A Set and Collection Lemma

Vadim E. Levit
Department of Computer Science and Mathematics
Ariel University
Ariel 40700, Israel
levitv@ariel.ac.il

Eugen Mandrescu
Department of Computer Science
Holon Institute of Technology
Holon 58102, Israel
eugen_m@hit.ac.il

Submitted: Oct 25, 2011; Accepted: Feb 19, 2014; Published: Feb 28, 2014
Mathematics Subject Classifications: 05C69, 05C70, 05A20

Abstract

A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent. Let $\alpha(G)$ stand for the cardinality of a largest independent set.

In this paper we prove that if Λ is a nonempty collection of maximum independent sets of a graph G, and S is an independent set, then - there is a matching from $S-\bigcap \Lambda$ into $\bigcup \Lambda-S$, and - $|S|+\alpha(G) \leqslant|\bigcap \Lambda \cap S|+|\bigcup \Lambda \cup S|$.

Based on these findings we provide alternative proofs for a number of well-known lemmata, such as the "Maximum Stable Set Lemma" due to Claude Berge and the "Clique Collection Lemma" due to András Hajnal.

Keywords: matching; independent set; stable set; core; corona; clique

1 Introduction

Throughout this paper $G=(V, E)$ is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V=V(G)$ and edge set $E=E(G)$. If $X \subseteq V$, then $G[X]$ is the subgraph of G spanned by X. By $G-W$ we mean the subgraph $G[V-W]$, if $W \subseteq V(G)$, and we use $G-w$, whenever $W=\{w\}$.

The neighborhood of a vertex $v \in V$ is the set $N(v)=\{w: w \in V$ and $v w \in E\}$, while the neighborhood of $A \subseteq V$ is $N(A)=N_{G}(A)=\{v \in V: N(v) \cap A \neq \emptyset\}$. By \bar{G} we denote the complement of G.

A set $S \subseteq V(G)$ is independent (stable) if no two vertices from S are adjacent, and by $\operatorname{Ind}(G)$ we mean the set of all the independent sets of G. An independent set of maximum cardinality will be referred to as a maximum independent set of G, and the independence number of G is $\alpha(G)=\max \{|S|: S \in \operatorname{Ind}(G)\}$.

A matching (i.e., a set of non-incident edges of G) of maximum cardinality $\mu(G)$ is a maximum matching.

If $\alpha(G)+\mu(G)=|V(G)|$, then G is called a König-Egerváry graph $[5,14]$.
Lemma 1 (Maximum Stable Set Lemma). [1], [2] An independent set X is maximum if and only if every independent set S disjoint from X can be matched into X.

Let $\Omega(G)$ denote the family of all maximum independent sets of G and

$$
\begin{aligned}
\operatorname{core}(G) & =\bigcap\{S: S \in \Omega(G)\}[11] \text {, while } \\
\operatorname{corona}(G) & =\bigcup\{S: S \in \Omega(G)\}[3]
\end{aligned}
$$

A set $A \subseteq V(G)$ is a clique in G if A is independent in \bar{G}, and $\omega(G)=\alpha(\bar{G})$.
Our main motivation has been the "Clique Collection Lemma" due to Hajnal [8]. Some recent applications may be found in $[4,9,13]$.

Lemma 2 (Clique Collection Lemma). [8] If Γ is a collection of maximum cliques in G, then

$$
|\bigcap \Gamma| \geqslant 2 \cdot \omega(G)-|\bigcup \Gamma| .
$$

In this paper we introduce the "Matching Lemma". It is both a generalization and strengthening of a number of observations including the "Maximum Stable Set Lemma" due to Berge, and the "Clique Collection Lemma" due to Hajnal.

2 Results

It is clear that the statement "there exists a matching from a set A into a set B " is stronger than just saying that $|A| \leqslant|B|$. The "Matching Lemma" offers a tool validating existence of matchings and their corresponding inequalities.

Lemma 3 (Matching Lemma). Let $S \in \operatorname{Ind}(G), X \in \Lambda \subseteq \Omega(G)$, and $|\Lambda| \geqslant 1$. Then the following assertions are true:
(i) there exists a matching from $S-\bigcap \Lambda$ into $\bigcup \Lambda-S$;
(ii) there exists a matching from $S \cap X-\bigcap \Lambda$ into $\bigcup \Lambda-(X \cup S)$.

