Semiarcs with long secants

Bence Csajbók

Department of Mathematics, Informatics and Economics
University of Basilicata
Potenza, Italy
bence.csajbok@unibas.it

Submitted: Oct 1, 2013; Accepted: Mar 3, 2014; Published: Mar 17, 2014
Mathematics Subject Classifications: 51E20, 51E21

Abstract

In a projective plane \(\Pi_q \) of order \(q \), a non-empty point set \(S_t \) is a \(t \)-semiarc if the number of tangent lines to \(S_t \) at each of its points is \(t \). If \(S_t \) is a \(t \)-semiarc in \(\Pi_q \), \(t < q \), then each line intersects \(S_t \) in at most \(q + 1 - t \) points. Dover proved that semiovals (semiarcs with \(t = 1 \)) containing \(q \) collinear points exist in \(\Pi_q \) only if \(q \leq 3 \). We show that if \(t > 1 \), then \(t \)-semiarcs with \(q + 1 - t \) collinear points exist only if \(t \geq \sqrt{q - 1} \). In PG(2, q) we prove the lower bound \(t \geq (q - 1)/2 \), with equality only if \(S_t \) is a blocking set of Rédei type of size \(3(q + 1)/2 \).

We call the symmetric difference of two lines, with \(t \) further points removed from each line, a \(V_t \)-configuration. We give conditions ensuring a \(t \)-semiarc to contain a \(V_t \)-configuration and give the complete characterization of such \(t \)-semiarcs in PG(2, q).

Keywords: collineation group; blocking set; semioval

1 Introduction

Semiarcs are natural generalizations of arcs. Let \(\Pi_q \) be a projective plane of order \(q \). A non-empty point set \(S_t \subset \Pi_q \) is called a \(t \)-semiarc if for every point \(P \in S_t \) there exist exactly \(t \) lines \(\ell_1, \ell_2, \ldots, \ell_t \) such that \(S_t \cap \ell_i = \{P\} \) for \(i = 1, 2, \ldots, t \). These lines are called the tangents to \(S_t \) at \(P \). If a line \(\ell \) meets \(S_t \) in \(k > 1 \) points, then \(\ell \) is called a \(k \)-secant of \(S_t \). The classical examples of semiarcs are the semiovals (semiarcs with \(t = 1 \)) and point sets of type \((0, 1, n)\) (i.e. point sets meeting each line in either 0, or 1, or \(n \) points, in this case \(t = q + 1 - (s - 1)/(n - 1) \), where \(s \) denotes the size of the point set). Arcs, unitals, and subplanes are semiarcs of the latter type. For more examples, see [1], [5] and [10].

*Author was supported by the Hungarian National Foundation for Scientific Research, Grant No. K 81310.
Because of the huge diversity of the geometry of semi-arcs, their complete classification is hopeless. In [7] Dover investigated semi-ovals with a q-secant and semi-ovals with more than one $(q-1)$-secant. The aim of this paper is to generalize these results and characterize t-semi-arcs with long secants.

Many of the known t-semi-arcs contain the symmetric difference of two lines, with t further points removed from each line. We will call this set of $2(q-t)$ points a V_t-configuration. Recently in [5] it was proved that in $\text{PG}(2,q)$ small semi-arcs with a long secant necessarily contain a V_t-configuration or can be obtained from a blocking set of Rédei type. Here we give another condition ensuring a t-semiarc to contain a V_t-configuration and we give the complete characterization of such t-semi-arcs in $\text{PG}(2,q)$. To do this we use the classification of perspective point sets in $\text{PG}(2,q)$. This is a result due to Korchmáros and Mazzoca [11] and it is related to Dickson’s classification of the subgroups of the affine group on the line $\text{AG}(1,q)$.

Using a result of Weiner and Szönyi, that was conjectured by Metsch, we prove that t-semi-arcs in $\text{PG}(2,q)$ with $q+1-t$ collinear points exist if and only if $t \geq (q-1)/2$. The case of equality is strongly related to blocking sets of Rédei type, we also discuss these connections.

If $t = q+1, q$ or $q-1$, then S_t is single point, a subset of a line or three non-collinear points respectively. To avoid trivial cases, we may assume for the rest of this paper that $t < q-1$.

2 Semi-arcs with one long secant

If S_t is a t-semiarc in Π_q, $t < q$, then each line intersects S_t in at most $q+1-t$ points. In this section we study t-semi-arcs containing $q+1-t$ collinear points. The following lemma gives an upper bound for the size of such t-semi-arcs.

Lemma 1. If S_t is a t-semiarc in Π_q and ℓ is a $(q+1-t)$-secant of S_t, then $|S_t \setminus \ell| \leq q$.

Proof. Let $U = S_t \setminus \ell$ and let $D = \ell \setminus S_t$. Through each point of U there pass exactly t tangents to S_t and each of them intersects ℓ in D. This implies $t|U| \leq q|D|$. Since $|D| = t$, we have $|U| \leq q$. \hfill \Box

In [7] Dover proved that semi-ovals with a q-secant exist in Π_q if and only if $q \leq 3$. Our first theorem generalizes this result and shows that if S_t has a $(q+1-t)$-secant, then t cannot be arbitrary. For related ideas of the proof, see the survey paper by Blokhuis et. al. [3], Theorem 3.2.

Theorem 2. If S_t is a t-semiarc in Π_q with a $(q+1-t)$-secant, then $t = 1$ and $q \leq 3$ or $t \geq \sqrt{q-1}$.

