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Abstract

In this paper we examine the sorting operator T (LnR) = T (R)T (L)n. Applying
this operator to a permutation is equivalent to passing the permutation reversed
through a stack. We prove theorems that characterise t-revstack sortability in terms
of patterns in a permutation that we call zigzag patterns. Using these theorems we
characterise those permutations of length n which are sorted by t applications of T
for t = 0, 1, 2, n−3, n−2, n−1. We derive expressions for the descent polynomials of
these six classes of permutations and use this information to prove Steingŕımsson’s
sorting conjecture for those six values of t. Symmetry and unimodality of the descent
polynomials for general t-revstack sortable permutations is also proven and three
conjectures are given.

1 Introduction

Let Sn be the group of all permutations of {1, . . . , n}. The classical stack sort operator S
on permutations [8] may be defined in two equivalent ways. One way is to define it as an
operator on words representing permutations: S(ε) = ε where ε is the empty permutation,
S(x) = x where x is a word of length 1, and

S(LnR) = S(L)S(R)n
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where n is the unique largest entry in the word LnR. For example,

S(42513) = S(42)S(13)5 = S(2)4S(1)35 = 24135.

Another way to define S is as the output of pushing π = π1 · · · πn ∈ Sn (from left to
right) through a stack. The stack has the rule that an element may be above another
element in the stack only if it is less than it. If the element at the top of the stack is not
less than the next (leftmost) element of π which is to next enter the stack, then elements
of the stack must be popped from the stack (to the left) until this is the case. This is
illustrated in Figure 1 for the permutation π = 42513.

42513

4
2

513 51324

5
1

324

5
3

241 24135

Figure 1: Moving the permutation π = 42513 through the stack once to get S(π) = 24135.
First, 4 is pushed onto the stack, followed by 2. Since 5 is larger than both 2 and 4, both
are popped from the stack before 5 can be pushed onto it. 1 is then pushed onto the
stack. As 3 is not less than 1, but is less than 5, 1 is popped from the stack, 3 is pushed
onto the stack, and then all stack elements are popped from the stack.

It is clear that repeatedly applying S to a permutation will yield the identity per-
mutation, and the operator S is therefore a sorting operator. The set of permutations
which are sorted by at most one application of S is known to be the set of 231-avoiding
permutations, and this result is often described as the first result in the combinatorics of
permutation patterns. We will assume the reader is familiar with the basic terminology
of permutation patterns [3].

Variants of this operation and their analysis have also thrown up interesting connec-
tions to other areas of discrete mathematics. Recently, the author in collaboration with
others showed how the sorting operation B(LnR) = B(L)Rn describes one pass of the
bubble-sort operator. Further to this, it was shown that permutations in Sn which require
at most t passes of B are in bijection with the set of ground state juggling sequences of
period n with t balls [5].

In this paper, we will consider another variant of the stack sort operator. We will call
this variant revstack sort and denote it by T = S ◦ rev, where rev is the operation that
reverses the list that it acts upon. We may write a recursion for T as we did for S above:
Given π = LnR ∈ Sn, T satisfies

T (LnR) = T (R)T (L)n,

T (ε) = ε, and T (x) = x where x is a word of length 1. For example, T (42513) =
T (13)T (42)5 = T (1)3T (2)45 = 13245. An equivalent way to describe this operation is
that it is what results when a permutation is fed backwards into a stack. For π = 42513,
this is illustrated in Figure 2.

This new sorting operation is interesting because it appears to be faster than stack
sort in the following sense:
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Conjecture 1.1 (Steingŕımsson’s sorting conjecture [10]). For all 0 6 t 6 n,

|{π ∈ Sn : St(π) = id}| 6 {π ∈ Sn : T t(π) = id}|,

where id is the identity permutation. Furthermore, this inequality is strict for all pairs
(n, t) that satisfy 2 < t < n− 1.

In Section 2 we will define a t-zigzag of a permutation. We present theorems which
tell us when permutations are and are not t-revstack sortable based on whether or not
the permutation contains (certain types of) zigzags of certain degrees. In Section 3 we
use the theorems of Section 2 to classify permutations of length n that are 1-revstack,
2-revstack, (n− 3)-revstack and (n− 2)-revstack sortable. These classifications are then
used to derive the descent polynomials which are the generating functions of the descent
statistic on classes of t-revstack sortable permutations for t = 0, 1, 2, n−3, n−2 and n−1.

These generating functions are then used in Section 4 to prove Steingŕımsson’s conjec-
ture those six particular values of t. In Section 5 we prove symmetry and unimodality of
the descent polynomials for the class of t-revstack sortable permutations, and conjecture
log-concavity and real-rooted-ness of coefficients of our polynomials based on the evidence
given in the Appendix.

42513
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Figure 2: Reversing the permutation π = 42513 and then moving it through a stack is
equivalent to passing the rightmost elements of the permutation to the stack. From this
we get T (42513) = 13245.

Let Revstackn,t = {π ∈ Sn : T t(π) = id}, the set of t-revstack sortable permutations.
Given π ∈ Sn, let degT (π) = inf{i : T i(π) = id and T i−1(π) 6= id}, the number of
applications of T that are required to sort π.

2 Classification theorems and zigzag patterns

In this section we will present classification theorems which assist us in deciding whether
or not a permutation is t-revstack sortable. These classifications are in terms of zigzags
which are subsequences of values in the permutation. These will be used to classify
particular classes of t-revstack sortable permutations.

Lemma 2.1. If π ∈ Sn, 1 6 a < b 6 n, and b precedes a in π, then a precedes b in T (π)

Proof. Since b precedes a in π, a enters the stack before b. Since a < b, element a must
have been popped from the stack before element b enters. Thus a precedes b in T (π).
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Lemma 2.2. Suppose that π ∈ Sn, 1 6 a < b 6 n, and a precedes b in π. Then b
precedes a in T (π) if there exists c > b such that a precedes c and c precedes b in π. If no
such c exists then a precedes b in T (π).

Proof. If there is an element c > b such that a precedes c and c precedes b in π, then b
will be the first of the three elements to enter the stack. Since c > b, element b must be
popped from the stack before c enters the stack. It is only after c enters the stack that a
may enter the stack and be popped. Thus b precedes a in T (π).

If no such c exists then all elements that appear between a and b in π are less than b.
Element b will enter the stack and remain in the stack while a enters. Element a must be
popped before element b, therefore a precedes b in T (π).

Lemma 2.3. (b, a) is an inversion in T (π) iff there exists c such that (a, c, b) is a 132
pattern in π.

Proof. Lemma 2.1 tells us that an inversion (b, a) in π becomes a non-inversion (a, b) in
T (π). Lemma 2.2 tells us that a non-inversion (a, b) in π becomes an inversion (b, a) in
T (π) iff an element c larger than both exists between the two in π. Thus if (b, a) is an
inversion in T (π) then there exists c such that (a, c, b) is an occurrence of the pattern 132
in π. If (a, c, b) is a 132 pattern in π, then applying T one finds that b precedes a in T (π),
thereby forming an inversion (b, a) in T (π).

Theorem 2.4. Revstackn,1 = Sn(132).

Proof. A permutation π ∈ Sn is in Revstackn,1 iff T (π) = id, which occurs iff T (π) has
no inversions. Lemma 2.3 tells us this happens precisely when π is 132 avoiding.

Theorem 2.5. (i) If T (σ) contains (a, c, b) as a 132 pattern, then either (b, d, c, a) is a
2431 pattern in σ, or (b, d, a, c) is a 2413 pattern in σ and there is no e > c such that
(b, d, a, e, c) in σ.
(ii) If T (σ) contains a 132 pattern, then σ either contains a 2431 pattern, or a 24153
pattern.

Proof. Lemmas 2.1–2.3 provide us with the following information about patterns in σ and
T (σ). We will say ‘(x, y) in σ’ to mean x precedes y in the the word representing the
permutation σ, and ‘(x, y, z) in σ’ to mean x precedes y and y precedes z in the word
representing the permutation σ, etc

• If (b, a) in σ, then (a, b) in T (σ).

• If (a, b) in σ, then

– if ∃ c > b such that (a, c, b) in σ then (b, a) in T (σ),

– if 6 ∃ c > b such that (a, c, b) in σ then (a, b) in T (σ).

Rewriting these observations in terms of how entries appear in T (σ) first:
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• If (a, b) in T (σ) then either,

– (b, a) in σ, or

– (a, b) in σ and 6 ∃ c > b such that (a, c, b) in σ.

• If (b, a) in T (σ) then ∃ c > b such that (a, c, b) in σ.

