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Abstract

We provide a structural description of Bruhat order on the set F2n of fixed-point-
free involutions in the symmetric group S2n which yields a combinatorial proof of
a combinatorial identity that is an expansion of its rank-generating function. The
decomposition is accomplished via a natural poset congruence, which yields a new
interpretation and proof of a combinatorial identity that counts the number of rook
placements on the Ferrers boards lying under all Dyck paths of a given length 2n.
Additionally, this result extends naturally to prove new combinatorial identities
that sum over other Catalan objects: 312-avoiding permutations, plane forests, and
binary trees.

1 Introduction

There is a family of combinatorial identities that express sums over certain Catalan objects
in nice closed forms. Perhaps one of the most notable members of this family is Postnikov’s
hook-length formula, ∑

T∈Bn

∏
v∈T

(h(v) + 1

h(v)

)
=

2n(n+ 1)n−1

n!
, (1)

which can be found in [9]. This sum is taken over the set Bn of binary trees with n nodes,
and the value h(v) is the the number of descendants of the node v. Another member of
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this family,

n!
∑
F∈Fn

∏
v∈F

1

h(v)
= (2n− 1)!!, (2)

appears in [5], which is a sum over the set Fn of plane forests with n nodes. It is well-
known that the Catalan numbers enumerate Bn and Fn [13, Exercise 6.19]. We prove the
following identity in this family:∑

δ∈Dn

rn(B(δ)) = (2n− 1)!!. (3)

This sum is taken over the set Dn of Dyck paths of length 2n. The statistic rn(B(δ)) is the
nth rook number of the Ferrers board B(δ) ⊂ [n]× [n] lying under the Dyck path δ ∈ Dn.
As an example, consider the Dyck paths in D3 shown in Figure 1. The assertion made
by (3) is that 1 + 2 + 2 + 4 + 6 = 5!!. Each summand is the number of (non-attacking)
3-rook placements on the respective Ferrers boards.

Figure 1: The Ferrers boards lying under the five Dyck paths in D3

Identity (3) is merely a consequence of our main focus, a combinatorial proof of Theo-
rem 1, which is a decomposition of the rank-generating function of the poset F2n consisting
of the fixed-point-free involutions in S2n under Bruhat order.

Theorem 1. For all n ∈ N,∑
δ∈Dn

∏
i∈[n]

qdi(δ)−2i[di(δ)− 2i+ 1]q = [1]q[3]q · · · [2n− 1]q. (4)

Here, di(δ) is a statistic on the Dyck path δ ∈ Dn, which we describe in Section 3.1.1, and∏
i∈[n][di(δ)− 2i+ 1]q is a q-analog of the rook number rn(B(δ)).
In order to dissect the poset F2n, we make use of a bijection ϕ between fixed-point-free

involutions and rook placements on Ferrers boards. This bijection is decribed specifically
in Section 3.2, and it is well-known as a part of combinatorial folklore among those
concerned with perfect matchings.

This realization leads to a decomposition of the poset into disjoint intervals, which
in turn yields the expansion of the rank-generating function of F2n given in Theorem 1.
The decomposition of F2n is accomplished via a poset congruence in the sense of [10]. (A
poset congruence is the order-theoretic generalization of a lattice congruence.) Figure 2
illustrates the Hasse diagram of Bruhat order on F6 under the bijection ϕ.

It should be mentioned that (4) appears in [1], in which the authors refer to it as a
classical identity. This equation can be derived from [6, Exercise 5.2.9 (b)] using hyperge-
ometric series. Our proof of this result is combinatorial, thus it is very different in nature.
Moreover, it describes something fundamental about fixed-point-free involutions.
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Figure 2: Bruhat order on F6 represented as rook placements on Dyck boards

The connection between these Catalan objects highlights a sense in which binary trees
relate to permutations as plane forests relate to fixed-point-free involutions. Specifically,
there is a natural map Sn → Bn (cf. [3], [11]) that is a lattice homomorphism of the
weak order on Sn, and the natural partial order on the image is the quotient—the Tamari
lattice. In particular, the fibers of the map constitute a lattice congruence on the weak
order. In this paper, we exhibit a natural map F2n → Fn whose fibers constitute a poset
congruence on the Bruhat order on F2n. The quotient modulo this congruence is a natural
partial order on Dyck paths.

We extend this enumerative result to the context of plane forests and binary trees. In
particular, under two natural bijections, the rook number statistic of each Dyck path is
equivalent to statistics on these objects. This yields additional identities in the family of
Catalan sums.
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2 Fixed-point-free involutions

The objects of concern to us are elements of the symmetric group, thus we begin by
recalling pertinent notions relating to the symmetric group and Bruhat order in Section
2.1. Section 2.2 contains a characterization of the set F2n of fixed-point-free involutions,
and we describe in Section 2.3 the subposet of these permutations under the order induced
by Bruhat order on S2n.

2.1 The symmetric group

For n > 1, let Sn denote the symmetric group, which consists of all permutations
σ : [n]→ [n], where [n] denotes the set {1, 2, . . . , n}. Each permutation σ ∈ Sn can be
written in one-line notation as σ1σ2 · · ·σn, where σi := σ(i) for all i ∈ [n]. Alternatively,
σ ∈ Sn can be decomposed into its cycle notation in which it is written as a product of
unique disjoint cycles of the form (σiσ

2
i · · ·σki ), in which σk+1

i = σi. We omit 1-cycles from
cycle notation. The canonical cycle notation of a permutation is its cycle decomposition
with its cycles in ascending order by their minimal elements and the elements within cy-
cles arranged so that the least value appears first. We use the notation (σiσ

2
i · · ·σki ) ∈ σ

to denote that the cycle (σiσ
2
i · · ·σki ) appears in the canonical cycle notation of σ. We

denote by idn the identity permutation 12 · · ·n in Sn.
The permutation diagram of σ ∈ Sn is the n× n array of squares, which we call cells,

with the set {(i, σi) : i ∈ [n]} ⊂ [n]× [n] of cells shaded. The cell (i, j) is in the ith column
from the left and the jth row from the bottom.

Example 2. The permutation diagram of σ = 416523 ∈ S6 is pictured in Figure 3(a).

(a) 416523 ∈ S6 (b) Two free rises of 416523 ∈ S6

Figure 3

An inversion of σ ∈ Sn is a pair (σi, σj) ∈ [n]2 such that i < j and σi > σj. The
inversion number inv(σ) of σ is the number of its inversions. A rise of σ ∈ Sn is a pair
(i, j) ∈ [n]2 such that i < j and σi < σj. A rise is called free if there exists no k ∈ [n]
such that i < k < j and σi < σk < σj. Each i ∈ [n] satisfies exactly one of the following
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relations: σi < i; σi > i; or σi = i. In these cases, i is called a deficiency, an exceedance,
or a fixed-point of σ, respectively.