Proof. Let ℓ be a line that satisfies $|S_t \cap \ell| = q+1-t$ and let $U = S_t \setminus \ell$. The size of U has to be at least $q-t$, otherwise the points of $\ell \cap S_t$ would have more than t tangents. This and Lemma 1 together yield:

$$q-t \leq |U| \leq q.$$ \hfill (1)
Let \(q - t + k \) be the size of \(U \), where \(0 \leq k \leq t \). Let \(\delta \) be the number of lines that do not meet \(U \) and denote by \(L_1, L_2, \ldots, L_{q^2+q+1-\delta} \) the lines that meet \(U \). For these lines let \(e_i = |L_i \cap U| \). The standard double counting argument gives:

\[
\sum_{i=1}^{q^2+q+1-\delta} e_i = (q-t+k)(q+1), \tag{2}
\]

\[
\sum_{i=1}^{q^2+q+1-\delta} e_i(e_i-1) = (q-t+k)(q-t+k-1). \tag{3}
\]

If a line \(\ell' \) intersects \(U \) in more than one point, then \(Q := \ell' \cap \ell \) is in \(S_t \), otherwise the points of \(\ell' \cap U \) would have at most \(t - 1 \) tangents. The point \(Q \in S_t \) has at least \(q - 1 - (q-t+k-|\ell' \cap U|) = t-1-k+|\ell' \cap U| \) tangents, hence \(|\ell' \cap U| \leq k+1 \). This implies \(e_i \leq k+1 \), for \(i = 1, 2, \ldots, q^2 + q + 1 - \delta \), thus the following holds:

\[
\sum_{i=1}^{q^2+q+1-\delta} e_i(e_i-1) \leq (k+1) \sum_{i=1}^{q^2+q+1-\delta} (e_i-1) = (k+1)((q-t+k)(q+1)-(q^2+q+1-\delta)). \tag{4}
\]

The line \(\ell \) does not meet \(U \) and the other lines that do not meet \(U \) fall into two classes: there are \((q+1-t)t\) of them passing through \(\ell \cap S_t \) (the tangents to \(S_t \) through the points of \(\ell \cap S_t \)) and there are \(tq - (q-t+k)t \) of them passing through \(\ell \setminus S_t \) (the lines intersecting \(\ell \setminus S_t \) minus the tangents to \(S_t \) through the points of \(U \)). This implies \(\delta = t(q+1-k)+1 \), hence we can write (4) as:

\[
(q-t+k)(q-t+k-1) \leq (k+1)((q-t+k)(q+1)-(q^2+q)+t(q+1-k)). \tag{5}
\]

Rearranging this inequality we obtain:

\[
q^2 - q(2t + 1 - k + k^2) + k^2t - kt - 2k + t^2 + t \leq 0.
\]

The discriminant of the left-hand side polynomial is \(k^4 - 2k^3 + 3k^2 + 6k + 1 \). If \(k = 0, 1, 2 \), then we get \(q \leq t + 1, t + 2, t + 4 \) respectively. Otherwise, we have \(k^4 - 2k^3 + 3k^2 + 6k + 1 < (k^2 - k + 3)^2 \), which yields \(q \leq t + k^2 - k + 1 \). The maximum value of \(k \) is \(t \), therefore \(q \leq t^2 + 1 \) follows for \(k \geq 3 \). If \(t = 1 \), then \(k \leq 1 \), hence \(q \leq t + 2 = 3 \). If \(t = 2 \), then \(k \leq 2 \), hence \(q \leq t + 4 = 6 \). Since there is no projective plane of order 6, in this case we get \(q \leq 5 \). If \(t \geq 3 \) and \(k < 3 \), then \(q \leq t + 4 < t^2 + 1 \) and this completes the proof. \(\Box \)

Before we go further we need some definitions about blocking sets. A blocking set of a projective plane is a point set \(B \) that intersects every line in the plane. A blocking set is minimal if it does not contain a smaller blocking set and it is non-trivial if it does not contain a line. If \(B \) is a non-trivial blocking set, then we have \(|\ell \cap B| \leq |B| - q \) for every line \(\ell \). If there is a line \(\ell \) such that \(|\ell \cap B| = |B| - q \), then \(B \) is a blocking set of Rédei type and the line \(\ell \) is a Rédei line of \(B \).

In PG(2, q) we can improve the bound in Theorem 2. To do this we use the following result, conjectured by Metsch [13] and proven by Weiner and Szőnyi in [15, 16].

The Electronic Journal of Combinatorics 21(1) (2014), #P1.60
Theorem 3 ([15, 16]). Let U be a point set in PG(2, q), P a point not in U and assume that there pass exactly r lines through P meeting U. Then the total number of lines meeting U is at most $1 + rq + (|U| - r)(q + 1 - r)$.

Theorem 4. Let S_t be a t-semiarc in PG(2, q). If S_t has a $(q + 1 - t)$-secant, then $t \geq (q - 1)/2$. In the case of equality, S_t is a blocking set of Rédei type and its $(q + 1 - t)$-secants are Rédei lines.

Proof. Let ℓ be a $(q + 1 - t)$-secant of S_t and let $U = S_t \setminus \ell$. From Lemma 1, we have:
$$|U| \leq q. \quad (6)$$

The following statements are easy to check:
- the lines intersecting U in more than one point intersect ℓ in $\ell \cap S_t$;
- through each point of $\ell \cap S_t$ there pass exactly $r = q - t$ lines meeting U;
- the total number of lines meeting U is $\delta = |U|t + (q + 1 - t)(q - t)$.

Applying Theorem 3 for the point set U and for a point $P \in \ell \cap S_t$, we obtain:
$$\delta = |U|t + (q + 1 - t)(q - t) \leq 1 + (q - t)q + (|U| - q + t)(t + 1). \quad (7)$$

After rearranging, we get:
$$2q - 2t - 1 \leq |U|. \quad (8)$$

Equations (6) and (8) together imply $t \geq (q - 1)/2$. If $t = (q - 1)/2$, then $|U| = q$ and there are $\delta = (3q^2 + 2q + 3)/4$ lines meeting U and $(q + 1 - t)t = (q^2 + 2q - 3)/4$ lines meeting $\ell \cap S_t$ but not U. Together with the line ℓ we get the total number of lines in PG(2, q), thus S_t is a blocking set of Rédei type and ℓ is a Rédei line of S_t.