Using these observations, if T (σ) contains (a, c, b) as a 132 pattern then the following
hold:

1. Since (c, b) in T (σ), there exists d > c such that (b, d, c) in σ.

2. Since (a, c) in T (σ), either 2(i) (c, a) in σ, or 2(ii) (a, c) in σ and 6 ∃ e > c such that
(a, e, c) in σ.

3. Since (a, b) in T (σ), either 3(i) (b, a) in σ, or 3(ii) (a, b) in σ and 6 ∃ f > b such that
(a, f, b) in σ.

Let us now check all possible combinations of 2(i), 2(ii), 3(i), and 3(ii).

1, 2(i) and 3(i) We have (b, d, c) in σ, (c, a) in σ, and (b, a) in σ. These imply that
(b, d, c, a) in σ where d > c.

1, 2(i) and 3(ii) We have (b, d, c) in σ, (c, a) in σ, and (a, b) in σ with no f > b such
that (a, f, b) in σ. These are inconsistent as the first two imply that (b, a) in σ
whereas the third says that (a, b) in σ. This is impossible,

1, 2(ii) and 3(i) We have (b, d, c) in σ, (b, a) in σ, and (a, c) where 6 ∃e > c such that
(a, e, c) in σ. This implies that (b, d, a, c) in σ and 6 ∃e > c such that (b, d, a, e, c).

1, 2(ii) and 3(ii) We have (b, d, c) in σ, (a, c) in σ where 6 ∃ e > c such that (a, e, c) in σ,
and (a, b) in σ where 6 ∃ f > b such that (a, f, b) in σ. These three are inconsistent
and this case is therefore not possible.

We conclude that if T (σ) contains (a, c, b) as a 132 pattern, then either

• (b, d, c, a) is a 2431 pattern in σ, or

• (b, d, a, c) is a 2413 pattern in σ and 6 ∃ e > c such that (b, d, a, e, c) in σ.

Notice that in the second condition, if e is such that c < e < d, then (b, d, a, e) is a 2413
pattern. Therefore part (i) is true.

At the very end of the previous argument, we are told that there does not exist e > c
such that (b, d, a, e, c) in σ. Since d is greater than c and less than e, this statement implies
that there does not exist e > d such that (b, d, a, e, c) in σ. This implies part (ii) of the
theorem.

Definition 2.6. A k-zigzag pattern in a permutation π is a sequence z = (z0, . . . , zk+1)
such that
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(a) z0 > z1 > z2 > · · · > zk+1, and

(b) π−1(z2i) < π−1(z0) < π−1(z2i−1) for all i > 1.

A 0-zigzag pattern is an occurrence of the permutation pattern 21, and so the only
permutation that contains no 0-zigzag pattern is the identity. A 1-zigzag pattern is an
occurrence of the permutation pattern 132. A 2-zigzag pattern is either an occurrence
of the permutation pattern 2413 or an occurrence of the permutation pattern 2431. A
3-zigzag pattern is illustrated in Figure 3.

1 32 4 5 6 7 8

1

2
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4

5

7

8

6

1 32 4 5 6 7 8
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3

4
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7

8

6

Figure 3: The permutation 15327846 contains a 3-zigzag pattern x = (7, 6, 5, 4, 2). We
have drawn lines between the points in the permutation diagram which correspond to
adjacent elements in the 3-zigzag.

Theorem 2.7. If π ∈ Sn contains no k-zigzag pattern, then T k(π) = id.

Proof. If π contains no 1-zigzag pattern, then π avoids the pattern 132, which by The-
orem 2.4 means T (π) = T 1(π) = id. Therefore the result of the theorem is true for
k = 1.

The proof will follow by induction. It will be sufficient to show that given π ∈ Sn,

π contains no k-zigzag pattern =⇒ T (π) contains no (k − 1)-zigzag pattern.

We will prove the contrapositive to the above statement:

T (π) contains a (k − 1)-zigzag pattern =⇒ π contains a k-zigzag pattern.

Suppose that z = (z0, . . . , zk) is a (k−1)-zigzag pattern in T (π). Since {(z0, z2i−1)}i>1 are
inversions in T (π), by Lemma 2.3 we know there must exist values ci such that (z2i−1, ci, z0)
are occurrences of 132 patterns in π. Let c∗ be the rightmost such ci in π. Then
(z2i−1, c

∗, z0) are also all occurrences of 132 patterns in π which means π−1(z2i−1) < π−1(c∗)
for all i.

Next suppose that there is some z2j (where j > 1) such that (z2j, c
∗) is a 12 pattern in

π. Then (z2j, c
∗, z0) is a 132 pattern in π by Definition 2.6 which, according to Lemma 2.3,

means (z0, z2j) is a 21 pattern in T (π). This is a contradiction since z2j precedes z0 in T (π).
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We conclude that all even indexed zi’s are to the right of c∗ in π, hence π−1(c∗) < π−1(z2j)
for all j > 1.

The two pairs of inequalities above, together with c∗ > z0 > z1 > · · · > zk, show that
z′ = (c∗, z0, . . . , zk) is a k-zigzag pattern in π.

Definition 2.8. Let z = (z0, . . . , zk+1) be a k-zigzag pattern in π ∈ Sn. We will call z
interrupted if there exists c > z0 such that either

(i) z2a precedes c and c precedes z2b in π for some a, b > 1, or

(ii) z2a−1 precedes c and c precedes z2b−1 in π for some a, b > 1.

Otherwise we will call z uninterrupted.

Example 2.9. The 3-zigzag z = (7, 6, 5, 4, 2) in the permutation π = (1, 5, 3, 2, 7, 8, 4, 6)
shown in Figure 3 is uninterrupted. The 3-zigzag z′ = (7, 6, 5, 4, 2) in the permutation
π′ = (1, 5, 3, 2, 7, 4, 8, 6) shown is interrupted because there is an 8 between 4 and 6. The
4-zigzag z′′ = (10, 9, 8, 7, 6, 5) in the permutation π′′ = (4, 6, 11, 8, 3, 2, 10, 12, 7, 1, 9, 5) is
interrupted because there is an 11 between 8 and 6 in π′′. See also Figure 4.

z

4

z
5

z
6

z
1

0

z
2

z
3

z

Figure 4: An illustration of where points are forbidden (the grey areas) in order for a
5-zigzag z = (z0, z1, . . . , z6) to be an uninterrupted 5-zigzag.

Definition 2.10. Given π ∈ Sn and a set of elements A ⊆ {1, . . . , n}, let leftπ(A) (resp.
rightπ(A)) be the element of A that is leftmost (resp. rightmost) in π. We will say that
an element x is among A in π if x does not precede leftπ(A) in π and rightπ(A) does not
precede x in π.
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For example if π = 285491376 and A = {1, 3, 5, 9} then leftπ(A) = 5 and rightπ(A) = 3.
The elements 4 and 5 are among A in π whereas the elements 2 and 7 is not.

Theorem 2.11. If π ∈ Sn contains an uninterrupted k-zigzag then T k(π) 6= id.

Proof. An uninterrupted 1-zigzag in a permutation π ∈ Sn is an occurrence of the pattern
132. If π ∈ Sn contains an occurrence of the pattern 132 then T (π) 6= id by Theorem 2.4.
The theorem is true for k = 1.

Now we claim that if π contains an uninterrupted k-zigzag, then T (π) contains an
uninterrupted (k− 1)-zigzag. To see the validity of this claim consider the following. Let
z = (z0, z1, . . . , zk+1) be the lexicographically largest k-zigzag in π that begins with z0
that is uninterrupted. Let zodd = {z2j−1 : j > 1} and zeven = {z2j : j > 1}.

All elements of zodd enter and leave the stack before z0 does. There are no elements
larger than z0 among zodd in T (π) as z is uninterrupted (the elements among zodd in T (π)
start by some element among zodd in π and end by the maximal element among zodd).
Similarly there are no elements larger than z0 among zeven in T (π).

Since z is the lexicographically largest k-zigzag with the desired properties, we know
that there are no elements larger than z1 among zeven. Also z1 is, by definition, the
largest element of zodd that is less than z0 (otherwise there would exist a lexicographically
larger k-zigzag z′ which starts with z0 in π). From this we know that z1 is the rightmost
element among zodd in T (π). The sequence (z1, . . . , zk+1) is therefore an uninterrupted
(k − 1)-zigzag in T (π).

Iterating the above claim, we have that if π contains an uninterrupted k-zigzag, then
T (π) contains an uninterrupted (k − 1)-zigzag, T 2(π) contains an uninterrupted (k −
2)-zigzag, and T k(π) contains an uninterrupted 0-zigzag. An uninterrupted 0-zigzag is
simply an inversion, so T k(π) contains an inversion and is therefore not the identity
permutation.