Bruhat order on Sn is the partial order relation 6B which is the transitive closure of
the relation → defined by σ → τ if and only if σ(ij) = τ for some transposition (ij) and
inv(σ) < inv(τ). Let /B denote the covering relation in Bruhat order. The rank function
of Sn under Bruhat order is given by inv(σ) for all σ ∈ Sn. The following descriptions of
Bruhat order will be useful.

Theorem 3. [2, Theorem 2.1.1] For all σ ∈ Sn and (h, k) ∈ [n]2, define

σ[h, k] := |{i ∈ [h] : σi > k}|.

If σ, τ ∈ Sn, then σ 6B τ if and only if σ[h, k] 6 τ [h, k] for all (h, k) ∈ [n]2.

Theorem 4. [7, Theorem 5.1] Suppose σ, τ ∈ Sn. Then σ /B τ if and only if τ = σ(ij)
for some free rise (i, j) of σ.

Given permutations σ ∈ Sn and τ ∈ Sm, we say that σ contains τ if there exist
1 6 i1 < i2 < · · · < im 6 n such that σij < σik if and only if τj < τk for every pair
j, k ∈ [m]. If σ does not contain τ , then we say σ is τ -avoiding. Let Sn(τ) denote the set
of τ -avoiding permutations in Sn. It is well-known [8] that the nth Catalan number Cn
is the number of permutations in Sn(τ) for any τ ∈ S3.

Example 5. The fourteen 312-avoiding permutations in S4 are 1234, 1243, 1324, 1342,
1432, 2134, 2143, 2314, 2341, 2431, 3214, 3241, 3421, and 4321.

2.2 The set F2n

Let F2n denote the set of fixed-point-free involutions in S2n. Note that any x ∈ F2n has
n transpositions in its canonical cycle notation (e1d1)(e2d2) · · · (endn). Additionally, we
have ei < di for all i ∈ n and ei < ei+1 for all i ∈ [n − 1]. We use the characters e and
d to indicate which values are exceedances and which are deficiencies. The cardinality of
F2n is (2n− 1)!!.

Being composed as a set of ordered pairs lends itself to a more pictorial representation:
the arc diagram of x ∈ F2n is a directed complete matching on the node set [2n] with
edge set {(i, j) : (ij) ∈ x}, where (i, j) denotes the directed edge from the initial point i
to the terminal point j.

Example 6. Figure 4 shows the arc diagram of 73286514 ∈ F8.

We adopt from [4] the following definitions relating to the arc diagram of a fixed-
point-free involution. Suppose x ∈ F2n and (eidi), (ejdj) ∈ x for i < j. The two arcs
(eidi), (ejdj) ∈ x are crossing if ei < ej < di < dj. When no pair of arcs of an arc diagram
are crossing, we say the arc diagram is non-crossing. It is well-known that the nth Catalan
number Cn is the number of non-crossing arc diagrams on 2n vertices [13, Exercise.
6.19(o)]. Define the crossing number cross(x) of x ∈ F2n to be the number of pairs
of arcs in its arc diagram that are crossing. Define span(x) :=

∑
(ed)∈x span(e, d), where

span(e, d) := d−e−1, and define the weight of x ∈ F2n to be wt(x) := span(x)−cross(x).
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1 2 3 4 5 6 7 8

Figure 4: (17)(23)(48)(56) = 73286514 ∈ F8

Example 7. Consider the arc diagram of x := 73286514 ∈ F8 shown in Figure 4. The
span of x is 8, and arcs (17) and (48) form the only crossing pair, thus wt(x) = 8.

Proposition 8. For any i < j, the two arcs (ei, di) and (ej, dj) cross in the arc diagram
of x ∈ F2n if and only if ej < i+ j if and only if i+ j 6 di.

Proof. By definition, the two arcs cross if and only if ei < ej < di < dj. It is clear then
that the crossing is due solely to the middlemost inequality, meaning that the jth e is
preceded by strictly less than i terminal points. Equivalently, the ith d is preceded by at
least j initial points. In other words, ej < i+ j if and only if i+ j 6 di.

Proposition 9. If x ∈ F2n, then inv(x) = 2 wt(x) + n.

Proof. We proceed by induction, so first note that the proposition holds in the n = 1
case. Now, consider x ∈ F2n for some n > 1, and suppose the proposition holds for n− 1.
By removing the arc (i, 2n) from the arc diagram of x and subtracting 1 from the entries
between i and 2n, we obtain the arc diagram for y ∈ F2n−2. By the inductive hypothesis,
inv(y) = 2 wt(y) + (n− 1). Then, letting cx(a, b) denote the number of arcs crossing the
arc (a, b) in x, we have

span(x) = span(y) + cx(i, 2n) + (2n− i− 1)

and
cross(x) = cross(y) + cx(i, 2n).

Now,

wt(x) = span(x)− cross(x)

= span(y) + cx(i, 2n) + (2n− i− 1)− cross(y)− cx(i, 2n)

= span(y)− cross(y) + (2n− i− 1)

= wt(y) + (2n− i− 1)

Thus

inv(x) = inv(y) + (2n− i− 1) + (2n− i)
= 2 wt(y) + (n− 1) + (2n− i− 1) + (2n− i)
= 2 wt(y) + n− 1 + 2n− i− 1 + 2n− i
= 2(wt(y) + 2n− i− 1) + n

= 2 wt(x) + n,

and the proposition holds for n. Thus the proposition holds for all natural numbers.
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2.3 Bruhat order on F2n

Let the partial order relation 6 be the restriction of Bruhat order on the elements of F2n,
and let / denote the corresponding cover relation. Both the set F2n and the poset (F2n,6)
will be denoted by F2n, as no confusion should arise. Because Bruhat order is graded by
inversion number, Theorem 4 implies the following lemma.

Lemma 10. Suppose x ∈ F2n. If (i, j) is a free rise of x and (xi, xj) is a free rise of
x(ij), then inv((ij)x(ij)) = inv(x) + 2.

Proposition 11. The cover relation x / y exists in F2n if and only if y = (ij)x(ij) for
some free rise (i, j) of x such that inv(y) = inv(x) + 2.