The following result by Blokhuis yields another connection between blocking sets and semiarcs.

Theorem 5 ([2]). If B is a minimal non-trivial blocking set in PG(2, p), $p > 2$ prime, then $|B| \geq 3(p + 1)/2$. In the case of equality there pass exactly $(p - 1)/2$ tangent lines through each point of B.

Example 6 ([9], Lemma 13.6). Denote by C the set of non-zero squares in GF(q), q odd, and let $S_t = \{(c, 0, 1), (0, -c, 1), (c, 1, 0) : c \in C\} \cup \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$. This point set is called projective triangle and it is a t-semiarc with three $(q + 1 - t)$-secants, where $t = (q - 1)/2$. This example shows the sharpness of Theorems 4 and 5.

In PG(2, q), q prime, Lovász and Schrijver proved that blocking sets of Rédei type of size $3(q + 1)/2$ are projectively equivalent to the projective triangle, see [12]. Gács, Lovász, and Szőnyi proved the same if q is a square of a prime, see [8]. These results and Theorem 4 together yield the following:

Corollary 7 ([8, 12]). Let S_t be a t-semiarc in PG(2, q) with a $(q + 1 - t)$-secant. If $t = (q - 1)/2$ and $q = p$ or $q = p^2$, p prime, then S_t is projectively equivalent to the projective triangle.
3 Semiars with two long secants

Throughout the paper, if \(A\) and \(B\) are two point sets in \(\Pi_q\), then \(A\Delta B\) denotes their symmetric difference, that is \((A \setminus B) \cup (B \setminus A)\).

Definition 8. A \(V_t\)-configuration is the symmetric difference of two lines, with \(t\) further points removed from both lines. Semiars containing a \(V_t\)-configuration fall into two types. Let \(S_t\) be a \(t\)-semiarc and suppose that there are two lines, \(\ell_1\) and \(\ell_2\), such that \((\ell_1 \triangle \ell_2) \cap S_t\) is a \(V_t\)-configuration, then:

- \(S_t\) is of \(V_t^o\) type if \(\ell_1 \cap \ell_2 \notin S_t\),
- \(S_t\) is of \(V_t^*\) type if \(\ell_1 \cap \ell_2 \in S_t\).

For semiiovals, Dover proved the following characterization:

Theorem 9 ([7], Lemma 4.1, Theorem 4.2). Let \(S_1\) be a semioval in \(\Pi_q\). If \(S_1\) is of \(V_1^o\) type, then it is contained in a vertexless triangle. If \(q > 5\) and \(S_1\) has at least two \((q - 1)\)-secants, then \(S_1\) is of \(V_1^o\) type.

As the above result suggests, the characterization of \(t\)-semiars with two \((q - t)\)-secants works nicely only for semiars of \(V_1^o\) type. In Proposition 11 we generalize the last statement of the above result, but the characterization of \(V_t^*\) type semiars seems to be hopeless in general. In Proposition 12 we consider the case when \(t = 2\), but for larger values of \(t\) we deal only with the Desarguesian case, see Section 4.

Lemma 10. Let \(S_t\) be a \(t\)-semiarc in \(\Pi_q\), \(t < q\), and suppose that there exist two lines, \(\ell_1\) and \(\ell_2\), with their common point in \(S_t\) such that \(|\ell_1 \setminus (S_t \cup \ell_1)| = n\) and \(|\ell_2 \setminus (S_t \cup \ell_1)| = m\). Then \(q \leq t + 1 + nm/t\) and \(|S_t \setminus (\ell_1 \cup \ell_2)| = q - 1 - t\) in the case of equality.

Proof. Since \(S_t\) is not contained in a line, we have \(n, m \geq t\). If one of \(n\) or \(m\) is equal to \(q\), then \(q < q + t + 1 \leq t + 1 + nm/t\) and the assertion follows. Thus we can assume that \(\ell_1\) and \(\ell_2\) are not tangents to \(S_t\). Let \(X = S_t \setminus (\ell_1 \cup \ell_2)\). Through the point \(\ell_1 \cap \ell_2\) there pass exactly \(t\) tangents to \(S_t\), hence \(q - 1 - t \leq |X|\). Through the points of \(X\) there pass \(|X|t\) tangents to \(S_t\), each of them intersects \(\ell_1\) and \(\ell_2\) off \(S_t\), hence \(|X|t \leq nm\). These two inequalities imply \(q \leq t + 1 + nm/t\) and \(|X| = q - 1 - t\) in the case of equality.

Proposition 11. Let \(S_t\) be a \(t\)-semiarc in \(\Pi_q\). If \(S_t\) has at least two \((q - t)\)-secants and \(q > 2t + 3\), then \(S_t\) is of \(V_t^o\) type. If \(S_t\) has at least two \((q - t + 1)\)-secants, then \(S_t\) is of \(V_t^*\) type.

Proof. If \(S_t\) has at least two \((q - t)\)-secants with their common point in \(S_t\), then Lemma 10 implies \(q \leq t + 1 + (t + 1)^2/t = 2t + 3 + 1/t\). If \(q > 2t + 3\), then this is only possible when \(t = 1\) and \(q = 6\), but there is no projective plane of order 6. Hence the common point of the \((q - t)\)-secants is not contained in \(S_t\), which means that \(S_t\) is of \(V_t^o\) type. The proof of the second statement is straightforward.

Proposition 12. Let \(S_t\) be a \(t\)-semiarc of \(V_t^o\) type in \(\Pi_q\). Then the following hold.

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(1) (2014), #P1.60

5
(a) \(|S_t| \neq 2q - 2t + 1\).

(b) If \(t = 2\), then \(S_t\) is a \(V_2\)-configuration or \(|S_t| = 2q - 2\) and \(S_t = (\ell_1 \cup \ell_2) \triangle \Pi_2\), where \(\ell_1\) and \(\ell_2\) are two lines in \(\Pi_2\), that is a Fano subplane contained in \(\Pi_q\).