The following result is the companion to West’s result [12] which tells us that the set
of 2-stack sortable permutations is Sn(2341, 35241).

Theorem 2.12. Revstackn,2 = Sn(2431, 24153).

Proof. Suppose that π ∈ Sn with T 2(π) = id. According to Theorem 2.11, π does
not contain an uninterrupted 2-zigzag. There are two 2-zigzags: 2431 and 2413. The
statement ‘π does not contain an uninterrupted 2-zigzag’ is equivalent to ‘π does not
contain a 2-zigzag, or if it does then it is interrupted’, and this happens iff π ∈ Sn(24351)∩
Sn(24153).

Notice, however, that if π contains (b, d, c, e, a), where a < b < c < d < e, as (d, c, b, a)
is an interrupted 2-zigzag then in the permutation T (π); a will precede c (by Lemma 2.3)
and c will precede b (by Lemma 2.2). This means (a, c, b) is a 132 pattern in T (π). By
Theorem 2.4 T 2(π) 6= id. Therefore π cannot contain the pattern 24351 and so

Revstackn,2 ⊆ Sn(24351) ∩Sn(24153)−Sn(24351) = Sn(2431, 24153). (2.1)
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To complete the proof we must show that T 2(π) 6= id ⇒ π contains 2431, or π contains
24153. Suppose that T 2(π) 6= id. Using Theorem 2.4 this implies that T (π) contains
a 132 pattern. Using Theorem 2.5(ii) we have that π contains the pattern 2431, or the
pattern 24153. We may summarise this as

Sn\Revstackn,2 ⊆ Sn\Sn(2431, 24153). (2.2)

Combining Equations 2.1 and 2.2 we have Revstackn,2 = Sn(2431, 24153).

3 Descent polynomials

In this section we will determine the descent polynomial over Revstackn,k for several values
of k relative to n. Given A ⊆ Sn define

W (A;x) =
∑
π∈A

x1+des(π).

It is straightforward to see that Revstackn,n−1 = Sn and W (Revstackn,n−1;x) is there-
fore An(x), the nth Eulerian polynomial.

Theorem 3.1. W (Revstackn,1;x) =
∑

06k<n

1

n

(
n

k

)(
n

k + 1

)
xn−k = W (Stackn,1;x).

Proof. Recall that Stackn,1 = Sn(231). Simion [9] showed that

W (Sn(231);x) =
n−1∑
k=0

N(n, k)xk+1

where N(n, k) = 1
n

(
n
k

)(
n
k+1

)
are the well-known Narayana numbers. Theorem 2.4 showed

that Revstackn,1 = Sn(132). Since Sn(132) is easily formed from Sn(231) by reversing the
elements, and by using the symmetry of the Narayana numbers N(n, k) = N(n, n−k−1),
we have

W (Sn(132);x) =
∑

π∈Sn(231)

x1+des(rev(π)) =
∑

π∈Sn(231)

xn−des(π) = W (Stackn,1;x).

Theorem 3.2. W (Revstackn,2;x) = W (Stackn,2;x).
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Proof. By definition,

W (Revstackn,2;x) =
∑
π∈Sn

S◦rev◦S◦rev(π)=id

x1+des(π)

=
∑
σ∈Sn

S◦rev◦S(σ)=id

x1+des(rev(σ))

=
∑
σ∈Sn

S◦rev◦S(σ)=id

xn−des(σ)

= xn
∑
σ∈Sn

S◦rev◦S(σ)=id

(x−1)des(σ).

Bouvel and Guibert [4, Thm. 1.3] recently showed that the descent statistic is equi-
distributed on the sets {π ∈ Sn : S ◦ S(π) = id} and {π ∈ Sn : S ◦ rev ◦ S(π) = id}.
This means

xn
∑
σ∈Sn

S◦rev◦S(σ)=id

(x−1)des(σ) = xn+1
∑
σ∈Sn

S2(σ)=id

(x−1)1+des(σ)

= xn+1W (Stackn,2;x
−1)

= W (Stackn,2;x),

the final equality stemming from the fact that W (Stackn,2;x) is symmetric in the sense
that [xk]W (Stackn,2;x) = [xn+1−k]W (Stackn,2;x) for all 1 6 k 6 n. This symmetry
is easily checked from the expression for W (Stackn,2;x) given in Dulucq et al. [7, Cor.
9].

Throughout the remainder of this section we will employ some new terminology. Given
a set X = {x1, . . . , xm}, let Perm (X) be the set {xσ(1)xσ(2) · · ·xσ(m) : σ ∈ Sm}. For
example, Perm ({5, 4, 1}) = {145, 154, 415, 451, 514, 541}. Given a positive integer m, let
[m]↓2 be the set of positive integers no larger than m and which differ from it by an even
number:

[m]↓2 = {m,m− 2,m− 4, . . . , 1 + ((m− 1) mod 2)}.
Many of our cases will involve [m]↓2 for certain values m.

Theorem 3.3. For all n > 4,

W (Revstackn,n−2;x) = An(x)− Adn−1
2 e(x)Abn−1

2 c(x).

Proof. We wish to obtain an expression for

W (Revstackn,n−2;x) = W (Revstackn,n−1;x)−
∑
π∈Sn

degT (π)=n−1

x1+des(π)

= An(x)−
∑
π∈Sn

degT (π)=n−1

x1+des(π).
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We will now classify those permutations π ∈ Sn for which degT (π) = n − 1. Suppose
that π ∈ Sn with degT (π) = n − 1. Then T n−1(π) = id and T n−2(π) 6= id. The
contrapositive of Theorem 2.7 tells us that π must contain an (n− 2)-zigzag. An (n− 2)-
zigzag in a permutation π is a strictly decreasing sequence z = (z0, z1, . . . , zn−1). Because
z contains n elements out of a possible n elements, it is the sequence (n, n − 1, . . . , 1).
Therefore π = LnR where L ∈ Perm ({n− 2, n− 4, . . .}) = Perm

(
[n− 2]↓2

)
and R ∈

Perm ({n− 1, n− 3, . . .}) = Perm
(
[n− 1]↓2

)
. In this case L has d(n− 1)/2e elements and

R has b(n− 1)/2c elements. Therefore

W (Revstackn,n−2;x) = An(x)−
∑

L∈[n−2]↓2

R∈[n−1]↓2

x1+des(LnR)

= An(x)−
∑

L∈[n−2]↓2

R∈[n−1]↓2

x1+des(L)+1+des(R)

= An(x)−
∑

L∈[n−2]↓2
x1+des(L)

∑
R∈[n−1]↓2

x1+des(R)

= An(x)− Ab(n−1)/2c(x)Ad(n−1)/2e.

Theorem 3.4. For all n > 3,

W (Revstackn,n−3;x) = An(x)− Abn−1
2
c(x)Adn−1

2
e

−
⌊
n+ 2

2

⌋
Abn−1

2
c(x)Abn

2
c(x)−

⌊
n− 1

2

⌋
Abn−2

2
c(x)Abn+1

2
c(x)

+ Abn−1
2
c(x)Dbn

2
c(x)− Abn−2

2
c(x)Dbn+1

2
c(x)

where

Dn(x) =
1

2

∑
i

(
n− 1

i

)
Ai(x)An−1−i(x).

Proof. We wish to obtain an expression for

W (Revstackn,n−3;x) = W (Revstackn,n−2;x)−
∑
π∈Sn

degT (π)=n−2

x1+des(π).

Theorem 3.3 gives an expression for W (Revstackn,n−2). We will now classify those permu-
tations π ∈ Sn for which degT (π) = n− 2. Suppose that π ∈ Sn with degT (π) = n− 2.
Then T n−2(π) = id and T n−3(π) 6= id. The contrapositive of Theorem 2.7 tells us that π
must contain an (n − 3)-zigzag. (Theorem 2.11 does not assist us in this situation as it
translates into a statement concerning a zigzag too large to fit into the permutation.)

Therefore will check all types of permutations π in Sn which contain an (n−3)-zigzag
and classify those for which degT (π) = n − 2. In order to do this, we will condition on
the lexicographically largest zigzag in each case so as to avoid overlapping cases.
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An (n−3)-zigzag in a permutation π is a strictly decreasing sequence z = (z0, . . . , zn−2).
Let us suppose that z is maximal in the sense that it is the lexicographically largest (n−3)-
zigzag in π. Because z contains n−1 elements out of a possible n elements, and because it
is strictly decreasing, it must be the sequence (n, n− 1, . . . , 1) with one element removed.
We indicate this using a hat above the element that is removed:

z = (n, n− 1, . . . , î, . . . , 1).