Proof. Let x, y ∈ F2n. Suppose inv(y) = inv(x) + 2 and there exists some free rise (i, j)
of x such that y = (ij)x(ij). The existence of the cover relations x/B x(ij) and x(ij) /B y
follow from Theorem 4 and the fact that y = x(ij)(xixj). Bruhat order is ranked by
inversion number, and inv(y) = inv(x) + 2, thus x / y.

Conversely, suppose x / y. Define

i := min{k ∈ [2n] : xk 6= yk}

and
j := min{k ∈ [i+ 1, 2n] : xk 6 yi and (i, k) is a free rise of x}.

Theorem 3 implies that xi < yi. Because (i, x−1
yi

) is a rise of x, there exists at least one
element in the set of which j is the minimum. Denote (ij)x(ij) by z. We show that z = y
and inv(z) = inv(x) + 2.

If (xi, xj) is not a free rise of x(ij), then there is some k ∈ [n] such that xi < k < xj
and x(ij)xi < x(ij)k < x(ij)xj , i.e., i < xk < j. This contradicts (i, j) being a free rise
of x, thus (xi, xj) is a free rise of x(ij). Moreover, inv(z) = inv(x) + 2 by Lemma 10 and
x < z by Theorem 4. Now, note that xk = zk for all k 6= i, j, xi, xj, and the following
inequalities hold by definition: zi = xj 6 yi; zj = xi 6 yj; zxi = j 6 yxi ; zxj = i 6 yxj .
Thus, z[h, k] 6 y[h, k] for all h, k ∈ [2n], and Theorem 3 implies that z 6 y. By the
assumption that x / y, we have y = z, thus completing the proof.

3 The structure of Bruhat order on F2n

A few structural results concerning F2n are obtained almost for free. In particular, the
following result follows from Propositions 9 and 11.

Proposition 12. The poset F2n is graded and ranked by the weight function wt.

Additionally, the minimal element in F2n is (12)(34) · · · (2n− 1, 2n), and the maximal
element is (1, 2n)(2, 2n − 1) · · · (n, n − 1). It was shown in [4] that the rank-generating
function with respect to the weight function is [1]q[3]q · · · [2n − 1]q. Figure 5 shows the
Hasse diagram of F6, whose elements are represented in canonical cycle notation. Example
13 describes how F2n is embedded in S2n for the n = 2 case.
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(16)(25)(34)

(15)(26)(34) (16)(24)(35)

(14)(26)(35) (15)(24)(36) (16)(23)(45)

(13)(26)(45) (14)(25)(36) (15)(23)(46)

(12)(36)(45) (13)(25)(46) (14)(23)(56)

(12)(35)(46) (13)(24)(56)

(12)(34)(56)

Figure 5: Bruhat order on F6

Example 13. The poset F4 corresponds to the union [2134, 3412]∪[3412, 4321] of intervals
in S4, which are pictured in Figure 6. The three boldface elements comprise F4, and the
solid black diamonds correspond to the cover relations in F4.

The remainder of this section details a structural decomposition of Bruhat order on
F2n which arises naturally when we realize fixed-point-free involutions as certain rook
placements on Ferrers boards. We first proceed by recalling these combinatorial objects.

3.1 Combinatorial tools

3.1.1 Dyck boards

A board is a subset of [n]× [n] for some n ∈ N, which we visualize as a subset of the cells
on an n × n chessboard. We have already seen an example of a board: the permutation
diagram of σ ∈ Sn is the board B(σ) := {(i, σi) : i ∈ [n]} ⊂ [n] × [n]. A board B is a
Ferrers board if there exists a non-decreasing sequence (b1, b2, . . . , bn) of positive integers,
called the shape of B, such that B = {(i, j) : i ∈ [n], j ∈ [bi]}. A Ferrers board consists
of n adjacent columns of cells that share a bottom edge and whose heights bi are non-
decreasing from left to right.
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1234

1243 1324 2134

1342 1423 2143 2314 3124

1432 2341 2413 3142 3214 4123

2431 3241 3412 4132 4213

3421 4231 4312

4321

Figure 6: F4, as an induced subposet of S4

A Dyck word of length 2n is a string δ, consisting of n es and n ds such that no initial
segment of δ contains more ds than es. We denote the set of all Dyck words of length 2n
by Dn. It is well-known that the Catalan numbers count Dyck words [13, Cor. 6.2.3].

For δ ∈ Dn, let ei(δ) and di(δ) denote the positions in δ of the ith e and ith d,
respectively, for all i ∈ [n]. By letting an e in δ represent a step (0, 1) to the north and a
d represent a step (1, 0) to the east, each Dyck word uniquely defines a Dyck path, which
is a lattice path from (0, 0) to (n, n), lying above the the main diagonal {(i, i) : i ∈ [n]}
of cells.

Definition 14. The Dyck board B(δ) is the Ferrers board in [n]× [n] lying beneath the
Dyck path δ ∈ Dn. That is, B(δ) is the Ferrers board with shape (b1, b2, . . . , bn) where
bi = di(δ)− i.

Example 15. Figure 7 shows the Dyck path of δ = eededded ∈ D4 and the corresponding
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Dyck board B(δ).

δ = eededded B(δ)

Figure 7

Proposition 16. Suppose δ ∈ Dn. Then (i, j) ∈ B(δ) if and only if ej(δ) < i + j if and
only if i+ j 6 di(δ).

Proof. The cell (i, j) is contained in B(δ) if and only if the number of steps north occuring
before the ith step east is at least j. Additionally, the cell (i, j) is contained in B(δ) if
and only if the number of steps east occuring before the jth step north is less than i.

We impose on Dn the following natural partial order: δ 6D δ′ if and only if B(δ) ⊂
B(δ′). It is well-known that (Dn,6D) is a distributive lattice, which follows from viewing
Dn as containment order on the set of order ideals of a certain poset. The rank function
ρD of Dn is given by ρD(δ) =

∑
i∈[n](di(δ) − 2i) for all δ ∈ Dn, and the rank of Dn is(

n
2

)
. In terms of the corresponding Dyck boards, the rank of δ can be interpreted as the

number of cells of B(δ) lying strictly above the main diagonal, so that δ /D δ
′ if and only

if B(δ′) is obtained by adding a cell to B(δ). Let Dn denote both the set of Dyck words
of length 2n and the poset (Dn,6D), as no confusion should arise. Figure 8 shows the
Hasse diagrams of D3 and D4, with the elements represented by their corresponding Dyck
boards.

