, v6, v7, v10, v13}, {v1, v2, v4, v6, v7, v10, v12} are
maximum independent sets.
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Example 4. Let us consider the graph G from Figure 1 and S = {v1, v4, v7} ∈ Ind(G),
Λ = {S1, S2}, where S1 = {v1, v2, v3, v6, v8, v10, v12} and S2 = {v1, v2, v4, v6, v7, v10, v13}.
Then there is a matching from S−

⋂
Λ = {v4, v7} into

⋃
Λ−S = {v2, v3, v6, v8, v10, v12, v13},

namely, M = {v3v4, v7v8}.

Remark 5. The conclusions of the Matching Lemma may be false, if the family Λ is
not included in Ω (G). Note that in Figure 1, if S = {v1, v2, v4, v7, v9, v12} ∈ Ind(G),
Λ = {S1, S2}, where S1 = {v2, v3, v7} and S2 = {v1, v2, v4, v6, v7, v10, v12}, then there is no

matching from S −
⋂

Λ = {v1, v4, v9, v12} into
⋃

Λ− S = {v3, v6, v10}.

The Matching Lemma allows us to give an alternative proof of the following result due
to Berge.

Lemma 6 (Maximum Stable Set Lemma). [1, 2] An independent set X is maximum if
and only if every independent set S disjoint from X can be matched into X.

Proof. The “only if ” part follows from the Matching Lemma (i), by taking Λ = {X}.
For the “if ” part we proceed as follows. According to the hypothesis, there is a

matching from S −X = S − S ∩X into X, in fact, into X − S ∩X, for each S ∈ Ind(G).
Let S ∈ Ω (G). Hence, we obtain

α (G) = |S| = |S −X|+ |S ∩X| 6 |X − S ∩X|+ |S ∩X| = |X| 6 α (G) ,

which clearly implies X ∈ Ω (G).

Applying the Matching Lemma (i) to Λ = Ω(G) we immediately obtain the following.

Corollary 7. [3] For every S ∈ Ω(G), there is a matching from S − core(G) into
corona(G)− S.

The following inequality is a numerical interpretation of the Matching Lemma.

Lemma 8 (Set and Collection Lemma). If S ∈ Ind(G), Λ ⊆ Ω(G), and |Λ| > 1, then

|S|+ α(G) 6
∣∣∣⋂Λ ∩ S

∣∣∣+
∣∣∣⋃Λ ∪ S

∣∣∣ .
Proof. Let X ∈ Λ. By the Matching Lemma (ii), there is a matching from S ∩X −

⋂
Λ

into
⋃

Λ− (X ∪ S). Hence we infer that

|S ∩X| −
∣∣∣⋂Λ ∩ S

∣∣∣ = |S ∩X| −
∣∣∣⋂Λ ∩ S ∩X

∣∣∣
=
∣∣∣S ∩X −⋂Λ

∣∣∣ 6 ∣∣∣⋃Λ− (X ∪ S)
∣∣∣

=
∣∣∣⋃Λ ∪ (X ∪ S)

∣∣∣− |X ∪ S| = ∣∣∣⋃Λ ∪ S
∣∣∣− |X ∪ S| .

the electronic journal of combinatorics 21(1) (2014), #P1.40 4



Therefore, we obtain

|S ∩X| −
∣∣∣⋂Λ ∩ S

∣∣∣ 6 ∣∣∣⋃Λ ∪ S
∣∣∣− |X ∪ S| ,

which implies

|S|+ α (G) = |S|+ |X| = |S ∩X|+ |X ∪ S| 6
∣∣∣⋂Λ ∩ S

∣∣∣+
∣∣∣⋃Λ ∪ S

∣∣∣ ,
as claimed.

The conclusions of the Set and Collection Lemma may be false, if the family Λ is
not included in Ω (G). For instance, the graph G of Figure 1 has α (G) = 7, and if
S = {v1, v2, v4, v7, v9, v12} ∈ Ind(G), Λ = {S1, S2}, where S1 = {v2, v3, v7} and S2 =
{v1, v2, v4, v6, v7, v10, v12}, then

13 = |S|+ α(G) 

∣∣∣⋂Λ ∩ S

∣∣∣+
∣∣∣⋃Λ ∪ S

∣∣∣ = 11.

Corollary 9. If Λ ⊆ Ω(G), |Λ| > 1, then 2 · α(G) 6
∣∣∣⋂Λ

∣∣∣+
∣∣∣⋃Λ

∣∣∣.
Proof. Let S ∈ Λ. Using the Set and Collection Lemma, we obtain

2 · α (G) = |S|+ α (G) 6
∣∣∣⋂Λ ∩ S

∣∣∣+
∣∣∣⋃Λ ∪ S

∣∣∣ =
∣∣∣⋂Λ

∣∣∣+
∣∣∣⋃Λ

∣∣∣ ,
as required.