(c) If \(t > 1\), then \(|S_t| \leq 2q - t\).

\textbf{Proof.} Let \(S_t\) be a \(t\)-semiarc of \(V_t^o\) type and let \(\ell_1\) and \(\ell_2\) be two \((q - t)\)-secants of \(S_t\) such that \(P := \ell_1 \cap \ell_2\) is not contained in \(S_t\). Denote the points of \(\ell_1 \setminus (S_t \cup P)\) by \(A_1, \ldots, A_t\), the points of \(\ell_2 \setminus (S_t \cup P)\) by \(B_1, \ldots, B_t\). Let \(X = S_t \setminus (\ell_1 \cup \ell_2)\) and define the line set \(\mathcal{L} := \{A_iB_j : 1 \leq i, j \leq t\}\) of size \(t^2\). Through each point \(Q \in X\) there pass exactly \(t\) lines of \(\mathcal{L}\), otherwise there would be an index \(i \in \{1, 2, \ldots, t\}\) for which the line \(QA_i\) meets \(\ell_2\) in \(S_t\). But then there would be at most \(t - 1\) tangents to \(S_t\) through the point \(QA_i \cap \ell_2\), a contradiction.

Suppose, contrary to our claim, that \(X\) consists of a unique point denoted by \(Q\). Then \(Q\) would have \(t + 1\) tangents: the \(t\) lines of \(\mathcal{L}\) that pass through \(Q\) and the line \(PQ\).

If \(t = 2\), then exactly two of the points of \(\Pi_q \setminus (\ell_1 \cup \ell_2)\) are contained in two lines of \(\mathcal{L}\). These are \(Q_1 := A_1B_1 \cap A_2B_2\) and \(Q_2 := A_1B_2 \cap A_2B_1\). Since \(|X| > 1\), we have \(X = Q_1, Q_2\). If \(P\) were not collinear with \(Q_1\) and \(Q_2\), then \(PQ_t\) would be a third tangent to \(S_t\) at \(Q_i\), for \(i = 1, 2\). It follows that the point set \(\Pi_t := \{P, A_1, A_2, B_1, B_2, Q_1, Q_2\}\) is a Fano subplane in \(\Pi_q\).

To prove (c), define \(Y \subseteq X\) as \(Y := \{A : A \in X, |AP \cap S_t| = 1\}\). The line set \(\mathcal{L}\) contains \(|Y|(t - 1)\) tangents through the points of \(Y\) and \((|X| - |Y|)t\) tangents through the points of \(X \setminus Y\), hence

\[|X|(t - 1) \leq |X|t - |Y| = |\mathcal{L}| - \delta \leq t^2,\]

where \(\delta\) denotes the number of non-tangent lines in \(\mathcal{L}\). Because of (b), we may assume \(t > 2\), hence \(|X| \leq t^2/(t - 1) < t + 2\) follows. To obtain a contradiction, suppose that \(|X| = t + 1\). If this is the case, then (9) implies \(t \leq |Y|\). If \(|Y| = t\), then \(X \setminus Y\) consists of a unique point, but this contradicts the definition of \(Y\). If \(|Y| = t + 1\), then \(X = Y\) and through each point of \(X\) there pass a non-tangent line, which is in \(\mathcal{L}\). Thus if \(\delta = 1\), then the points of \(X\) are contained in a line \(\ell \in \mathcal{L}\). We may assume that \(\ell = A_1B_t\). Then we can find \(2(t - 1)\) other non-tangent lines in \(\mathcal{L}\), these are \(A_tB_t\) and \(B_iA_i\) for \(i = 1, 2, \ldots, t - 1\). On the other hand \(\delta > 1\) contradicts (9) and this contradiction proves \(|X| < t\). \(\square\)

The following result shows some kind of stability of semiars containing a \(V_t\)-configuration.

\textbf{Theorem 13.} Let \(S_t\) be a \(t\)-semiarc in \(\Pi_q\), \(t < q\), and suppose that there exist two lines, \(\ell_1\) and \(\ell_2\), such that \(|\ell_1 \setminus (S_t \cup \ell_2)| = n\) and \(|\ell_2 \setminus (S_t \cup \ell_1)| = m\).

1. If \(\ell_1 \cap \ell_2 \notin S_t\), \(t > 1\) and \(q > \min\{n, m\} + 2nm/(t - 1)\), then \(S_t\) is of \(V_t^o\) type.

2. If \(\ell_1 \cap \ell_2 \in S_t\) and \(q > \min\{n, m\} + nm/t\), then \(t = (q - 1)/2\), \(|S_t| = 3(q + 1)/2\) and \(S_t\) is of \(V_t^\bullet\) type.
We have \(n = m = t \) in both cases.

Proof. We may assume \(m \geq n \). In part 1, we have \(n \geq t - 1 \), with equality only if \(\ell_2 \) is not a secant of \(S_t \), i.e. when \(m \in \{q - 1, q\} \). The assumption \(q > \min\{n, m\} + 2nm/(t - 1) \) implies \(n, m < q - 1 \), hence this is not the case. It follows that \(n, m \geq t \) holds. In part 2, we have \(n, m \geq t \), hence the assumption implies \(n, m < q \) or, equivalently, the lines \(\ell_1 \) and \(\ell_2 \) are secants of \(S_t \). First we show \(n = m = t \) in both cases. From this, part 1 follows immediately.