3.1.2 Rook placements

A (non-attacking) k-rook placement on the board B is a k-subset P ⊂ B such that no
two elements of P lie in the same row or column. Let rk(B) denote the number of k-rook
placements on the board B. Every σ ∈ Sn corresponds to an n-rook placement on the
board [n]×[n], thus rn(B) counts the number of permutations σ ∈ Sn such that B contains
B(σ). A Ferrers board B with shape (b1, b2, . . . , bn) contains rn(B) =

∏n
i=1(bi − i + 1)

n-rook placements, thus for a Dyck path δ ∈ Dn, we have

rn(B(δ)) =
n∏
i=1

(di(δ)− 2i+ 1).

Example 17. Upon revisiting Figure 7, one finds that for δ = eededded, we have

r0(B(δ)) = 1, r1(B(δ)) = 12, r2(B(δ)) = 38, r3(B(δ)) = 32, and r4(B(δ)) = 4
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D3 D4

Figure 8

1234 1324 2134 2314

Figure 9: The four 4-rook placements on B(eededded)

by inspection. The four rook placements on B(δ) are shown in Figure 9.

There is an intimate order-theoretic relationship between Dyck paths and rook place-
ments. In fact, Sjöstrand describes in [12, Corollary 5] that the elements in the lower
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Bruhat interval [idn, σ] correspond to the number of rook placements on the the smallest
right-aligned Ferrers matrix covering B(σ). These Ferrers matrices are essentially rota-
tions of our Ferrers boards, thus any Dyck path δ ∈ Dn defines a unique order ideal of
Sn consisting of all permuations σ ∈ Sn such that B(δ) contains B(σ). This order ideal
is principally generated by the permutation µ(δ), where µ(δ)i := max([di(δ)− i]\{µ(δ)j :
1 6 j < i}). One can visually construct µ(δ) on B(δ) by placing a rook as high as possible
in each column from left-to-right while maintaining that no two rooks lie in the same row.

Example 18. Figure 10 depicts the board B(δ) for δ = eeeddedededd ∈ D6 on which the
permutation diagram of µ(δ) is superimposed.

Figure 10: µ(eeeddedededd) = 324561

Proposition 19. For all δ ∈ Dn, the set of n-rook placements on B(δ) equals the set of
permutations in the order ideal of Sn generated by µ(δ).

This proposition follows directly from the following two lemmas and noting that
B(µ(δ)) ⊂ B(δ) by definition.

Lemma 20. Suppose δ ∈ Dn and σ ∈ Sn. If B(σ) ⊂ B(δ), then σ 6B µ(δ).

Proof. By definition, the value µ(δ)i is chosen maximally for each i ∈ [n], thus µ(δ)[h, k] >
σ[h, k] for all h, k ∈ [n]. Thus the result follows from Theorem 3.

Lemma 21. Suppose δ ∈ Dn and σ ∈ Sn. If B(σ) ⊂ B(δ) and τ 6B σ, then B(τ) ⊂ B(δ).

Proof. Note that if a Ferrers board contains the cell (i, j), then it contains the cells below
and to its right. In other words, the Ferrers board contains the cell (i, k) for all 1 6 k 6 j
and the cell (l, j) for all i 6 l 6 n. Now, if τ /B σ, then τ(ij) = σ for some free rise (i, j)
of τ . Then i < j and τi = σj < σi = τj, and B(δ) contains the cells (i, τj) and (j, τi).
Thus B(τ) ⊂ B(δ).

In addition to this fact, the following proposition details why µ is of order-theoretic
interest. The result follows from the three lemmas that follow it.

Proposition 22. The map µ is an order-isomorphism from Dn to Sn(312) under Bruhat
order.
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Lemma 23. For any δ ∈ Dn, the permutation µ(δ) is 312-avoiding.

Proof. Suppose δ ∈ Dn. The definition of µ ensures that the value µ(δ)i is chosen to be
the maximum possible value not already appearing in µ(δ) before the ith position, so µ(δ)
never has µ(δ)j < µ(δ)k < µ(δ)i for any triple i < j < k. Thus µ(Dn) ⊆ Sn(312).

Lemma 24. The map µ is a bijection from Dn to Sn(312)

Proof. We already have µ(Dn) ⊆ Sn(312) by Lemma 22. Thus it suffices to show µ is
injective because Dn and Sn(312) have the same cardinality. Suppose δ 6= δ′ ∈ Dn, and let
i > 1 be the least index such that δi 6= δ′i. Without loss of generality, suppose δi = d and
δ′i = e. Since it has been assumed that δj = δ′j for all 1 6 j < i, we have µ(δ)j = µ(δ′)j
for all 1 6 j < i, thus

µ(δ)i = max([di(δ)− i]\{µ(δ)j : 1 6 j < i})
< max([di(δ

′)− i]\{µ(δ′)j : 1 6 j < i}) = µ(δ′)i.

Thus, µ(δ)i 6= µ(δ′)i, so µ(δ) 6= µ(δ′), and we have proved that µ is injective.

Lemma 25. δ 6D δ′ if and only if µ(δ) 6B µ(δ′).

Proof. Suppose δ 6D δ′. By definition, then, di(δ) − i 6 di(δ) − i for all i ∈ [n], and
thus max([di(δ) − i]) 6 max([di(δ

′) − i]) for all i ∈ [n], so µ(δ) 6B µ(δ). Conversely,
suppose µ(δ) 6B µ(δ′). For all i ∈ [n], define j(i) := max({µ(δ)k : k ∈ [i]}). Then
(i, j(i)) = di(δ)−i and (i, j(i)) ∈ B(δ′) for all i ∈ [n]. Thus B(δ) ⊂ B(δ′), and δ 6D δ′.

3.1.3 Hooks and hook lengths

For the Dyck path δ, define the reduced hook Hδ(i, j) of cell (i, j) ∈ B(δ) to be the union
of the cells in B(δ) in the jth row strictly to the left of cell (i, j) and those in the ith
column strictly above cell (i, j). Define the reduced hook length hδ(i, j) of cell (i, j) ∈ B(δ)
to be the cardinality of Hδ(i, j). (The hook length, usually seen in the context of Young
tableaux, counts the cell (i, j). It benefits us here to disregard it, hence the adjective
reduced.) The following result shows that one can compute hook lengths on B(δ) directly
from the Dyck word δ.

Proposition 26. For all δ ∈ Dn, the reduced hook length of the cell (i, j) ∈ B(δ) is
hδ(i, j) = di(δ)− ej(δ)− 1.

Proof. There are di(δ)−i cells in the ith column of B(δ), and di(δ)−i−j of them lie above
cell (i, j). Similarly, the jth row of B(δ) contains n− (ej(δ)− j) cells, and i+ j−ej(δ)−1
of them lie to the left of cell (i, j).