To perform this classification, we must split the analysis into four distinct cases: (a) i = n
(b) i = n− 1 (c) i = n− 2 and (d) 1 6 i 6 n− 3.
Case (a) i = n:
In this case the (n−3)-zigzag is (n−1, n−2, . . . , 1). Let π′ be π with n removed. Then π′

must be of the form L(n− 1)R where L ∈ Perm
(
[n− 3]↓2

)
and R ∈ Perm

(
[n− 2]↓2

)
. All

that remains is to carefully check how the position of n in π changes the degree of π with
respect to T . We must be careful that by inserting n in different places, the resulting
permutation does not contain an (n− 2)-zigzag (as these were taken care of previously in
Theorem 3.3).

Let L1L2 ∈ Perm
(
[n− 3]↓2

)
and R1R2 ∈ Perm

(
[n− 2]↓2

)
. From Theorem 3.3, the

permutation π ∈ Sn must have one of two forms;

• π = L1nL2(n−1)R1R2: First observe that if L2 = ∅, then z′ = (n, n−2, n−3, . . . , 1)
will be an (n − 3)-zigzag that is lexicographically greater than z = (n − 1, . . . , 1).
This is forbidden so we must have L2 6= ∅. Bearing this in mind,

T (π) = T (L1nL2(n− 1)R1R2)

= T (R1R2)T (L2)(n− 1)T (L1)n,

where T (R1R2) ends in (n − 2). Suppose T (R1R2) = R3(n − 2) where R3 ∈
Perm

(
[n− 4]↓2

)
. Then

T 2(π) = T (R3(n− 2)T (L2)(n− 1)T (L1)n)

= T 2(L1)T 2(L2)T (R3)(n− 2)(n− 1)n.

Notice that T 2(L1)T 2(L2)T (R3) ∈ Sn−3. Since L2 6= ∅, we have degT (π) = n−2 iff
degT (T 2(π)) = n−4, and this is true iff n−3 ∈ T 2(L2). The set of all permutations
satisfying degT (π) = n− 2 in this case is

π = L(n− 1)R ∈ Sn

L ∈ Perm ({n, n− 3, n− 5, . . .}) and n precedes (n− 3) in L (3.1)

R ∈ Perm ({n− 2, n− 4, . . .}) .

• π = L1L2(n − 1)R1nR2: If R1 = ∅ then π will contain a (n − 2)-zigzag that
is lexicographically larger than (n − 1, . . . , 1). This is forbidden and so we have
R1 6= ∅. With this in mind,

T (π) = T (R2)T (R1)T (L1L2)(n− 1)n.
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The permutation T (R2)T (R1)T (L1L2) ∈ Sn−2 has degree n − 3 iff T (R2)T (R1)
ends in n − 2. This happens iff (n − 2) ∈ R1 (since we already showed that R1

cannot be empty). The set of all permutations for which this is true is

π = L(n− 1)R ∈ Sn

L ∈ Perm ({n− 3, n− 5, . . .}) (3.2)

R ∈ Perm ({n, n− 2, n− 4, . . .}) and n− 2 precedes n in R.

Case (b) i = n− 1:
In this case the maximal (n−3)-zigzag is (n, n−2, n−3, . . . , 1). We will consider how the
position of (n−1) in π affects the degree of the resulting permutation. The permutation π
must have the form L1(n−1)L2nR1R2 or L1L2nR1(n−1)R2 where L1L2 ∈ Perm

(
[n− 3]↓2

)
and R1R2 ∈ Perm

(
[n− 2]↓2

)
(otherwise there will be a lexicographically larger (n − 3)-

zigzag starting with (n, n− 1, . . .) which is forbidden).

• π = L1(n − 1)L2nR1R2: In this case T (π) = T (R1R2)T (L2)T (L1)(n − 1)n. Since
T (R1R2) ends in (n − 2) we have that degT (T (R1R2)T (L2)T (L1)) = n − 3 and
so degT (π) = n − 2. All permutations of this form have degT (π) = n − 2. This
collection is

π = LnR ∈ Sn

L ∈ Perm ({n− 1, n− 3, . . .}) (3.3)

R ∈ Perm ({n− 2, n− 4, . . .}) .

• L1L2nR1(n− 1)R2: This permutation contains another (n− 3)-zigzag starting with
(n, n − 1, n − 3, n − 4, . . .). This case is therefore not relevant since it violates the
assumption that (n, n− 2, n− 3, . . . , 1) is maximal.

Case (c) i = n− 2:
The maximal (n − 3)-zigzag in this case is (n, n − 1, n − 3, . . . , 1) so we will consider
how the position of (n − 2) affects the degree of the resulting permutation. The permu-
tation π is either of the form L1(n − 2)L2nR1R2 or L1L2nR1(n − 2)R2 where L1L2 ∈
Perm ({n− 3, n− 5, . . .}) and R1R2 ∈ Perm ({n− 1, n− 4, n− 6, . . .}).

• π = L1(n−2)L2nR1R2: This contains an (n−3)-zigzag that begins with (n, n−1, n−
2, n− 4, . . .) and therefore contradicts the assumption that (n, n− 1, n− 3, . . . , 1) is
maximal amongst (n− 3)-zigzags.

• π = L1L2nR1(n− 2)R2: We have

T (π) = T (L1L2nR1(n− 2)R2) = T (R1(n− 2)R2)T (L1L2)n.

Consider the two sub-cases: n− 1 ∈ R1 and n− 1 ∈ R2.
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Sub-case n − 1 ∈ R1: If n − 1 ∈ R1 then R1 = R3(n − 1)R4 and R2R3R4 is a
permutation of [n− 4]↓2. Consequently

T (π) = T (R3(n− 1)R4(n− 2)R2)T (L1L2)n

= T (R2)T (R4)(n− 2)T (R3)(n− 1)T (L1L2)n

and T 2(π) = T 2(L1L2)T 2(R3)T (T (R2)T (R4))(n−2)(n−1)n. This is a permutation
of the form A(n − 3)B(n − 2)(n − 1)n with T 2(L1L2) = A(n − 3) where A is
permutation of [n − 5]↓2 and B is a permutation of [n − 4]↓2. We therefore have
degT (T 2(π)) = n− 4 which means degT (π) = n− 2. All permutations of this form
have degree n− 2.

Sub-case n − 1 ∈ R2: If n − 1 ∈ R2 then R2 = R3(n − 1)R4 and R1R3R4 is a
permutation in Perm

(
[n− 4]↓2

)
. Consequently

T (π) = T (R1(n− 2)R3(n− 1)R4)T (L1L2)n

= T (R4)T (R3)T (R1)(n− 2)(n− 1)T (L1L2)n

and

T 2(π) = T (T (R4)T (R3)T (R1)(n− 2)(n− 1)T (L1L2)n)

= T 2(L1L2)T (T (R4)T (R3)T (R1))(n− 2)(n− 1)n.

Since T 2(L1L2) ends in n− 3 (we know this because n− 3 ∈ L1L2 and so n− 3 6∈
R1R3R4) and

T 2(L1L2)T (T (R4)T (R3)T (R1))

is a permutation of the form A(n − 3)B ∈ Sn−3 with T 2(L1L2) = A(n − 3) where
A ∈ Perm

(
[n− 5]↓2

)
and B ∈ Perm

(
[n− 4]↓2

)
, we have degT (T 2(π)) = n−4 which

gives degT (π) = n− 2. All permutations of this form have degree n− 2.

Combining both sub-cases yields the following classification of permutations for this
case:

π = LnR ∈ Sn

L ∈ Perm ({n− 3, n− 5, . . .}) (3.4)

R ∈ Perm ({n− 1, n− 2, n− 4, . . .}) .

Case (d) 1 6 i 6 n− 3:
This case is in many ways similar to Case (c) so we only will highlight the main difference.
It turns out that in order to obtain z maximal among (n−3)-zigzags, the restriction in this
case is that two consecutive elements of {1, . . . , n− 2}, let us call the pair i = {i, i + 1},
must both be either to the left or to the right of n in the permutation π. Then the
sequence of elements n−1, n−2, . . . , i+2, i, i−1, . . . 1 alternate from right to left to right
etc. of n (for any value 1 6 i 6 n− 3). The result depends, of course, on the parity of i
(i.e. whether we have i and i+ 1 both to the left, or to the right, of n in π).
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• If n− i is odd then i and i+ 1 are both to the left of n in π. The number of possible
values of i is b(n − 2)/2c. The sizes of L and R in this case are then bn/2c and
b(n− 1)/2c, respectively.

• If n−i is even then i and i+1 are both to the right of n in π. The number of possible
values of i is b(n − 3)/2c. The sizes of L and R are b(n − 2)/2c and b(n + 1)/2c,
respectively.