Suppose, contrary to our claim, that \(m \geq t + 1 \). Denote by \(P \) the intersection of \(\ell_1 \) and \(\ell_2 \). Let \(N = \{N_1, N_2, \ldots, N_{q-n}\} \) be the set of points of \((\ell_1 \cap P) \cap S_t \) and \(M = \{M_1, M_2, \ldots, M_m\} \) be the set of points of \(\ell_2 \setminus (S_t \cup P) \). Let \(X = S_t \setminus (\ell_1 \cup \ell_2) \). Through each point \(N_j \in N \) there pass exactly \(m - t \) non-tangent lines that intersect \(\ell_2 \) in \(M \). Each of these lines contains at least one point of \(X \). Denote the set of these points by \(X(N_j) \). Then we have the following:

- \(|X(N_i)| \geq m - t \), for \(i = 1, 2, \ldots, q - n \),
- \(X \supseteq \cup_{i=1}^{q-n} X(N_i) \),
- if \(P \not\in S_t \), then each point of \(X \) is contained in at most \(m - t + 1 \) point sets of \(\{X(N_1), \ldots, X(N_{q-n})\} \),
- if \(P \in S_t \), then each point of \(X \) is contained in at most \(m - t \) point sets of \(\{X(N_1), \ldots, X(N_{q-n})\} \).

In part 1, we have the following lower bound for the size of \(X \):

\[
\frac{(q - n)(m - t)}{m - t + 1} \leq |X|.
\]

(10)

On the other hand, through each point of \(X \) there pass at least \(t - 1 \) tangents that intersect both \(\ell_1 \setminus (S_t \cup P) \) and \(M \). Hence we have:

\[
|X| \leq \frac{nm}{t - 1}.
\]

(11)

Summarizing these two inequalities we get:

\[
q \leq n + \frac{nm}{t - 1} + \frac{nm}{(m - t)(t - 1)} \leq n + \frac{2nm}{t - 1},
\]

that is a contradiction.

In part 2, observe that Lemma 10 and \(q > \min\{m, n\} + nm/t \) together imply \(n = t \). If \(m \geq t + 1 \), then similarly to (10) and (11), we get \((q - t)(m - t)/(m - t) \leq |X| \) and \(|X| \leq mt/t \) respectively. These two inequalities imply \(q \leq t + m \), contradicting our assumption \(q > \min\{n, m\} + nm/t = t + m \), hence \(m = t \) follows. If \(n = m = t \), then Lemma 10 implies \(q \leq 2t + 1 \) while our assumption yields \(q > 2t \), thus \(t = (q - 1)/2 \). Since in this case there is equality in Lemma 10, we have \(|S_t| = 3q - 3t = 3(q + 1)/2 \). \(\square \)
Let $\alpha_{n,m}$ and $\beta_{n,m}$ denote the lower bounds on q in part 1 and in part 2 of Theorem 13, respectively. The following example shows that the weaker assumptions $\alpha_{n,m} < 3q$ and $\beta_{n,m} < 2q$, respectively, do not imply the existence of a V_t-configuration contained in the semiarc.

Example 14. We give two examples for t-semiarcs, S_t, such that they do not contain a V_t-configuration and there exist two lines, ℓ_1 and ℓ_2, with $\ell_1 \setminus (\ell_2 \cup S_t) = t$ and $\ell_1 \setminus (\ell_2 \cup S_t) = t + 1$. To do this, choose a conic C in Π_q, that is a projective plane of order $s > 3$. Let Q_1 and Q_2 be two points of C and proceed as follows.

1. Let ℓ_i be the tangent of C at the point Q_i, for $i = 1, 2$, and denote $\ell_1 \cap \ell_2$ by P. Take a point $Z \in Q_1Q_2$ such that PZ is a secant of C. Then $S_0 := (\ell_1 \cup \ell_2 \cup C \cup \{Z\}) \setminus \{P, Q_2\}$ is a point set without tangents. Now, if Π_s is a t-semiarc in Π_q, then $S_0 \subset \Pi_s$ is a t-semiarc in Π_q, with $t = q - s$. We have $\ell_1 \cap \ell_2 \notin S_t$ and

$$\alpha_{t,t+1} = (q - s) + 2 \frac{(q - s + 1)(q - s)}{q - s - 1} < 3q.$$

2. Let ℓ_1 be the tangent of C at Q_1 and let ℓ_2 be the line Q_1Q_2. Take a point $Z \in \ell \setminus (\ell_1 \cup \ell_2)$, where ℓ denotes the tangent of C at Q_2. Then $S_0 := (\ell_1 \cup \ell_2 \cup C \cup \{Z\}) \setminus \{Q_2\}$ is a point set without tangents. As before, if Π_s is contained in Π_q, then $S_0 \subset \Pi_s$ is a t-semiarc in Π_q, with $t = q - s$. We have $\ell_1 \cap \ell_2 \in S_t$ and

$$\beta_{t,t+1} = (q - s) + \frac{(q - s + 1)(q - s)}{q - s} < 2q.$$

The next example is due to Sugetake and it shows that when $t = 1$, then there is no analogous result for part 1 of Theorem 13.

Example 15 ([14], Example 3.3). Let A be a proper, not empty subset of $\text{GF}(q) \setminus \{0\}$, such that $A = -A := \{-a : a \in A\}$ and $|A| \geq 2$. Let $B = \text{GF}(q) \setminus (A \cup \{0\})$ and define the following set of points in $\text{PG}(2,q)$:

$$S_1 := \{(0, a, 1), (b, 0, 1), (c, c, 1), (m, 1, 0) : a \in A, b \in B, c, m \in \text{GF}(q) \setminus \{0\}, m \neq 1\}.$$

Then S_1 is a semiarc with a $(q - 1)$-secant, $X = Y$, and a $(q - 2)$-secant, $Z = 0$, intersecting each other not in S_1. Also, S_1 is not of V_1° type.

When $A = \text{GF}(q) \setminus \{0\}$ in the above example, then S_1 is a vertexless triangle with one point deleted from one of its sides. This example exists also in non-Desarguesian planes, but it is a semiarc of V_1° type.