Example 27. For δ = eededded, we have hδ(3, 2) = d3(δ)− e2(δ)− 1 = 3, as illustrated
by Figure 11, in which the corresponding reduced hook hδ(3, 2) is shaded.
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Figure 11: hδ(3, 2) = 3 for δ = eededded.

For all σ ∈ Sn and δ ∈ Dn such that B(σ) ⊂ B(δ), define the hook sum of the pair (δ, σ)
to be h(δ, σ) :=

∑
i∈[n] hδ(i, σi). If the board B(δ) contains the rook placements B(σ) and

B(τ) for two permutations σ, τ ∈ Sn, then {eσi(δ)}ni=1 = {eτi(δ)}ni=1 and {dσi(δ)}ni=1 =
{dτi(δ)}ni=1. Thus appealing to Proposition 26 and rearranging the summands in the hook
sums justifies the following result.

Proposition 28. For any δ ∈ Dn, all n-rook placements on the Dyck board B(δ) have
equal hook sums.

Because h(δ, σ) does not depend on the choice of σ, we define h(δ) := h(δ, idn) for all
δ ∈ Dn. The cells in B(δ) strictly above the main diagonal are counted exactly twice by
h(δ), implying that the rank of any δ ∈ Dn is h(δ)/2.

Define the crossing number c(δ, σ) to be the number of pairs of hooks that intersect.
It is plain to see that if i < j and the two hooks Hδ(i, σi) and Hδ(j, σj) intersect, then
(i, j) is a rise of σ and (i, σj) is the cell in the intersection, provided that it lies in B(δ).

Proposition 29. Suppose δ ∈ Dn and σ ∈ Sn such that B(σ) ⊂ B(δ). Then the two
hooks Hδ(i, σi) and Hδ(j, σj) intersect at (i, σj) if and only if (i, σj) ∈ B(δ).

As we see next, the map µ yields the unique rook placement on a given Dyck board
with disjoint hooks.

Proposition 30. If δ ∈ Dn and σ ∈ Sn, then c(δ, σ) = 0 if and only if σ = µ(δ).

Proof. Suppose δ ∈ Dn and σ ∈ Sn. We have c(δ, σ) 6= 0 if and only if there exist values
1 6 i < j 6 n such that σi < σj and Hδ(i, σi)∩Hδ(j, σj) = {(i, σj)}, i.e., σi < σj 6 di− i.
This occurs if and only if σ 6= µ(δ).

Example 31. Consider δ = eededded ∈ D4, as in Figures 9 and 11. By inspection, one
can verify the following: each σ ∈ S4 with B(σ) ⊂ B(δ) has h(δ, σ) = 4; the corresponding
crossing numbers are c(δ, 1234) = 2, c(δ, 1324) = 1, c(δ, 2134) = 1, and c(δ, 2314) = 0;
µ(δ) = 2314; and the rank of δ is ρD(δ) = 2.

3.2 F2n as rook placements on Dyck boards

Recall that the edges in the arc diagram of x ∈ F2n are represented in the canonical cycle
notation by disjoint ordered pairs (e, d) ∈ [n]2 such that xd = e < d = xe, and note that
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any (ed) ∈ x defines an arc whose terminal point d is paired with the earlier-appearing
initial point e. Therefore the arrangement of exceedances and deficiencies, as they occur
in the one-line notation of x ∈ F2n, forms a Dyck word in Dn.

Definition 32. For x ∈ F2n, define δ(x) to be the Dyck word δ(x)1δ(x)2 · · · δ(x)2n with

δ(x)i :=

{
e : xi > i,
d : xi < i.

The remaining characteristic that uniquely determines a fixed-point-free involution is
the order in which its n arcs terminate.

Definition 33. For x ∈ F2n, define σ(x) to be the permutation with σ(x)i = j if and
only if the arc diagram of x has an arc from ej(δ(x)) to di(δ(x)) for all i ∈ [n].

For any x ∈ F2n, the permutation σ(x) can be constructed easily on the arc diagram
of x by indexing the es and ds of δ(x) in the order they appear with the set [n] and tracing
the arcs backward to realize σ(x) as the bijection from the d-index set to the e-index set.

Example 34. Consider the fixed-point-free involution x = 73286514 in Figure 4. Then
δ(x) = eedeeddd and σ(x) = 2413. Figure 12 illustrates the construction detailed in the
preceding paragraph.

e1 e2 d1 e3 e4 d2 d3 d4

Figure 12: For x = 73286514 ∈ F8,
δ(x) = eedeeddd ∈ D4 and σ(x) = 2413 ∈ S4.

It should be noted that we could equivalently regard σ as a map from the e-index set to
the d-index set. This may seem more natural considering the direction of the arrows, and
in this case, σ would map to the inverse permutation. However, our definition of σ is more
natural in the sense that it corresponds to rook placements under Dyck paths consisting
of north and east steps and thus on Ferrers boards that are bottom- and right-justified.

Definition 35. Define the map ϕ : F2n → Dn × Sn by ϕ(x) = (δ(x), σ(x)).

Proposition 36. The map ϕ is a bijection from F2n to the set

{(δ, σ) ∈ Dn × Sn : B(σ) ⊂ B(δ)}.
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Proof. To prove ϕ is surjective, suppose (δ, σ) ∈ {(δ, σ) ∈ Dn× Sn : B(σ) ⊂ B(δ)}. Then
σi 6 di(δ)− i for all i ∈ [n]. These inequalities imply the existence of a valid arc diagram,
and thus a fixed-point-free involution x = (eσ1 , d1)(eσ2 , d2) · · · (eσn , dn) in F2n such that
ϕ(x) = (δ, σ). As for the injectivity of ϕ, suppose ϕ(x) = ϕ(y) so that δ(x) = δ(y) and
σ(x) = σ(y). Then the transpositions (eσ(x)i(δ(x)), di(δ(x))) appear in the canonical cycle
notation for both x and y for every i ∈ [n]. Thus x = y, and the proof is complete.

Example 37. The map ϕ identifies the four rook placements on Dyck boards shown in
Figure 9 with the four fixed-point-free involutions 35162487, 36154287, 53261487, and
63254187, respectively.

Proposition 38. The map δ : F2n → Dn is order-preserving.

Proof. Suppose x / y in F2n. Then by Proposition 11, there is a free rise (i, j) of x such
that y = (ij)x(ij) = (xixj)x(xixj). Thus

yi = xj, yj = xi, yxi = j, and yxj = i.