Proof. (i) In order to prove that there is a matching from $S-\bigcap \Lambda$ into $\bigcup \Lambda-S$, we use Hall's Theorem, i.e., we show that for every $A \subseteq S-\bigcap \Lambda$ we must have

$$
|A| \leqslant|N(A) \cap(\bigcup \Lambda)|=|N(A) \cap(\bigcup \Lambda-S)|
$$

Assume, by way of contradiction, that Hall's condition is not satisfied. Let us choose a minimal subset $\tilde{A} \subseteq S-\bigcap \Lambda$, for which $|\tilde{A}|>|N(\tilde{A}) \cap(\bigcup \Lambda)|$.

There exists some $W \in \Lambda$ such that $\tilde{A} \nsubseteq W$, because $\tilde{A} \subseteq S-\bigcap \Lambda$. Further, the inequality $|\tilde{A} \cap W|<|\tilde{A}|$ and the inclusion

$$
N(\tilde{A} \cap W) \cap(\bigcup \Lambda) \subseteq N(\tilde{A}) \cap(\bigcup \Lambda)-W
$$

imply

$$
|\tilde{A} \cap W| \leqslant|N(\tilde{A} \cap W) \cap(\bigcup \Lambda)| \leqslant|N(\tilde{A}) \cap(\bigcup \Lambda)-W|
$$

because we have selected \tilde{A} as a minimal subset satisfying $|\tilde{A}|>|N(\tilde{A}) \cap(\bigcup \Lambda)|$.
On the other hand,

$$
|\tilde{A} \cap W|+|\tilde{A}-W|=|\tilde{A}|>|N(\tilde{A}) \cap(\bigcup \Lambda)|=|N(\tilde{A}) \cap(\bigcup \Lambda)-W|+|N(\tilde{A}) \cap W| .
$$

Consequently, since $|\tilde{A} \cap W| \leqslant|N(\tilde{A}) \cap(\bigcup \Lambda)-W|$, we can infer that $|\tilde{A}-W|>$ $|N(\tilde{A}) \cap W|$. Therefore,

$$
\tilde{A} \cup(W-N(\tilde{A}))=W \cup(\tilde{A}-W)-(N(\tilde{A}) \cap W)
$$

is an independent set of size greater than $|W|=\alpha(G)$, which is a contradiction that proves the claim.
(ii) By part (i), there exists a matching from $S-\bigcap \Lambda$ into $\bigcup \Lambda-S$. Since X is independent, there are no edges between

$$
(S-\bigcap \Lambda)-(S-X)=(S \cap X)-\bigcap \Lambda \text { and } X-S
$$

Therefore, there exists a matching

$$
\text { from }(S \cap X)-\bigcap \Lambda \text { into }(\bigcup \Lambda-S)-(X-S)=\bigcup \Lambda-(X \cup S)
$$

as claimed.

Figure 1: $\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{8}, v_{10}, v_{12}\right\},\left\{v_{1}, v_{2}, v_{4}, v_{6}, v_{7}, v_{10}, v_{13}\right\},\left\{v_{1}, v_{2}, v_{4}, v_{6}, v_{7}, v_{10}, v_{12}\right\}$ are maximum independent sets.

Example 4. Let us consider the graph G from Figure 1 and $S=\left\{v_{1}, v_{4}, v_{7}\right\} \in \operatorname{Ind}(G)$, $\Lambda=\left\{S_{1}, S_{2}\right\}$, where $S_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{8}, v_{10}, v_{12}\right\}$ and $S_{2}=\left\{v_{1}, v_{2}, v_{4}, v_{6}, v_{7}, v_{10}, v_{13}\right\}$. Then there is a matching from $S-\bigcap \Lambda=\left\{v_{4}, v_{7}\right\}$ into $\bigcup \Lambda-S=\left\{v_{2}, v_{3}, v_{6}, v_{8}, v_{10}, v_{12}, v_{13}\right\}$, namely, $M=\left\{v_{3} v_{4}, v_{7} v_{8}\right\}$.