Semiarcs that properly contain a V_t-configuration exist in Π_q whenever Π_q contains a subplane. Some of the following examples were motivated by an example due to Korchmáros and Mazzocca (see [11], pg. 64).
Example 16. Let $\Pi^0, \Pi^1, \ldots, \Pi^{s-1}$ be subplanes of $\Pi^s := \Pi_q$ such that $\Pi^{i-1} \subset \Pi^i$ for $i = 1, \ldots, s$. Denote by r the order of Π^0 and let ℓ_1 and ℓ_2 be two lines in this plane. Let $P = \ell_1 \cap \ell_2$ and set

$$S(0) := (\ell_1 \cup \ell_2) \cap (\Pi^0 \setminus P), \quad S(j) := (\ell_1 \cup \ell_2) \cap (\Pi^j \setminus \Pi^{j-1}),$$

for $j = 1, \ldots, s$.

By I we denote a subset of $\{1, 2, \ldots, s\}$. We give four examples.

1. Let ℓ be a line in Π^0 passing through P and let Z be a subset of $(\ell \cap \Pi^0) \setminus \{P\}$ of size at least two. If I is not empty, then $S_I := \cup_{j \in I} S(j) \cup Z$ is a t-semiarc of V_t^0 type with $t = q - \frac{1}{2} \sum_{j \in I} |S(j)|$.

2. Let ℓ be a line in Π^0 that does not pass through P and let Z be a subset of $(\ell \cap \Pi^0) \setminus (\ell_1 \cup \ell_2)$ of size at least two. If I is not empty, then $S_I := \cup_{j \in I} S(j) \cup Z$ is a t-semiarc of V_t^0 type with $t = q - r - \frac{1}{2} \sum_{j \in I} |S(j)|$.

3. Let Z be a subset of $\Pi^0 \setminus (\ell_1 \cup \ell_2)$ such that there is no line in Π^0 passing through P and meeting Z in exactly one point. If I is a proper subset of $\{1, 2, \ldots, s\}$, then $S_I := \cup_{j \in I} S(j) \cup Z \cup S(0)$ is a t-semiarc of V_t^0 type with $t = q - r - \frac{1}{2} \sum_{j \in I} |S(j)|$.

4. Let Z be a subset of $\Pi^0 \setminus (\ell_1 \cup \ell_2)$ such that for each line $\ell \neq \ell_1, \ell_2$ through P, ℓ is a line in Π^0, we have $|\ell \cap Z| \geq 1$. Then $S_I := \{P\} \cup S(0) \cup Z$ is a t-semiarc of V_t^* type with $t = q - r$.

4 Semiarcs containing a V_t-configuration in $PG(2, q)$

In this section our aim is to characterize t-semiarcs containing a V_t-configuration in $PG(2, q)$. We will need the following definition.

Definition 17. Let ℓ_1 and ℓ_2 be two lines in a projective plane and let P denote their common point. We say that $X_1 \subseteq \ell_1 \setminus P$ and $X_2 \subseteq \ell_2 \setminus P$ are two perspective point sets if there is a point Q such that each line through Q intersects both X_1 and X_2 or intersects none of them. In other words, there is a perspectivity which maps X_1 onto X_2.

Lemma 18. Let S_I be a t-semiarc in Π_q and suppose that $(\ell_1 \cup \ell_2) \cap S_I$ is a V_t-configuration for some lines ℓ_1 and ℓ_2. If $S_I \not\subseteq \ell_1 \cup \ell_2$, then $S_I \cap (\ell_1 \setminus \ell_2)$ and $S_I \cap (\ell_2 \setminus \ell_1)$ are perspective point sets and each point of $S_I \setminus (\ell_1 \cup \ell_2)$ is the centre of a perspectivity which maps $S_I \cap (\ell_1 \setminus \ell_2)$ onto $S_I \cap (\ell_2 \setminus \ell_1)$.

Proof. Let $X = S_I \setminus (\ell_1 \cup \ell_2)$ and $X_i = S_I \cap (\ell_i \setminus \ell_j)$, for $\{i, j\} = \{1, 2\}$. For each $Q \in X$, if there were a line ℓ through Q intersecting X_i but not X_j, then the point $\ell \cap X_i \in S_I$ would have at most $t - 1$ tangents. This shows that each point of X is the centre of a perspectivity which maps X_1 onto X_2. If $S_I \not\subseteq \ell_1 \cup \ell_2$, then X is not empty, hence X_1 and X_2 are perspective point sets. \hfill \Box
The following theorem characterizes perspective point sets in PG(2, q). This result was first published by Korchmáros and Mazzoca in [11] but we will use the notation of [4] by Bruen, Mazzocca and Polverino.

Theorem 19 ([4], Result 2.2, Result 2.3, Result 2.4, see also [11]). Let \(\ell_1 \) and \(\ell_2 \) be two lines in PG(2, q), \(q = p^r \), and let \(P \) denote their common point. Let \(X_1 \subseteq \ell_1 \setminus P \) and \(X_2 \subseteq \ell_2 \setminus P \) be two perspective point sets. Denote by \(U \) the set of all points which are centres of a perspectivity mapping \(X_1 \) onto \(X_2 \). Using a suitable projective frame in PG(2, q), there exist an additive subgroup \(B \) of GF(q) and a multiplicative subgroup \(A \) of GF(q) such that:

(a) \(B \) is a subspace of GF(q) of dimension \(h_1 \) considered as a vectorspace over a subfield GF(q\(_1\)) of GF(q) with \(q_1 = p^d \) and \(d \mid r \). This implies that \(B \) is an additive subgroup of GF(q) of order \(p^h \) with \(h = dh_1 \).

(b) \(A \) is a multiplicative subgroup of GF(q\(_1\)) of order \(n \), where \(n \mid (p^d - 1) \). In this way, \(B \) is invariant under \(A \), i.e. \(B = AB := \{ab : a \in A, b \in B\} \).

(c) If \(G_i \) denotes the full group of affinities of \(\ell_i \setminus P \) preserving the set \(X_i \), \(i = 1, 2 \), then \(G_1 \cong G_2 \cong G = G(A,B) = \{g : g(y) = ay + b, a \in A, b \in B\} \leq \Sigma \), where \(\Sigma \) is the full affine group on the line AG(1, q).