To prove δ(x) 6D δ(y), it suffices to consider positions i, j, xi, and xj because all other
positions have equal values. The definition of a rise guarantees i < j and xi < xj, and
we can further require i < xi by swapping i and xi if necessary. There are three cases to
consider: (1) i < j < xi < xj, (2) i < xi < xj < j, and (3) i < xi < j < xj.

In the first case, δ(x)i = e, δ(x)j = e, δ(x)xi = d, and δ(x)xj = d.

yi = xj > i ⇒ δ(y)i = e
yj = xi > j ⇒ δ(y)j = e
yxi = j < xi ⇒ δ(y)xi = d
yxj = i < xj ⇒ δ(y)xj = d

In the second case, δ(x)i = e, δ(x)xi = d, δ(x)xj = e, and δ(x)j = d.

yi = xj > i ⇒ δ(y)i = e
yxi = j > xi ⇒ δ(y)xi = e
yxj = i < xj ⇒ δ(y)xj = d
yj = xi < j ⇒ δ(y)j = d

The third case would imply that x(ij) is not covered by y in Bruhat order on S2n

because (xi, xj) would not be a free rise of x(ij), contradicting the assumption that x / y.
Thus the subsequence of the Dyck word δ(x) affected by moving up in F2n via a cover

relation is either eedd or eded, and in both cases, δ(y)i = δ(y)j = e and δ(y)xi = δ(y)xj =
d. In other words, the affected subsequence becomes eedd in δ(y), while the remainder of
the two Dyck words are equal. Thus δ(x) 6D δ(y).
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3.3 Structural decomposition

Recall that Proposition 12 asserts that the Bruhat order on F2n has rank function wt(x) =
span(x)−cross(x). We have developed the necessary tools to restate this function in terms
of our representation of elements of F2n as rook placements on Dyck boards.

Proposition 39. If x ∈ F2n, then span(x) = (h ◦ ϕ)(x) and cross(x) = (c ◦ ϕ)(x).

Proof. The first equality is immediate from the definition of span, the definition of hook
length, and Proposition 26.Propositions 8, 16, and 29 imply that arcs in the arc diagram
of a fixed-point-free involution intersect if and only if the corresponding hooks intersect
on its Dyck board, thus justifying the second equality.

In order to prove Theorem 1, we reveal the structural properties of Bruhat order on F2n

with respect to two equivalence relations ∆ and Σ, which we define now. For x, y ∈ F2n,
define x ≡∆ y if and only if δ(x) = δ(y), and define x ≡Σ y if and only if σ(x) = σ(y).
We denote the equivalence classes of x under ∆ and Σ by [x]∆ and [x]Σ, respectively, and
we consider these equivalence classes as induced subposets of F2n.

Propositions 19 and 36 imply that the map σ restricts to a bijection between [x]∆
and the order ideal of Sn generated by the 312-avoiding permutation µ(δ(x)). However,
a stronger fact holds: they are isomorphic posets.

Lemma 40. The map σ restricts to an order-isomorphism from [x]∆ to the principal
order ideal of Sn generated by µ(δ(x)).

Proof. Consider two fixed-point-free involutions x, y ∈ F2n such that y ∈ [x]∆. The map
δ is order-preserving by Proposition 38, and thus [x]∆ is order-convex. The cover relation
x/y exists in F2n if and only if y = (ij)x(ij) for a free rise (i, j) of x and inv(y) = inv(x)+2.

Choose i and j to be deficiencies (by swapping i and j for xi and xj, respectively, if
necessary), so that da := da(δ(x)) = i and db := dd(δ(x)) = j for some a, b with a < b.

This cover relation occurs in F2n if and only if any arc terminating between da and
db has its initial point between xda and xdb , i.e., between eσ(x)a(δ(x)) and eσ(x)b(δ(x)). In
other words, (a, b) is a free rise of σ(x), and σ(y) = σ(x)(ab). Thus σ(x) /B σ(y).

Figure 13 illustrates the correspondence described in the proof of Proposition 40. An
analogous fact about the map δ on Σ-classes is also true.

Lemma 41. For all x ∈ F2n, the map δ restricts to an order-isomorphism from [x]Σ to
the induced subposet of Dn consisting of Dyck paths δ such that B(δ) ⊂ B(σ(x)).

Proof. Proposition 36 implies that δ restricts to a bijection from [x]Σ to the set of Dyck
paths containing B(σ(x)). For the remainder of the proof, consider two fixed-point-free
involutions x, y ∈ F2n such that ϕ(x) = (δ, π) and ϕ(y) = (δ′, π), so that y ∈ [x]Σ.

Suppose δ /D δ
′ in Dn, and we show x / y in F2n. Then δ and δ′ are identical in all

positions except for some two adjacent positions i and i+ 1, in which δ has de and δ′ has
ed. Define z := (i i+ 1)x(i i+ 1), and the following two claims imply z = y.
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da

db

a b

eσa

eσb

Figure 13

Claim 1: δ(z) = δ′: Note that zi = xi+1 > i+ 1 > i and zi+1 = xi < i < i+ 1, thus
δ(z)i = e and δ(z)i+1 = d. Additionally, zxi = i+ 1 > i > xi and zxi+1

= i < i+ 1 <
xi+1, thus δ(z)xi = e and δ(z)xi+1

= d.

Claim 2: z ∈ [x]Σ: Aside from the kth d shifting one position to the right, we have
dm(δ(z)) = dm(δ) for all m 6= k. Therefore the order of the ds in does not change
from δ to δ(z), and thus σ(z) = σ(x).

To conclude that x / y in F2n, we note that the aforementioned de 7→ ed swap from δ
to δ′ implies span(y) = span(x)+2 and cross(y) = cross(x)+1. Thus inv(y) = inv(x)+2,
by Proposition 9. Now, because i and i + 1 are adjacent positions, this xi and xi+1 are
adjacent in value. Thus it must be the case that (i, i+ 1) is a free rise of x, and thus x/y.

Now, to prove the converse, we suppose x / y in F2n. Then y = (ij)x(ij) for a free rise
(i, j) of x and inv(y) = inv(x) + 2. It is either the case, then, that i is a deficiency and j
is an exceedance or i is an exceedance and j is a deficiency. Choose i and j so that the
former holds (by swapping i and j with xi and xj, respectively, if the latter holds). Note
that j = i + k, so that cross(y) = cross(x) + k. Because inv(y) = inv(x) + 2, we must
have k = 1, and δ and δ′ are identical in all positions except i and i+ 1 in which δ has de
and δ′ has ed. Thus δ / δ′.