Remark 5. The conclusions of the Matching Lemma may be false, if the family Λ is not included in $\Omega(G)$. Note that in Figure 1, if $S=\left\{v_{1}, v_{2}, v_{4}, v_{7}, v_{9}, v_{12}\right\} \in \operatorname{Ind}(G)$, $\Lambda=\left\{S_{1}, S_{2}\right\}$, where $S_{1}=\left\{v_{2}, v_{3}, v_{7}\right\}$ and $S_{2}=\left\{v_{1}, v_{2}, v_{4}, v_{6}, v_{7}, v_{10}, v_{12}\right\}$, then there is no matching from $S-\bigcap \Lambda=\left\{v_{1}, v_{4}, v_{9}, v_{12}\right\}$ into $\bigcup \Lambda-S=\left\{v_{3}, v_{6}, v_{10}\right\}$.

The Matching Lemma allows us to give an alternative proof of the following result due to Berge.

Lemma 6 (Maximum Stable Set Lemma). [1, 2] An independent set X is maximum if and only if every independent set S disjoint from X can be matched into X.

Proof. The "only if" part follows from the Matching Lemma (i), by taking $\Lambda=\{X\}$.
For the "if" part we proceed as follows. According to the hypothesis, there is a matching from $S-X=S-S \cap X$ into X, in fact, into $X-S \cap X$, for each $S \in \operatorname{Ind}(G)$. Let $S \in \Omega(G)$. Hence, we obtain

$$
\alpha(G)=|S|=|S-X|+|S \cap X| \leqslant|X-S \cap X|+|S \cap X|=|X| \leqslant \alpha(G),
$$

which clearly implies $X \in \Omega(G)$.
Applying the Matching Lemma (i) to $\Lambda=\Omega(G)$ we immediately obtain the following.
Corollary 7. [3] For every $S \in \Omega(G)$, there is a matching from $S-\operatorname{core}(G)$ into corona $(G)-S$.

The following inequality is a numerical interpretation of the Matching Lemma.
Lemma 8 (Set and Collection Lemma). If $S \in \operatorname{Ind}(G), \Lambda \subseteq \Omega(G)$, and $|\Lambda| \geqslant 1$, then

$$
|S|+\alpha(G) \leqslant|\bigcap \Lambda \cap S|+|\bigcup \Lambda \cup S|
$$

Proof. Let $X \in \Lambda$. By the Matching Lemma (ii), there is a matching from $S \cap X-\bigcap \Lambda$ into $\bigcup \Lambda-(X \cup S)$. Hence we infer that

$$
\begin{gathered}
|S \cap X|-|\bigcap \Lambda \cap S|=|S \cap X|-|\bigcap \Lambda \cap S \cap X| \\
=|S \cap X-\bigcap \Lambda| \leqslant|\bigcup \Lambda-(X \cup S)| \\
=|\bigcup \Lambda \cup(X \cup S)|-|X \cup S|=|\bigcup \Lambda \cup S|-|X \cup S| .
\end{gathered}
$$

Therefore, we obtain

$$
|S \cap X|-|\bigcap \Lambda \cap S| \leqslant|\bigcup \Lambda \cup S|-|X \cup S|
$$

which implies

$$
|S|+\alpha(G)=|S|+|X|=|S \cap X|+|X \cup S| \leqslant|\bigcap \Lambda \cap S|+|\bigcup \Lambda \cup S|,
$$

as claimed.
The conclusions of the Set and Collection Lemma may be false, if the family Λ is not included in $\Omega(G)$. For instance, the graph G of Figure 1 has $\alpha(G)=7$, and if $S=\left\{v_{1}, v_{2}, v_{4}, v_{7}, v_{9}, v_{12}\right\} \in \operatorname{Ind}(G), \Lambda=\left\{S_{1}, S_{2}\right\}$, where $S_{1}=\left\{v_{2}, v_{3}, v_{7}\right\}$ and $S_{2}=$ $\left\{v_{1}, v_{2}, v_{4}, v_{6}, v_{7}, v_{10}, v_{12}\right\}$, then

$$
13=|S|+\alpha(G) \nless|\bigcap \Lambda \cap S|+|\bigcup \Lambda \cup S|=11 .
$$

Corollary 9. If $\Lambda \subseteq \Omega(G),|\Lambda| \geqslant 1$, then $2 \cdot \alpha(G) \leqslant|\bigcap \Lambda|+|\bigcup \Lambda|$.
Proof. Let $S \in \Lambda$. Using the Set and Collection Lemma, we obtain

$$
2 \cdot \alpha(G)=|S|+\alpha(G) \leqslant|\bigcap \Lambda \cap S|+|\bigcup \Lambda \cup S|=|\bigcap \Lambda|+|\bigcup \Lambda|
$$

as required.
Since every maximum clique of G is a maximum independent set of \bar{G}, Corollary 9 is equivalent to the following result, due to Hajnal.