(d) \(X_i \) is a union of orbits of \(G_i \) on \(\ell_i \setminus P \), \(i = 1, 2 \), and \(|U| = |G| = np^h \).

(e) For every two integers \(n \), \(h \), such that \(n \mid (p^d - 1) \) and \(d \mid \gcd(r, h) \), there exists in \(\Sigma \) a subgroup of type \(G = G(A,B) \) of order \(np^h \), where \(A \) and \(B \) are multiplicative and additive subgroups of GF(q) of order \(n \) and \(p^h \), respectively.

(f) \(G \) has one orbit of length \(p^h \) on AG(1, q), namely \(B \), and \(G \) acts regularly on the remaining orbits, say \(O_1, O_2, \ldots, O_m \), where

\[
m = \frac{q - p^h}{np^h} = \frac{p^{r-h} - 1}{n}.\]

In the sequel we denote by \(B^i \) the orbit of \(G_i \) on \(\ell_i \setminus P \) corresponding to \(B \) and by \(O^i_1, O^i_2, \ldots, O^i_m \) the remaining orbits, for \(i = 1, 2 \). With this notation \(B^1 \) is the image of \(B^2 \) under the perspectivities with centre in \(U \) and also \(O^2_j \) is the image of \(O^1_j \) for \(j = 1, 2, \ldots, m \) and vice versa.

(g) \(B^1 \subseteq X_1 \) if and only if \(B^2 \subseteq X_2 \) and the same holds for the other orbits, i.e. \(O^1_j \subseteq X_1 \) if and only if \(O^2_j \subseteq X_2 \), for \(j = 1, 2, \ldots, m \).

(h) If a line \(\ell \) not through \(P \) meets \(U \) in at least two points, then \(\ell \) intersects both \(B^1 \) and \(B^2 \).

Exactly one of the following cases must occur:
1. Both A and B are trivial. Then U consists of a singleton.

2. A is trivial and B is not trivial. Then U is a set of p^h points all collinear with the point P.

3. B is trivial and A is not trivial. Then U is a set of n points on a line not through P.

4. A and B are the multiplicative and the additive group, respectively, of a subfield $GF(p^h)$ of $GF(q)$. Then

\[U \cup B^1 \cup B^2 \cup \{P\} = PG(2, p^h). \]

5. None of the previous cases occur. Then U is a point set of size np^h and of type $(0, 1, n, p^h)$, i.e. $0, 1, n, p^h$ are the only intersection numbers of U with respect to the lines in $PG(2, q)$. In addition, using the fact that $|U| = np^h$,

- there are exactly n lines intersecting U in exactly p^h points and they are all concurrent at the common point P of ℓ_1 and ℓ_2,
- each line intersecting U in exactly n points meets both B^1 and B^2.

Lemma 20 ([6], Proposition 3.1). If S_t is a $(q - 2)$-semiarc in Π_q, then it is one of the following three configurations: four points in general position, the six vertices of a complete quadrilateral, or a Fano subplane.

In the next theorems we will use the notation of Theorem 19.

Theorem 21. Let S_t be a t-semiarc in $PG(2, q)$, $q = p^r$, and suppose that $(\ell_1 \triangle \ell_2) \cap S_t$ is a V_t-configuration for some lines ℓ_1 and ℓ_2. To avoid trivial cases, suppose that $S_t \nsubseteq \ell_1 \cup \ell_2$.

Let $X_i = \ell_i \cap S_t$, for $i = 1, 2$, and let $X = S_t \setminus (\ell_1 \cup \ell_2)$. Also let $P = \ell_1 \cap \ell_2$. Because of Lemma 18 we have that X_1 and X_2 are perspective point sets and $X \subseteq U$, where U is the set of all points which are centres of a perspectivity mapping X_1 onto X_2. Choose a suitable coordinate system as in Theorem 19 and suppose that the size of $G = G(A, B)$ is np^h, i.e. $|A| = n$ and $|B| = p^h$, where A and B are the multiplicative and the additive subgroup of $GF(q)$ associated to the perspective point sets X_1 and X_2.

(I) If $P \notin S_t$, i.e. S_t is of V_t° type, then one of the following holds.

(i) X is contained in a line through P that meets U in p^h points, $h \geq 1$, and we have $2 \leq |X| \leq p^h$,

(ii) X is contained in a line not through P that meets U in $n \geq 2$ points and we have $2 \leq |X| \leq n$,

(iii) $|X| \geq 2$ and X is a subset of U such that there is no line through P that meets X in exactly one point.
In the first two cases \(X_i = \bigcup_{j \in I} O^i_j \) for some not empty subset \(I \subseteq \{1, 2, \ldots, m\} \) and for \(i = 1, 2 \). We have \(t = q - knp^h \), where \(k = |I| \) and \(1 \leq k \leq m \), where \(m = (p^{r-h} - 1)/n \).

In the third case \(X_i = \bigcup_{j \in I} O^i_j \cup B^i \) for some proper subset \(I \subset \{1, 2, \ldots, m\} \) and for \(i = 1, 2 \). We have \(t = q - knp^h - p^h \), where \(k = |I|, h \geq 1 \) and \(0 \leq k \leq m - 1 \).

\[(II)\] If \(P \in S_t \), i.e. \(S_t \) is of \(V_t^\bullet \) type, then one of the following holds.

\[(i)\] \(S_t \) consists of the six vertices of a complete quadrilateral or \(S_t \) is a Fano subplane. We have \(t = q - 2 \) in both cases.

\[(ii)\] \(\ell_1 \) and \(\ell_2 \) are lines in the subplane \(\text{PG}(2,p^h) \) and

\[S_t = \text{PG}(2,p^h) \cap (\ell_1 \cup \ell_2) \cup X, \]

where \(X \) is a subset of \(\text{PG}(2,p^h) \setminus (\ell_1 \cup \ell_2) \) such that for each line \(\ell \neq \ell_1, \ell_2 \) through \(P \), \(\ell \) is a line in \(\text{PG}(2,p^h) \), we have \(|\ell \cap X| \geq 1 \). In this case \(t = q - p^h \).

\[(iii)\] \(S_t \) is projectively equivalent to the following set of \(3(n + 1) \) points:

\[S_t := \{(a, 0, 1), (0, -a, 1), (a, 1, 0) : a \in A\} \cup \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}, \]

In this case \(t = q - 1 - n \), where \(n \mid q - 1 \).