Since every maximum clique of G is a maximum independent set of G, Corollary 9 is
equivalent to the following result, due to Hajnal.

Lemma 10 (Clique Collection Lemma). [8] If Γ is a collection of maximum cliques in
G, then ∣∣∣⋂Γ

∣∣∣ > 2 · ω(G)−
∣∣∣⋃Γ

∣∣∣ .
If Λ = Ω(G), then Corollary 9 implies the following.

Corollary 11. For every graph G, it is true that

2 · α(G) 6 |core(G)|+ |corona(G)| .

The graph G1 from Figure 2 satisfies 2 · α(G1) < |core(G1)| + |corona(G1)|, because
α (G1) = 4, core(G1) = {v8, v9}, and corona(G1) = {v1, v3, v4, v5, v7, v8, v9}.

The vertex covering number of G, denoted by τ(G), is the number of vertices in a
minimum vertex cover in G, that is, the size of any smallest vertex cover in G. Thus we
have α(G) + τ(G) = |V (G)|. Since

|V (G)| −
∣∣∣⋃ {S : S ∈ Ω(G)}

∣∣∣ =
∣∣∣⋂ {V (G)− S : S ∈ Ω(G)}

∣∣∣ ,
Corollary 11 immediately implies the following.
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Figure 2: Both G1 and G2 satsify Corollary 11.

Corollary 12. [7] If G is a graph, then

α(G)− |core(G)| 6 τ(G)− |
⋂
{V (G)− S : S ∈ Ω(G)} |.

It is clear that |core(G)|+ |corona(G)| 6 α (G) + |V (G)|.

Proposition 13. If G is a graph with a nonempty edge set, then

|core(G)|+ |corona(G)| 6 α (G) + |V (G)| − 1.

Proof. Assume, to the contrary, that |core(G)|+ |corona(G)| > α (G) + |V (G)|.
If S ∈ Ω(G), then

|corona(G)− S| = |corona(G)| − α (G) > |V (G)| − |core(G)| = |V (G)− core(G)| .

Since, clearly, corona(G) − S ⊆ V (G) − core(G), we obtain V (G) = corona(G) and
core(G) = S. It follows that N (core(G)) = ∅, since corona(G) ∩N (core(G)) = ∅.

On the other hand, since G has a nonempty edge set and S is a maximum independent
set, we have ∅ 6= N (S) = N (core(G)).

This contradiction proves the claimed inequality.

Remark 14. The complete bipartite graph K1,n−1 satisfies α (K1,n−1) = n− 1, and hence

|core(K1,n−1)|+ |corona(K1,n−1)| = 2 (n− 1) = α (G) + |V (K1,n−1)| − 1.

In other words, the bound in Proposition 13 is tight.

It has been shown in [12] that

α(G) +
∣∣∣⋂ {V − S : S ∈ Ω(G)}

∣∣∣ = µ (G) + |core(G)|

is satisfied by every König-Egerváry graph G, and taking into account that∣∣∣⋂ {V − S : S ∈ Ω(G)}
∣∣∣ = |V (G)| −

∣∣∣⋃ {S : S ∈ Ω(G)}
∣∣∣ ,

we infer that the König-Egerváry graphs enjoy the following.

Proposition 15. If G is a König-Egerváry graph, then

2 · α(G) = |core(G)|+ |corona(G)| .

The converse of Proposition 15 is not true. For instance, see the graph G2 from Figure
2, which has α (G2) = 3, corona(G2) = {u2, u4, u6, u7}, and core(G2) = {u2, u4}.
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3 Conclusions

In this paper we have proved the “Set and Collection Lemma”, which has been employed
in order to obtain a number of alternative proofs and/or strengthenings of some known
results.

By Proposition 15 we know that 2 · α(G) = |core(G)| + |corona(G)| holds for every
König-Egerváry graph G. Therefore, it is true for each very well-covered graph G [10].
Recall that G is a very well-covered graph if it has no isolated vertices, 2α(G) = |V (G)|,
and all its maximal independent sets are of the same cardinality [6]. It is worth noting
that there are other graphs enjoying this equality, e.g., every graph G having a unique
maximum independent set, because, in this case, α(G) = |core(G)| = |corona(G)|.

Problem 16. Characterize graphs satisfying 2 · α(G) = |core(G)|+ |corona(G)|.

Let us consider a dual problem. It is clear that for every graph G there exists a

collection of maximum independent sets Λ such that 2 ·α(G) =
∣∣∣⋃Λ

∣∣∣+ ∣∣∣⋂Λ
∣∣∣. Just take

Λ = {X} for some maximum independent set X.

Problem 17. For a given graph G find the cardinality of a largest collection of maximum

independent sets Λ such that 2 · α(G) =
∣∣∣⋃Λ

∣∣∣+
∣∣∣⋂Λ

∣∣∣.
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