The class of these permutations given by this classification and for which degT (π) = n−2
is

π = LnR ∈ Sn

L ∈ Perm ({n− 2, n− 4, . . . , i+ 1, i, i− 2, i− 4, . . .}) (3.5)

R ∈ Perm ({n− 1, n− 3, . . . , i+ 2, i− 1, i− 3, . . .}) ,
for all appropriate i ∈ [1, n/2] when n− i is odd, and

π = LnR ∈ Sn

L ∈ Perm ({n− 2, n− 4, . . . , i+ 2, i− 1, i− 3, . . .}) (3.6)

R ∈ Perm ({n− 1, n− 3, . . . , i+ 3, i+ 1, i, i− 2, . . .}) ,
for all appropriate i ∈ [1, n/2] when n− i is even.

The permutations in Equations 3.1–3.6 are all of the permutations π ∈ Sn for which
degT (π) = n− 2. We will use these to calculate the descent polynomial∑

π∈Sn
degT (π)=n−2

x1+des(π). (3.7)

In some of the classifications of permutations, we see that the sum is over all permutations
in a set except that the largest value must always be to the left or right of the second largest
value. (See for example Equations 3.1 and 3.2.) To accommodate descent polynomials
over these restricted sets we define:

Dn(x) =
∑
π∈Sn

π−1(n)>π−1(n−1)

x1+des(π) and Ln(x) =
∑
π∈Sn

π−1(n)<π−1(n−1)

x1+des(π).

Clearly Dn(x) + Ln(x) = An(x). In order to give an expression for Dn(x) in terms of
polynomials that we know, we do as follows. The polynomial Dn(x) is the Eulerian distri-
bution on length n permutations for which n is to the right of n− 1 in the permutation.

Split the sum over those permutations π ∈ Sn for which (i) πn = n and (ii) πj = n for
some 1 6 j 6 n − 1. In the second case, there are

(
n−2
j−2

)
ways of choosing the elements

which precede n in π, because n− 1 must be one of them. Let us write π = π′nπ′′. So we
have

Dn(x) =
∑
π∈Sn
πn=n

x1+des(π) +
n−1∑
j=2

∑
A⊆{1,...,n−2}
|A|=j−2

∑
π′∈Perms(A∪{n−1})

π′′∈Perms({1,...,n−2}−A)

x1+des(π=π′nπ′′)
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where π = π′nπ′′ and Perms(X) is the set of all permutations of the elements in X. Clearly
the first sum is An−1(x). Since des(π) = des(π′) + 1 + d(π′′) for all 2 6 j 6 n− 1, we have
x1+des(π) = x1+des(π′)x1+des(π′′). Replacing this in the second summation, we find

Dn(x) = An−1(x) +
n−1∑
j=2

(
n− 2

j − 2

)
Aj−1(x)An−j(x)

Now

n−1∑
j=2

(
n− 2

j − 2

)
Aj−1(x)An−j(x)

=
n−2∑
j=1

(
n− 2

j − 1

)
Aj(x)An−1−j(x)

=
1

2

(
n−2∑
j=1

(
n− 2

j − 1

)
Aj(x)An−1−j(x) +

n−2∑
i=1

(
n− 2

n− 2− i

)
An−1−i(x)Ai(x)

)

=
1

2

(
n−2∑
j=1

(
n− 2

j − 1

)
Aj(x)An−1−j(x) +

n−2∑
j=1

(
n− 2

j

)
An−1−j(x)Aj(x)

)

=
1

2

n−2∑
j=1

(
n− 1

j

)
Aj(x)An−1−j(x).

Since An−1(x) = 1
2

(A0(x)An−1(x) + An−1(x)A0(x)), we have

Dn(x) =
1

2

∑
i

(
n− 1

i

)
Ai(x)An−1−i(x). (3.8)

The sums over all permutations in each of Equations 3.1–3.6 are given in the table in
Figure 5, and their total noted in the final row.

We thus have

W (Revstackn,n−3;x)

= W (Revstackn,n−2;x)− (? ? ?)

= An(x)− Abn−1
2
c(x)Adn−1

2
e −
⌊n

2

⌋
Abn

2
c(x)Abn−1

2
c(x)−

⌊
n− 1

2

⌋
Abn−2

2
c(x)Abn+1

2
c(x)

− Lbn
2
c(x)Abn−1

2
c(x)− Abn−2

2
c(x)Dbn+1

2
c(x).

The statement of the theorem follows by substituting Lbn
2
c(x) = Abn

2
c(x)−Dbn

2
c(x).

4 Steingŕımsson’s conjecture

In this section we will use the results of Section 3 to prove Steingŕımsson’s conjecture
(Conjecture 1.1) in some special cases.

the electronic journal of combinatorics 21(2) (2014), #P2.2 16



A
∑

π∈Equation A

x1+des(π)

(3.1) Lbn
2
c(x)Abn−1

2
c(x)

(3.2) Abn−2
2
c(x)Dbn+1

2
c(x)

(3.3) Abn
2
c(x)Abn−1

2
c(x)

(3.4) Abn−2
2
c(x)Abn+1

2
c(x)

(3.5)
⌊
n−2
2

⌋
Abn

2
c(x)Abn−1

2
c(x)

(3.6)
⌊
n−3
2

⌋
Abn−2

2
c(x)Abn+1

2
c(x)

Total
⌊
n
2

⌋
Abn

2
c(x)Abn−1

2
c(x) +

⌊
n−1
2

⌋
Abn−2

2
c(x)Abn+1

2
c(x)

? ? ? +Lbn
2
c(x)Abn−1

2
c(x) + Abn−2

2
c(x)Dbn+1

2
c(x)

Figure 5: Contributions to the descent polynomial from different cases.

Theorem 4.1. Let n > 3 be fixed. Then |Stackn,k| 6 |Revstackn,k| for k = 0, 1, 2, n−3, n−
2, and n−1. This inequality is strict for all of these pairs (n, k) that satisfy 2 < k < n−1

Proof. Since Stackn,0 = Revstackn,0 = {id}, the stated inequality is true for k = 0. Also,
Stackn,n−1 = Revstackn,n−1 = Sn, so the inequality is true for k = n − 1. The cases for
k = 1 and k = 2 follow from Theorems 3.1 and 3.2, respectively, by setting x = 1. The
outstanding cases are k = n− 3 and k = n− 2 which require more work.

First let us consider k = n− 2. West [12] enumerated the set Stackn,n−2:

|Stackn,n−2| = n!− (n− 2)!

If we set x = 1 in Theorem 3.3 then we find that

|Revstackn,n−2| = n!−
⌊
n− 1

2

⌋
!

⌈
n− 1

2

⌉
!

The condition |Stackn,n−2| 6 |Revstackn,n−2| is equivalent to⌊
n− 1

2

⌋
!

⌈
n− 1

2

⌉
! 6 (n− 2)! (4.1)

• If n = 2m + 1 then this translates to m!m! 6 (2m − 1)!, which is equivalent to(
2m
1

)
6
(
2m
m

)
, and this is true for all m > 1. This is a strict inequality for m > 2.

• If n = 2m + 2 then this translates to m!(m + 1)! 6 (2m)!, which is equivalent to(
2m+1

1

)
6
(
2m+1
m

)
, and this is true for all m > 0. This is a strict inequality for m > 2.

The inequality 4.1 therefore holds true for all n > 2 and so the conjecture is true for
k = n− 2. Furthermore, the inequality is strict when n > 5.
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We now consider the final case k = n−3. Using West [12, Ex. 4.2.15 and Thm 4.2.17]
we have

|Stackn,n−3| =
(n− 3)!

2

(
2n3 − 6n2 − 5n+ 16

)
.

To get an expression for |Revstackn,n−3|, set x = 1 in Theorem 3.4 to get

|Revstackn,n−3| =n!−
⌊
n−1
2

⌋
!
⌈
n−1
2

⌉
!−
⌊
n+2
2

⌋ ⌊
n−1
2

⌋
!
⌊
n
2

⌋
!

−
⌊
n−1
2

⌋ ⌊
n−2
2

⌋
!
⌊
n+1
2

⌋
! + 1

2

⌊
n−1
2

⌋
!
⌊
n
2

⌋
!− 1

2

⌊
n−2
2

⌋
!
⌊
n+1
2

⌋
! (4.2)

• If n = 2m+1 then |Revstackn,n−3| = (2m+1)!− 4m2+6m+1
2

(m−1)!m! and |Stackn,n−3|
= (2m−2)!