The remaining structural information about F2n is how the equivalence classes under
∆ are ordered in F2n, with respect to one another. We recall from [10] the definition of a
poset congruence and the natural partial order on the quotient. An equivalence relation
Θ on the elements of a poset P is a poset congruence if

(i) every equivalence class [x]Θ of x ∈ P is an interval in the poset P ,
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(ii) the projection Θ↑ mapping x to the maximal element in its equivalence class is
order-preserving, and

(iii) the projection Θ↓ mapping x to the minimal element in its equivalence class is
order-preserving.

Define a partial order on the congruence classes of P under Θ by [x]Θ 6 [y]Θ if and only
if some x′ ∈ [x]Θ and y′ ∈ [y]Θ exist such that x′ 6P y

′. The quotient of P with respect
to the poset congruence Θ, denoted P/Θ, consists of the set of congruence classes under
Θ under this partial order. The quotient P/Θ is isomorphic to the subposet Θ↓(P ) ⊂ P
of minimal representatives in each class. We identify these two isomorphic posets. We
proceed by showing that the equivalence ∆ satisfies this definition.

Proposition 42. The equivalence ∆ is a poset congruence.

Proof. Each of the three claims below respectively address the three parts of the definition
of a poset congruence detailed above.

Claim 1. The equivalence class [x]∆ ∈ F2n/∆ is an interval: This is immediate
because δ is order-preserving and [x]∆ is order-isomorphic to the order ideal in Sn
generated by µ(δ(x)) by Proposition 38 and Lemma 40, respectively. Thus for all
x ∈ F2n,

(a) ∆↑(x) is the fixed-point-free involution y ∈ [x]∆ with σ(y) = µ(δ(x)), and

(b) ∆↓(x) is the fixed-point-free involution y ∈ [x]∆ with σ(y) = idn.

Claim 2. The projection ∆↑ is order-preserving: Suppose x 6 y in F2n. (In order
to show ∆↑(x) 6 ∆↑(y), we prove the existence of an element z such that ∆↑(x) 6
z 6 ∆↑(y).) Because the maps δ : F2n → Dn and µ : Dn → Sn are order-preserving
(by Propositions 38 and 22), the composition µ ◦ δ is also order-preserving, i.e.,
µ(δ(x)) 6B µ(δ(y)). By Lemma 40, the Dyck board B(δ(y)) contains B(µ(δ(x))),
and Proposition 36 guarantees the existence of a fixed-point-free involution z such
that ϕ(z) = (δ(y), µ(δ(x))). Now, Lemma 40 implies that ∆↑(x) 6 z in [z]Σ, and
Lemma 41 implies z 6 ∆↑(y) in [y]∆. Thus ∆↑(x) 6 z 6 ∆↑(y).

Claim 3. The projection ∆↓ is order-preserving: Again, consider x, y ∈ F2n such
that x 6 y. Note that ϕ(∆↓(x)) = (δ(x), idn) and ϕ(∆↓(y)) = (δ(y), idn). Recall
δ(x) 6 δ(y) by Lemma 41. Thus ∆↓(x) 6 ∆↓(y) by Lemma 40.

Thus ∆ is a poset congruence.

Proposition 43. The quotient F2n/∆ is isomorphic to the poset Dn.

Proof. Note that x ∈ ∆↓(F2n) if and only if σ(x) = idn, Now, Lemma 41 says that [x]Σ is
isomorphic to Dn.

One can verify Proposition 43 for the n = 3 case by comparing the the poset D3 in
Figure 8 to the induced subposet ∆↓(F6) in Figure 2. We now prove our main result.
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Proof of Theorem 1. By Lemmas 40 and 41 and the fact that ∆↓(x) = (δ(x), idn), the
rank function ρ of F2n can be expressed as the sum of the rank functions on Dn and Sn.
Specifically, if x ∈ F2n and ϕ(x) = (δ, σ), then ρ(x) = ρD(δ) + inv(σ).

Recall that the rank-generating function forDn is
∑

i∈[n] di(δ)−2i, justifying the factors

of the form qdi(δ)−2i in the expansion. Also recall from Section 3.1.2 the rank-generating
function of lower Bruhat intervals. Of concern here are the intervals [idn, µ(δ)] ⊆ Sn for
δ ∈ Dn. The rank-generating function for this interval is∑

τ6Bµ(δ)

qinv(τ) =
∏
i∈[n]

[di(δ)− 2i+ 1]q,

a fact that follows from Lemma 40. This justifies the remaining factors, and thus proves
Theorem 1.

Now, setting q = 1 in the expansion proves (3). Interestingly, this identity can be
phrased as a sum over 312-avoiding permutations. Let #[idn, σ] denote the cardinality of
the lower Bruhat interval [idn, σ] in Sn. Then we get the following Catalan sum:∑

σ∈Sn(312)

#[idn, σ] = (2n− 1)!!.

In the next and final section, we explore how our main result can be rephrased in
terms of other Catalan objects.

4 Extension to other Catalan objects

Throughout this exposition, we have encountered several Catalan objects: Dyck paths,
non-crossing arc diagrams, and 312-avoiding permutations. The ubiquity of the Catalan
numbers here and elsewhere [13, Ex. 6.19] incites further investigation into other Catalan
objects to which we can relate our previous results. In particular, we express Theorem 1
both as a sum over plane forests in Section 4.1 and as a sum over binary trees in Section 4.2.

4.1 Plane trees and plane forests

A tree T is a connected acyclic graph. A rooted tree is one possessing a unique distin-
guished node called the root of T . We consider only rooted trees and omit the adjective
rooted. A node u ∈ T is a descendant of the node v ∈ T if v is in the unique path from
u to the root, and v is an ancestor of u in this case. Thus any node v ∈ T is both a
descendant and an ancestor of itself. A descendant u of v is a child of v if T contains an
edge from u to v, in which case v is the parent of u. A node with no children is called a
leaf and an internal node otherwise. A subtree of T is the tree formed by a node and all
its descendants. We depict trees with child nodes situated above their parents, thus the
root, being the unique ancestor to all nodes of T , is the bottom-most node.
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Recall that h(v) is the number of descendants of v, and we dually define α(v) to be
the number of ancestors of v. A plane tree is a tree whose subtrees are ordered linearly
at each node. Denote by Tn the set of plane trees having n nodes.

A plane forest is a linearly-ordered set of plane trees. Let Fn denote the set of plane
forests having n nodes. There is a natural bijection Fn → Tn+1: add a new node and
make it the root of all trees in the forest F ∈ Fn to obtain T ∈ Tn+1. It appears as an
exercise in [13, Ex 6.19(e)] to show that the nth Catalan number enumerates Tn+1.