Lemma 10 (Clique Collection Lemma). [8] If Γ is a collection of maximum cliques in G, then

$$
|\bigcap \Gamma| \geqslant 2 \cdot \omega(G)-|\bigcup \Gamma| .
$$

If $\Lambda=\Omega(G)$, then Corollary 9 implies the following.
Corollary 11. For every graph G, it is true that

$$
2 \cdot \alpha(G) \leqslant|\operatorname{core}(G)|+|\operatorname{corona}(G)| .
$$

The graph G_{1} from Figure 2 satisfies $2 \cdot \alpha\left(G_{1}\right)<\left|\operatorname{core}\left(G_{1}\right)\right|+\left|\operatorname{corona}\left(G_{1}\right)\right|$, because $\alpha\left(G_{1}\right)=4$, core $\left(G_{1}\right)=\left\{v_{8}, v_{9}\right\}$, and corona $\left(G_{1}\right)=\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{7}, v_{8}, v_{9}\right\}$.

The vertex covering number of G, denoted by $\tau(G)$, is the number of vertices in a minimum vertex cover in G, that is, the size of any smallest vertex cover in G. Thus we have $\alpha(G)+\tau(G)=|V(G)|$. Since

$$
|V(G)|-|\bigcup\{S: S \in \Omega(G)\}|=|\bigcap\{V(G)-S: S \in \Omega(G)\}|,
$$

Corollary 11 immediately implies the following.

Figure 2: Both G_{1} and G_{2} satsify Corollary 11.
Corollary 12. [7] If G is a graph, then

$$
\alpha(G)-|\operatorname{core}(G)| \leqslant \tau(G)-|\bigcap\{V(G)-S: S \in \Omega(G)\}| .
$$

It is clear that $|\operatorname{core}(G)|+|\operatorname{corona}(G)| \leqslant \alpha(G)+|V(G)|$.
Proposition 13. If G is a graph with a nonempty edge set, then

$$
|\operatorname{core}(G)|+|\operatorname{corona}(G)| \leqslant \alpha(G)+|V(G)|-1
$$

Proof. Assume, to the contrary, that $|\operatorname{core}(G)|+|\operatorname{corona}(G)| \geqslant \alpha(G)+|V(G)|$.
If $S \in \Omega(G)$, then

$$
|\operatorname{corona}(G)-S|=|\operatorname{corona}(G)|-\alpha(G) \geqslant|V(G)|-|\operatorname{core}(G)|=|V(G)-\operatorname{core}(G)|
$$

Since, clearly, corona $(G)-S \subseteq V(G)-\operatorname{core}(G)$, we obtain $V(G)=\operatorname{corona}(G)$ and $\operatorname{core}(G)=S$. It follows that $N(\operatorname{core}(G))=\emptyset$, since corona $(G) \cap N(\operatorname{core}(G))=\emptyset$.

On the other hand, since G has a nonempty edge set and S is a maximum independent set, we have $\emptyset \neq N(S)=N(\operatorname{core}(G))$.

This contradiction proves the claimed inequality.
Remark 14. The complete bipartite graph $K_{1, n-1}$ satisfies $\alpha\left(K_{1, n-1}\right)=n-1$, and hence

$$
\left|\operatorname{core}\left(K_{1, n-1}\right)\right|+\left|\operatorname{corona}\left(K_{1, n-1}\right)\right|=2(n-1)=\alpha(G)+\left|V\left(K_{1, n-1}\right)\right|-1 .
$$