2
(16m3 − 22m+ 7). We find that |Stackn,n−3| 6 |Revstackn,n−3| iff(

2m− 2

m− 1

)
>

4m3 + 6m2 +m

18m− 7
. (4.3)

This inequality is true for m = 0. Suppose it to be true for m = t. Then(
2(t+ 1)− 2

(t+ 1)− 1

)
=

2(2t− 1)

t

(
2t− 2

t− 1

)
>

2(2t− 1)

t

4t3 + 6t2 + t

18t− 7
,

by the induction hypothesis. The value on the right hand side satisfies the inequality

2(2t− 1)(4t2 + 6t+ 1)

18t− 7
>

4(t+ 1)3 + 6(t+ 1)2 + (t+ 1)

18(t+ 1)− 7
,

this being due to the fact that 216t4 + 168t3 − 292t2 − 147t + 55 > 0 for all t > 1.
(The equation 216t4 + 168t3 − 292t2 − 147t + 55 = 0 has only real roots, of which
t = 1 is the largest.) Combining both of these inequalities shows that inequality 4.3
is true for m = t + 1. By the principle of induction the inequality 4.3 is therefore
true for all m > 0.

• If n = 2m+2 then |Revstackn,n−3| = (2m+2)!−(2m+3)m!(m+1)! and |Stackn,n−3| =
(2m−1)!

2
(16m3 + 24m2 − 10m− 2). We find that |Stackn,n−3| 6 |Revstackn,n−3| iff

(2m− 1)!

m!(m+ 1)!
>

2m+ 3

9m+ 1
. (4.4)

This inequality is true for m = 1. Suppose it to be true for m = t. Then

(2(t+ 1)− 1)!

(t+ 1)!(t+ 2)!
=

2t(2t+ 1)

(t+ 1)(t+ 2)

(2t− 1)!

t!(t+ 1)!
>

2t(2t+ 1)

(t+ 1)(t+ 2)

2t+ 3

9t+ 1
,

by the induction hypothesis. By noticing that 54t4 + 123t3 + 32t2− 49t− 10 > 0 for
all t > 1 (the largest root of 54t4 + 123t3 + 32t2 − 49t− 10 = 0 is between 0.5 and
0.6), the value on the right hand side satisfies the inequality

2t(2t+ 1)(2t+ 3)

(t+ 1)(t+ 2)(9t+ 1)
>

2(t+ 1) + 3

9(t+ 1) + 1
.
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Combining both of these inequalities we find that

(2(t+ 1)− 1)!

(t+ 1)!(t+ 2)!
>

2(t+ 1) + 3

9(t+ 1) + 1
(4.5)

and inequality 4.4 is true for m = t+ 1. By the principle of induction the inequality
4.4 is therefore true for all m > 1.

In both cases the inequality is strict for n > 5.

Equation 4.2 admits a reduction to the more compact form:

|Revstackn,n−3| = n!−
⌊
n−1
2

⌋
!
⌈
n−1
2

⌉
!− n2

2

⌊
n−1
2

⌋
!
⌊
n−2
2

⌋
! (4.6)

5 The descent polynomial of t-revstack sortable per-

mutations

Let Vt(n, i) and Wt(n, i) be the sets of permutations in Sn having i descents which are
t-revstack sortable and t-stack sortable, respectively. Let us write vt(n, i) = |Vt(n, i)| and
wt(n, i) = |Wt(n, i)| so that

W (Revstackn,t;x) =
∑
i

vt(n, i)x
i+1

W (Stackn,t;x) =
∑
i

wt(n, i)x
i+1.

Bóna[1, 2] proved symmetry and unimodality of the numbers wt(n, i) with respect to the
descent parameter, i.e.

wt(n, i) = wt(n, n− 1− i) for all 0 6 i 6 n− 1, and

wt(n, 0) 6 wt(n, 1) 6 . . . 6 wt(n, b(n− 1)/2c) > . . . > wt(n, n− 1).

In this section we will do the same for the numbers vt(n, i). Symmetry is proven by
showing that the reflection operation on permutations commutes with Bóna’s [1] duality
map. Unimodality is proven by using the same argument of Bóna [1, 2] and showing that
his function z : Wt(n, i) → Wt(n, i + 1) is injective for all 0 6 i 6

⌊
n−3
2

⌋
and preserves

t-revstack sortability.

Theorem 5.1. vt(n, i) = vt(n, n− 1− i).

Proof. Bóna’s duality map [1, Section 2] f : Sn → Sn is defined in the following recursive
way. Note that permutations are written as words, and the definition is necessarily a
definition on words. The value n stands for the unique largest value in a word.

• f(ε) = ε
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• f(x) = x where x is a word of length 1

• f(LnR) = f(L)nf(R) if neither L nor R is empty

• f(Ln) = nf(L)

• f(nR) = f(R)n.

Let us recall Bóna’s method of proof of symmetry. He showed [1, Lemma 2.6] that f
preserves the t-stack sortable property:

S(π) = S(f(π)) (5.1)

from which he concludes that π is t-stack sortable iff f(π) is t-stack sortable. He also
showed [1, Proposition 2.5] that

des(π) + des(f(π)) = n− 1 (5.2)

for all π ∈ Sn. Combining these two observations: applying f to permutations in Sn

that are t-stack sortable gives another permutation that is t-stack sortable, but which has
n− 1− des(π) descents, i.e. there is symmetry in the descent statistic.

The reverse operation rev : Sn → Sn is defined recursively via

• rev(ε) = ε

• rev(LnR) = rev(R)nrev(L) where n is the largest value in the word LnR.

It is easy (by induction on the length of the word) to see that f ◦ rev = rev ◦ f = g where
g is defined as follows:

• g(ε) = ε

• g(x) = x where x is a word of length 1

• g(LnR) = g(R)ng(L) if neither L nor R is empty

• g(Ln) = g(L)n

• g(nR) = ng(R).

The operator f preserves the t-revstack sortable property since

T (π) = S(rev(π))

= S(f(rev(π)))

by applying Bóna’s equation 5.1 above,

= S(rev(f(π)))

since f commutes with rev,

= T (f(π)).

This fact, in conjunction with equation 5.2, gives the stated result.
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Theorem 5.2. The sequence of numbers (vt(n, 0), vt(n, 1), . . . , vt(n, n− 1)) is unimodal.

Proof. This proof is a slight modification of Bóna’s unimodality proof of the number
sequence (wt(n, i))

n−1
i=0 (see [1, Section 3] and [2]). Let Sdes=i

n be the set of permutations
in Sn that have i descents. Let T (n, i) be the set of decreasing binary trees on n vertices
whose label set is {1, . . . , n} and which have i right edges.

The sets Sdes=i
n and T (n, i) are in one-to-one correspondence, and we write Tree(π)

for the tree in T (n, i) that corresponds to π ∈ Sdes=i
n using the following rule: x is a left

(resp. right) child of y in Tree(π) iff x is the largest value to the left (resp. right) of y
in π and which is less than it. (One easily recovers the permutation π from Tree(π) by
reading its labels using in-order traversal, and des(π) equals the number of right edges in
Tree(π).)

Bóna proved unimodality by exhibiting an function h′ : T (n, i) → T (n, i + 1) that
is injective for all i 6

⌊
n−3
2

⌋
and preserves the t-stack sortable property. Due to the

bijective correspondence between Sdes=i
n and T (n, i) (outlined in the previous paragraph),

the injective function h′ is equivalent to a function h : Wt(n, i) → Wt(n, i + 1) that is
injective for all 0 6 i 6

⌊
n−3
2

⌋
and for all t.

Let us describe the function h by way of an example, and explain why it also preserves
the property of t-revstack-sortability. The function h operates on a permutation π by
looking at its tree Tree(π). Suppose π = (8, 7, 9, 4, 6, 1, 10, 2, 3, 5, 11). Then Tree(π) is
given in Figure 6.

Tree(π) =

11

10

9

8

7

6

4 1

5

3

2

Figure 6: The decreasing binary tree corresponding to π = (8, 7, 9, 4, 6, 1, 10, 2, 3, 5, 11).

Index the vertices of the tree from bottom to top, and within every level from left to
right. This starts by labeling the bottom-most vertex on the left hand side v1. If there is
a vertex on the same level and to its right then label it vertex v2, but otherwise go up one
level and label the leftmost vertex v2, and so forth. The labeling of Tree(π) in Figure 6 is
given in Figure 7.

Let Ti be the subgraph of Tree(π) when restricted to the vertices {v1, . . . , vi}. T7 is
shown in Figure 8.

(Bóna proved the existence of such an i using a continuity argument [2].) In our
example this minimum value is i = 9.
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v11

v10

v8

v5

v1

v6

v2 v3

v9

v7

v4

Figure 7: The labeling of the tree from Figure 6.