The bijection F : Dn → Fn we consider is as follows. We construct the tree T (δ) ∈ Tn+1

according to δ as it is read left-to-right. We move around the nodes of T (δ) in a pre-order
fashion as we construct it. Add a new edge at the current node if δi = e or move down
the tree to the parent of the current node if δi = d. When completed, removing the root
from T (δ) completes the bijection Dn → Fn.

Example 44. Figure 14 shows the bijection between T4 and F3, in the order corresponding
to the Dyck boards shown in Figure 1.

Figure 14: T4 ←→ F3

We now show that the rook number statistic of the Dyck board B(δ) is equal to the
product of the ancestor statistic on the nodes of the corresponding plane forest F (δ) under
the bijection described above.

Lemma 45. If vi is the ith node added to F (δ) in the above bijection Dn → Fn, then
α(vi) = di(δ)− 2i+ 1.

Proof. The number α(vi) is one more than the length of the path from v to the root
of the tree containing it. This is the number of steps upward less the number of steps
downward until vi is reached. In other words, this is the number of es that appear before
the ith d minus the number of ds appearing before the ith d in a preorder search. Thus
α(v) = (di(δ)− i)− (i− 1).

Proposition 46. For all n ∈ N,

1

qn

∑
F∈Fn

∏
v∈F

qα(v)[α(v)]q = [1]q[3]q · · · [2n− 1]q. (5)

Proof. By the previous lemma the nth rook number rn(B(δ)) of the board B(δ) equals∏
v∈F (δ)

α(v), thus we can rephrase Theorem 1 as this sum over plane forests.
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Setting q = 1 in (5) justifies the following corollary.

Corollary 47. ∑
F∈Fn

∏
v∈F

α(v) = (2n− 1)!!. (6)

In the sum over plane forests given by equation (2), the statistic h(v) gives the number
of descendants of the node v. Naturally, descendants and ancestors are structurally dual
notions, but the fact that the left-hand sides of (6) and (2) are equal suggests that
descendants and ancestors also have an intrinsic duality in a numerical sense.

With regard to Figure 14 in which n = 3, equation (6) agrees with equation (3),
asserting that 1 + 2 + 2 + 4 + 6 = 5!!. Equation (2) says that 6(1

1
+ 1

2
+ 1

2
+ 1

3
+ 1

6
) =

6 + 3 + 3 + 2 + 1 = 5!!. Note that although the sums are equal, the sumands differ! The
left-hand side of (2) is familiar in the context of binary trees, in which case the sum would
be n! rather than (2n−1)!!. This observation inspires an exploration of binary trees, which
is the scope of the next section. Before concluding the present section, though, we present
two additional nice Catalan sums that follow from (2) by making use of the identity

(2n− 1)!!

Cn
=

(n+ 1)!

2n
, (7)

which gives the proportional relationship between double-factorial numbers and the Cata-
lan numbers. For example, applying (7) to (2), we obtain∑

F∈Fn

∏
v∈F

2

h(v)
= Cn(n+ 1). (8)

With respect to the bijection Fn ←→ Tn+1 described above, the sum (2) can be rephrased
in terms of plane trees as

(n+ 1)!
∑

T∈Tn+1

∏
v∈T

1

h(v)
= (2n− 1)!!, (9)

and appying (7) yields ∑
T∈Tn+1

∏
v∈T

2

h(v)
= 2Cn. (10)

4.2 Binary trees

We recursively define a plane binary tree as one whose root either has no children or
whose root has a left subtree and a right subtree, each of which is also a binary tree. Let
PBn denote the set of plane binary trees with n internal nodes. The removal of the n+ 1
leaves gives the bijection between plane binary trees and binary trees Bn with n nodes.

The bijection T : Dn → Bn is as follows. Read δ ∈ Dn left-to-right, and traverse
T (δ) in left preorder as we construct it. The es in δ yield nodes of degree 2, and ds yield
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nodes of degree 1. At δi, add two children to the current node if δi = e, and add no new
nodes if δi = d. Continue this way until the end of δ is reached, and removing the leaves
completes the bijection Dn → Bn. To recover δ, add all possible leaves to T to make a
binary tree, and traverse T (δ) in preorder and read each internal node as an e and each
leaf, disregarding the last, as a d.

Example 48. Figure 15 shows the five binary trees having three internal nodes, listed in
the order corresponding to that of the Dyck paths in Figure 1.

Figure 15: PB3

For the binary tree T ∈ Bn, we define a recursive labeling λ on its nodes. Label the
root of T with 1, and label a child u of v ∈ T as follows:

λ(u) :=

{
λ(v) + 1 : u is a left-child of v,

λ(v) : u is a right-child of v.

The labeling λ is illustrated by Figure 16.

v
λ(v)

λ(v) + 1 λ(v)
λ7−→

Figure 16: Labeling λ of T ∈ Bn.

Lemma 49. If vi is the ith node added to T (δ) under the above bijection Dn → Bn, then
λ(vi) = di(δ)− 2i+ 1.

Proof. Consider the binary subtree containing all nodes traversed in the preorder search
from the root to the node vi. At each node, we either follow an edge to a left-child or
a right-child. These correspond to occurrences of ee and ed, respectively, in δ. Thus
λ(vi)− 1 = di(δ)− 2i counts the number of times we follow an edge to a left-child.
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Proposition 50.

1

qn

∑
T∈Bn

∏
v∈T

qλ(v)[λ(v)]q = [1]q[3]q · · · [2n− 1]q. (11)

Proof. By the previous lemma, the nth rook number rn(B(δ)) of the board B(δ) equals∏
v∈T (δ)

λ(v), thus we can rephrase Theorem 1 as a sum over binary trees.

Setting q = 1 in (11) justifies the following corollary.

Corollary 51. ∑
T∈Bn

∏
v∈T

λ(v) = (2n− 1)!!. (12)

Example 52. One can verify that this holds for n = 3 by inspection of Figure 17, which
shows the five binary trees in Bn with the labeling λ on their nodes

1

1

1

1

1

2

1

2 1

1

2

2

1

2

3

Figure 17: The labeling λ on the nodes of the binary trees in B3

Aside from providing a combinatorial proof of (3), we have provided three natural
extensions of this combinatorial identity that are expressed as sums over three other
Catalan objects: 312-avoiding permutations, plane forests, and binary trees. Naturally, it
would be nice to prove such expressions for other Catalan objects, such as triangulations
of (n+ 2)-gons into n triangles.
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