The converse is also true, if \(X_1 \) and \(X_2 \) are perspective point sets and \(X \) is as in one of the three cases in \((i)\), then \(X \cup X_1 \cup X_2 \) is a \(t \)-semiarc of \(V_t^\circ \) type. If \(S_t \) is as in one of the three cases in \((ii)\), then \(S_t \) is a \(t \)-semiarc of \(V_t^\bullet \) type.

Proof. We begin by proving \((i)\). First assume \(B^1 \subseteq \ell_1 \setminus X_1 \). Then Theorem 19 (g) implies \(B^2 \subseteq \ell_2 \setminus X_2 \). Suppose that there exist three non-collinear points in \(X \), say \(L, M \) and \(N \). Then between the lines \(LM, LN \) and \(MN \) there are at least two, say \(LM \) and \(LN \), not through \(P \). Theorem 19 (h) and \(X \subseteq U \) imply that these two lines intersect both \(B^1 \) and \(B^2 \). But then through \(L \) there pass at most \(t - 1 \) tangents, a contradiction. It follows that \(X \) is contained in a line and hence it is as in one of our first two cases. The condition \(|X| \geq 2 \) comes from Proposition 12 (a).

Now assume \(B^1 \subseteq X_1 \) and hence \(B^2 \subseteq X_2 \). In this case for every two points \(M, N \in X \), the line \(MN \) intersects \(\ell_i \) in \(X_i \), for \(i = 1, 2 \). Thus the number of tangents through a point \(L \in X \) is \(t \) if and only if the line \(LP \) contains at least one other point of \(X \). Case 3 of Theorem 19 shows that this is not possible when \(B \) is trivial, i.e. when \(h = 0 \). Hence \(X \) is as in our third case.

Now we prove \((ii)\). First assume \(B^1 \subseteq \ell_1 \setminus X_1 \) and hence \(B^2 \subseteq \ell_2 \setminus X_2 \). Suppose that there exist two points in \(X \), say \(M \) and \(N \), not collinear with \(P \). Then the line \(MN \) intersects \(\ell_1 \) and \(\ell_2 \) not in \(S_t \). But then the number of tangents through \(M \) is at most \(t - 1 \), a contradiction. Thus \(X \) is contained in a line through \(P \) and through \(P \) there pass exactly \(q - 2 \) tangents. So \(S_t \) is a \((q - 2)\)-semiarc. According to Lemma 20, \(S_t \) is as in \((ii)(i)\).

Now assume \(B^1 \subseteq X_1 \) and hence \(B^2 \subseteq X_2 \). In this case \(t = q - knp^h - p^h \) for some \(k \in \{0, 1, \ldots, m - 1\} \), where \(m \) is the number of orbits of \(G \) of size \(np^h \) on \(AG(1,q) \setminus B \).
Since P has exactly t tangents, there are $q + 1 - t$ non-tangent lines through P. According to Theorem 19, we have $q - 1 - t \leq n$ and hence $kn^p^h + p^h - 1 \leq n$. We distinguish two subcases.

If $h > 0$, then $n|p^h - 1$ implies $n \leq p^h - 1$ and hence $kn^p^h = 0$. This occurs only if $k = 0$ and $n = p^h - 1$. But n divides $p^d - 1$, where $d|h$ and B is a subspace over the field GF(p^d). This implies $d = h$, thus B is a subfield and U is as in case 4 of Theorem 19. This is only possible if S_t is as in our second case.

If $h = 0$, then $kn \leq n$ and U is as in case 3 of Theorem 19. If $k = 0$, then $t = q - 1$, which we excluded. Thus we have $k = 1$ and $t = q - n - 1$. This occurs only if S_t is as in our third case (see [4], pg. 56–57).

Theorem 22. Let S_t be a t-semiarc of V_t° type in $PG(2,q)$, $q = p^r$. Then the following hold.

(a) If $\gcd(q,t) = 1$ and $\gcd(q - 1, t - 1) = 1$, then S_t is a V_t-configuration.

(b) If $\gcd(q,t) = 1$, then S_t is contained in a vertexless triangle.

(c) If $\gcd(q - 1, t) = 1$, then S_t is contained in a vertexless triangle or in the union of three concurrent lines without their common point.

Proof. We have $p^h|t$ in all three cases of Theorem 21 (I), where p^h is the size of B. Hence $\gcd(q,t) = 1$ implies $p^h = 1$, i.e. $h = 0$. This occurs only in the second case of Theorem 21 (I) and this proves (b).

In the first two cases of Theorem 21 (I) we have $n|(t - 1)$ and hence also $n|\gcd(q - 1, t - 1)$, where n is the size of A. We have seen previously that $\gcd(q,t) = 1$ can hold only in the second case of Theorem 21 (I). But in that case we have $n \geq 2$, which is a contradiction when $\gcd(q - 1, t - 1) = 1$. This proves (a).

If S_t is as in one of the first two cases of Theorem 21 (I), then we are done. So to prove (c), it is enough to consider Theorem 21 (I)(iii). In this case $t = (q - 1) - nkp^h - (p^h - 1)$ and hence $n|\gcd(q - 1, t)$. If $\gcd(q - 1, t) = 1$, then $n = 1$, i.e. A is trivial. If this happens, then case 2 of Theorem 19 implies that S_t is contained in the union of three concurrent lines without their common point.

Acknowledgements

The author is very grateful for the advices of Prof. Gábor Korchmáros and Prof. Tamás Szőnyi.

References