Next we look at the vertices in Tree(π) that are both part of Ti and have only either
a left or a right child (but not both). If such a vertex has a left child, then move it to
be a right child instead. If such a vertex has a right child, then move it to be a left child
instead. Let the resulting tree be h′(Tree(π)).

T7 =
8

7

6

4 1

3

2

Figure 8: T7, the restriction of Tree(π) to the vertices {v1, . . . , v7}.

Determine the minimum value of i such that the number of left edges in Ti is precisely
one more than the number of right edges in Ti. For example, the nodes in Tree(π) that
are part of T9 and which have only left or right children (but not both) are v5, v7 and v9.
Consequently h′(Tree(π)) is illustrated in Figure 9.

h′(Tree(π)) =

11

10

9

8

7

6

4 1

5

3

2

Figure 9: The outcome of applying h′ to Tree(π).

The tree h′(Tree(π)) has exactly one more right edge than Tree(π). This map h′ :
T (n, i)→ T (n, i+ 1) was proven to be injective for i 6

⌊
n−3
2

⌋
(see Bóna[2]). The permu-

tation h(π) is the unique permutation corresponding to h′(Tree(π)). For our example we
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have
h(π) = (7, 8, 9, 4, 6, 1, 10, 5, 3, 2, 11).

To summarise: the function h : Sdes=i
n → Sdes=i+1

n is injective for all 0 6 i 6
⌊
n−3
2

⌋
.

Bóna then showed that h preserves the t-stack sortable property: S(π) = S(h(π)).
This was done by noting that S(π) is given by reading the tree Tree(π) using post-order
traversal. The post-order reading of the tree is the same even after the application of
the operator h′ on Tree(π) because h′ only changes the direction of subtrees that are the
only-children of nodes, and therefore preserves the post-order reading.

The same argument holds in our case, and all we need to show in order to prove the
theorem is that h preserves the t-revstack sortable property: T (π) = T (h(π)). To do
this, let us define the rpostorder traversal of a tree as the list one obtains by first listing
the rpostorder of its right subtree, then the rpostorder of the left subtree, and then finally
listing the label of the root node. The rpostorder of the tree Tree(π) is then T (π). Since
h′ only changes the orientation of subtrees that are only-children of nodes, the rpostorder
reading of h′(Tree(π)) is the same as the rpostorder reading of Tree(π).

The coefficients of the two smallest and two largest powers of x inW (Revstackn,t;x) and
W (Stackn,t;x) are always the same. This follows from symmetry and using the following
results. Note that the coefficient of x in both is always unity because Revstackn,0 =
Stackn,0 = {id} which means vt(n, 0) = wt(n, 0) = 1.

Proposition 5.3. vt(n, 1) = wt(n, 1).

Proof. The set {π ∈ Sn : T (π) = id and des(π) = 1} = {π ∈ Sn : S(rev(π)) =
id and des(π) = 1}. Since des(rev(π)) + des(π) = n − 1 we have |{π ∈ Sn : S(rev(π)) =
id and des(π) = 1}| = |{π ∈ Sn : S(π) = id and des(rev(π)) = n − 2}|. This last set is
the same as {π ∈ Sn : S(π) = id and des(π) = 1} since des(π) = n − 1 − des(rev(π)),
hence the result.

Proving real-rootedness and log-concavity of the coefficient sequences of the descent
polynomials for t-stack sortable permutations remains an unsolved problem. We present
companion conjectures for revstack sort that have been verified for all 0 6 t < n 6 10.
All such polynomials, along with their roots, are listed in the appendix.

Conjecture 5.4. For all n > 1, the polynomial W (Revstackn,t;x) has only real non-
positive roots.

Conjecture 5.5. For all n > 1, the sequence of coefficients of the polynomial
W (Revstackn,t;x) is log-concave.

Note that a proof of Conjecture 5.4 would imply Conjecture 5.5.

Conjecture 5.6. For all n > 1, W (Revstackn,n−2;x) has n distinct real roots:

r
(n)
n−1 < r

(n)
n−2 < · · · < r

(n)
1 < r

(n)
0 = 0

and these roots are related via

r(n+1)
n < r

(n)
n−1 < r

(n+1)
n−1 < r

(n)
n−2 < r

(n+1)
n−2 · · · < r

(n+1)
2 < r

(n)
1 < r

(n+1)
1 < r

(n)
0 = 0 = r

(n+1)
0 .
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6 Concluding Remarks

1. Úlfarsson [11] recently classified 3-stack sortable permutations in terms of a new type
of permutation pattern that he called decorated patterns. Can a similar analysis be
performed for the case of 3-revstack sortable permutations? The stack sort operator
preserves a certain left-to-rightness, whereas this is not the case for revstack.

2. In the paper [6] the author (in collaboration with two others) classified and enu-
merated (n − 4)-stack sortable permutations. It was proven that |Stackn,n−4| =
(n − 4)!(3n4 − 18n3 − 4n2 + 158n − 192)/3. Determining those permutations that
are (n − 4)-revstack sortable would appear to be tractable but most likely hard.
Enumerating this class would allow for Steingŕımsson’s conjecture to be proven for
t = n− 4.

3. How many permutations π ∈ Sn contain no t-zigzag? How many permutations
π ∈ Sn contain no uninterrupted t-zigzag? Answers to these questions will provide
bounds on the number of t-revstack sortable permutations.

Appendix

W (Revstack1,0;x) = x. Roots: ([0])

W (Revstack2,0;x) = x. Roots: ([0])

W (Revstack2,1;x) = x2 + x. Roots: ([−1, 0])

W (Revstack3,0;x) = x. Roots: ([0])

W (Revstack3,1;x) = x3 + 3x2 + x. Roots: ([−2.61803,−0.38197, 0])

W (Revstack3,2;x) = x3 + 4x2 + x. Roots: ([−3.73205,−0.26795, 0])

W (Revstack4,0;x) = x. Roots: ([0])

W (Revstack4,1;x) = x4 + 6x3 + 6x2 + x. Roots: ([−4.79129,−1,−0.20871, 0])

W (Revstack4,2;x) = x4 + 10x3 + 10x2 + x. Roots: ([−8.88748,−1,−0.11252, 0])

W (Revstack4,3;x) = x4 + 11x3 + 11x2 + x. Roots: ([−9.89898,−1,−0.10102, 0])

W (Revstack5,0;x) = x. Roots: ([0])

W (Revstack5,1;x) = x5 + 10x4 + 20x3 + 10x2 + x.
Roots: ([−7.51264,−1.79811,−0.55614,−0.13311, 0])

W (Revstack5,2;x) = x5 + 20x4 + 49x3 + 20x2 + x.
Roots: ([−17.22204,−2.28160,−0.43829,−0.05807, 0])

W (Revstack5,3;x) = x5 + 25x4 + 64x3 + 25x2 + x.
Roots: ([−22.163124,−2.36978,−0.42198,−0.04512, 0])

W (Revstack5,4;x) = x5 + 26x4 + 66x3 + 26x2 + x.
Roots: ([−23.203854,−2.32247,−0.43058,−0.04310, 0])

W (Revstack6,0;x) = x. Roots: ([0])

W (Revstack6,1;x) = x6 + 15x5 + 50x4 + 50x3 + 15x2 + x.
Roots: ([−10.78022,−2.76541,−1,−0.36161,−0.09276, 0])

W (Revstack6,2;x) = x6 + 35x5 + 168x4 + 168x3 + 35x2 + x.

the electronic journal of combinatorics 21(2) (2014), #P2.2 24



Roots: ([−29.49606,−4.23384,−1,−0.23619,−0.03390, 0])

W (Revstack6,3;x) = x6 + 50x5 + 267x4 + 267x3 + 50x2 + x.
Roots: ([−44.07961,−4.68422,−1,−0.21348,−0.02269, 0])

W (Revstack6,4;x) = x6 + 56x5 + 297x4 + 297x3 + 56x2 + x.
Roots: ([−50.20122,−4.55954,−1,−0.21932,−0.01992, 0])

W (Revstack6,5;x) = x6 + 57x5 + 302x4 + 302x3 + 57x2 + x.
Roots: ([−51.21838,−4.54193,−1,−0.22017,−0.01952, 0])

W (Revstack7,0;x) = x. Roots: ([0])

W (Revstack7,1;x) = x7 + 21x6 + 105x5 + 175x4 + 105x3 + 21x2 + x.
Roots: ([−14.59334,−3.89836,−1.52940,−0.65385,−0.25652,−0.06852, 0])