In other words, the bound in Proposition 13 is tight.
It has been shown in [12] that

$$
\alpha(G)+|\bigcap\{V-S: S \in \Omega(G)\}|=\mu(G)+|\operatorname{core}(G)|
$$

is satisfied by every König-Egerváry graph G, and taking into account that

$$
|\bigcap\{V-S: S \in \Omega(G)\}|=|V(G)|-|\bigcup\{S: S \in \Omega(G)\}|
$$

we infer that the König-Egerváry graphs enjoy the following.
Proposition 15. If G is a König-Egerváry graph, then

$$
2 \cdot \alpha(G)=|\operatorname{core}(G)|+|\operatorname{corona}(G)|
$$

The converse of Proposition 15 is not true. For instance, see the graph G_{2} from Figure 2, which has $\alpha\left(G_{2}\right)=3$, corona $\left(G_{2}\right)=\left\{u_{2}, u_{4}, u_{6}, u_{7}\right\}$, and core $\left(G_{2}\right)=\left\{u_{2}, u_{4}\right\}$.

3 Conclusions

In this paper we have proved the "Set and Collection Lemma", which has been employed in order to obtain a number of alternative proofs and/or strengthenings of some known results.

By Proposition 15 we know that $2 \cdot \alpha(G)=|\operatorname{core}(G)|+|\operatorname{corona}(G)|$ holds for every König-Egerváry graph G. Therefore, it is true for each very well-covered graph G [10]. Recall that G is a very well-covered graph if it has no isolated vertices, $2 \alpha(G)=|V(G)|$, and all its maximal independent sets are of the same cardinality [6]. It is worth noting that there are other graphs enjoying this equality, e.g., every graph G having a unique maximum independent set, because, in this case, $\alpha(G)=|\operatorname{core}(G)|=|\operatorname{corona}(G)|$.

Problem 16. Characterize graphs satisfying $2 \cdot \alpha(G)=|\operatorname{core}(G)|+|\operatorname{corona}(G)|$.
Let us consider a dual problem. It is clear that for every graph G there exists a collection of maximum independent sets Λ such that $2 \cdot \alpha(G)=|\bigcup \Lambda|+|\bigcap \Lambda|$. Just take $\Lambda=\{X\}$ for some maximum independent set X.

Problem 17. For a given graph G find the cardinality of a largest collection of maximum independent sets Λ such that $2 \cdot \alpha(G)=|\bigcup \Lambda|+|\bigcap \Lambda|$.

Acknowledgements

We express our special gratitude to Pavel Dvorak for pointing out a gap in the proof of Lemma 3. We also wish to thank the anonymous referees for a very careful reading of the paper, which resulted in a clearer presentation of our findings.

References

[1] C. Berge, Some common properties for regularizable graphs, edge-critical graphs and B-graphs, Lecture Notes in Computer Science 108 (1981) 108-123.
[2] C. Berge, Graphs, North-Holland, New York, 1985.
[3] E. Boros, M. C. Golumbic, V. E. Levit, On the number of vertices belonging to all maximum stable sets of a graph, Discrete Applied Mathematics 124 (2002) 17-25.
[4] D. Christofides, K. Edwardsy, A. D. King, A note on hitting maximum and maximal cliques with a stable set, Journal of Graph Theory 73 (2013) 354-360.
[5] R. W. Deming, Independence numbers of graphs - an extension of the König-Egerváry theorem, Discrete Mathematics 27 (1979) 23-33.
[6] O. Favaron, Very well-covered graphs, Discrete Mathematics 42 (1982) 177-187.
[7] I. Gitler, C. E. Valencia, On bounds for the stability number of graphs, Morfismos 10 (2006) 41-58.
[8] A. Hajnal, A theorem on k-saturated graphs, Canadian Journal of Mathematics 10 (1965) 720-724.
[9] A. D. King, Hitting all maximum cliques with a stable set using lopsided independent transversals, Journal of Graph Theory 67 (2011) 300-305.
[10] V. E. Levit, E. Mandrescu, Well-covered and König-Egerváry graphs, Congressus Numerantium 130 (1998) 209-218.
[11] V. E. Levit, E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, Discrete Applied Mathematics 117 (2002) 149-161.
[12] V. E. Levit, E. Mandrescu, On α-critical edges in König-Egerváry graphs, Discrete Mathematics 306 (2006) 1684-1693.
[13] L. Rabern, On hitting all maximum cliques with an independent set, Journal of Graph Theory 66 (2011) 32-37.
[14] F. Sterboul, A characterization of the graphs in which the transversal number equals the matching number, Journal of Combinatorial Theory Series B 27 (1979) 228-229.