W (Revstack7,2;x) = x7 + 56x6 + 462x5 + 900x4 + 462x3 + 56x2 + x.
Roots: ([−46.47035,−6.98835,−1.83034,−0.54635,−0.14310,−0.02152, 0])

W (Revstack7,3;x) = x7 + 91x6 + 898x5 + 1834x4 + 898x3 + 91x2 + x.
Roots: ([−80.06899,−8.36871,−1.90552,−0.52479,−0.11949,−0.01249, 0])

W (Revstack7,4;x) = x7 + 112x6 + 1113x5 + 2258x4 + 1113x3 + 112x2 + x.
Roots: ([−101.22387,−8.24273,−1.86641,−0.53579,−0.12132,−0.00988, 0])

W (Revstack7,5;x) = x7 + 119x6 + 1183x5 + 2398x4 + 1183x3 + 119x2 + x.
Roots: ([−108.27803,−8.19127,−1.86246,−0.53692,−0.12208,−0.00924, 0])

W (Revstack7,6;x) = x7 + 120x6 + 1191x5 + 2416x4 + 1191x3 + 120x2 + x.
Roots: ([−109.30521,−8.15963,−1.86818,−0.53528,−0.12255,−0.00915, 0])

W (Revstack8,0;x) = x. Roots: ([0])

W (Revstack8,1;x) = x8 + 28x7 + 196x6 + 490x5 + 490x4 + 196x3 + 28x2 + x.
Roots: ([−18.95172,−5.19552,−2.14030,−1,−0.46722,−0.19247,−0.05277, 0])

W (Revstack8,2;x) = x8 + 84x7 + 1092x6 + 3630x5 + 3630x4 + 1092x3 + 84x2 + x.
Roots: ([−68.90575,−10.67971,−2.96965,−1,−0.33674,−0.09364,−0.01451, 0])

W (Revstack8,3;x) = x8 + 154x7 + 2587x6 + 9490x5 + 9490x4 + 2587x3 + 154x2 + x.
Roots: ([−135.40863,−13.95990,−3.24421,−1,−0.30824,−0.07163,−0.00739, 0])

W (Revstack8,4;x) = x8 + 210x7 + 3646x6 + 13273x5 + 13273x4 + 3646x3 + 210x2 + x.
Roots: ([−191.30191,−14.16374,−3.14005,−1,−0.31847,−0.07060,−0.00523, 0])

W (Revstack8,5;x) = x8 + 238x7 + 4158x6 + 15115x5 + 15115x4 + 4158x3 + 238x2 + x.
Roots: ([−219.35732,−14.12477,−3.12228,−1,−0.32028,−0.07080,−0.00456, 0])

W (Revstack8,6;x) = x8 + 246x7 + 4278x6 + 15563x5 + 15563x4 + 4278x3 + 246x2 + x.
Roots: ([−227.49455,−13.97464,−3.13599,−1,−0.31888,−0.07156,−0.00440, 0])

W (Revstack8,7;x) = x8 + 247x7 + 4293x6 + 15619x5 + 15619x4 + 4293x3 + 247x2 + x.
Roots: ([−228.51096,−13.95665,−3.13765,−1,−0.31870,−0.07165,−0.00438, 0])

W (Revstack9,0;x) = x. Roots: ([0])

W (Revstack9,1;x) = x9 + 36x8 + 336x7 + 1176x6 + 1764x5 + 1176x4 + 336x3 + 36x2 + x.
Roots: ([−23.85519,−6.65620,−2.83087,−1.39601,−0.71633,−0.35325,−0.15024,−0.04192, 0])

W (Revstack9,2;x) = x9+120x8+2310x7+12012x6+20449x5+12012x4+2310x3+120x2+x.
Roots: ([−97.56308,−15.44345,−4.46160,−1.61264,−0.62010,−0.22414,−0.06475,−0.01025, 0])

W (Revstack9,3;x) = x9+246x8+6621x7+40116x6+71403x5+40116x4+6621x3+246x2+x.
Roots: ([−216.23090,−22.10085,−5.15272,−1.67433,−0.59725,−0.19407,−0.04525,−0.00462, 0])

W (Revstack9,4;x) = x9 + 372x8 + 10737x7 + 64936x6 + 114962x5 + 64936x4 + 10737x3 +
372x2 + x.

Roots: ([−341.07546,−23.44302,−4.98440,−1.64183,−0.60908,−0.20063,−0.04266,−0.00293, 0])

W (Revstack9,5;x) = x9 + 456x8 + 13402x7 + 80984x6 + 143230x5 + 80984x4 + 13402x3 +
456x2 + x.

the electronic journal of combinatorics 21(2) (2014), #P2.2 25



Roots: ([−424.90556,−23.65930,−4.93995,−1.63740,−0.61072,−0.20243,−0.04227,−0.00235, 0])

W (Revstack9,6;x) = x9 + 492x8 + 14352x7 + 86678x6 + 153426x5 + 86678x4 + 14352x3 +
492x2 + x.

Roots: ([−461.29325,−23.25795,−4.94880,−1.64479,−0.60798,−0.20207,−0.04300,−0.00217, 0])

W (Revstack9,7;x) = x9 + 501x8 + 14586x7 + 88091x6 + 155946x5 + 88091x4 + 14586x3 +
501x2 + x.

Roots: ([−470.38820,−23.15789,−4.95345,−1.64559,−0.60769,−0.20188,−0.04318,−0.00213, 0])

W (Revstack9,8;x) = x9 + 502x8 + 14608x7 + 88234x6 + 156190x5 + 88234x4 + 14608x3 +
502x2 + x.

Roots: ([−471.40751,−23.13604,−4.95662,−1.64474,−0.60800,−0.20175,−0.04322,−0.00212, 0])

W (Revstack10,0;x) = x. Roots: ([0])

W (Revstack10,1;x) =
x10 + 45x9 + 540x8 + 2520x7 + 5292x6 + 5292x5 + 2520x4 + 540x3 + 45x2 + x.

Roots: ([−29.30369,−8.28003,−3.60019,−1.83993,−1,−0.54350,−0.27776,−0.12077,−0.03413, 0])
W (Revstack10,2;x) =
x10 + 165x9 + 4488x8 + 34320x7 + 91091x6 + 91091x5 + 34320x4 + 4488x3 + 165x2 + x.

Roots: ([−133.20312,−21.41541,−6.35121,−2.40235,−1,−0.41626,−0.15745,−0.04670,−0.00751, 0])
W (Revstack10,3;x) =
x10+375x9+15423x8+145387x7+421769x6+421769x5+145387x4+15423x3+375x2+x.

Roots: ([−329.52317,−33.53780,−7.79673,−2.59597,−1,−0.38521,−0.12826,−0.02982,−0.00303, 0])
W (Revstack10,4;x) =
x10+627x9+28952x8+275897x7+794694x6+794694x5+275897x4+28952x3+627x2+x.

Roots: ([−577.70720,−37.60046,−7.62298,−2.51172,−1,−0.39813,−0.13118,−0.02660,−0.00173, 0])
W (Revstack10,5;x) =
x10+837x9+40110x8+382904x7+1101090x6+1101090x5+382904x4+40110x3+837x2+x.

Roots: ([−786.62666,−38.77026,−7.54646,−2.49648,−1,−0.40056,−0.13251,−0.02579,−0.00127, 0])
W (Revstack10,6;x) =
x10+957x9+45476x8+432834x7+1245792x6+1245792x5+432834x4+45476x3+957x2+x.

Roots: ([−907.40761,−38.00620,−7.51389,−2.51404,−1,−0.39777,−0.13309,−0.02631,−0.00110, 0])
W (Revstack10,7;x) =
x10 + 1002x9 + 47433x8 + 451199x7 + 1298925x6 + 1298925x5 + 451199x4 + 47433x3 +
1002x2 + x.

Roots: ([−952.70805,−37.70097,−7.51573,−2.51739,−1,−0.39724,−0.13305,−0.02652,−0.00105, 0])
W (Revstack10,8;x) =
x10 + 1012x9 + 47803x8 + 454829x7 + 1309315x6 + 1309315x5 + 454829x4 + 47803x3 +
1012x2 + x.

Roots: ([−962.84130,−37.55584,−7.52923,−2.51564,−1,−0.39751,−0.13282,−0.02663,−0.00104, 0])
W (Revstack10,9;x) =
x10 + 1013x9 + 47840x8 + 455192x7 + 1310354x6 + 1310354x5 + 455192x4 + 47840x3 +
1013x2 + x.

Roots: ([−963.85446,−37.54150,−7.53057,−2.51546,−1,−0.39754,−0.13279,−0.02664,−0.00104, 0])
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[11] H. Úlfarsson. Describing West-3-stack-sortable permutations with permutation pat-
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