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Abstract
The group of alternating colored permutations is the natural analogue of the

classical alternating group, inside the wreath product Zr ≀Sn. We present a ‘Coxeter-

like’ presentation for this group and compute the length function with respect to

that presentation. Then, we present this group as a covering of Z r
2
≀ Sn and use

this point of view to give another expression for the length function. We also use

this covering to lift several known parameters of Z r
2
≀Sn to the group of alternating

colored permutations.

1 Introduction

The group of colored permutations, Gr,n, is a natural generalization of the Coxeter groups
of types A (the symmetric group) and B (the hyperoctahedral group). Extensive research
has been devoted to extending the enumerative combinatorics aspects and methods from
the symmetric group to the group of colored permutations (see for example [2, 3, 8, 14,
16, 17], and many more).

It is well-known that the symmetric group Sn has a system of Coxeter generators
which consists of the adjacent transpositions:

{(i, i+ 1) | 1 6 i 6 n− 1}.
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The alternating subgroup, An, which is the kernel of the sign homomorphism, is a well-
known subgroup of the symmetric group of index 2. A pioneering work, expanding one of
the fascinating branches of enumerative combinatorics, namely, the study of permutation
statistics to An, has been done by Roichman and Regev in [15]. They defined some
natural statistics which equidistribute over An and yielded identities for their generating
functions.

Brenti, Reiner, and Roichman [7] dealt with the alternating subgroup of an arbitrary
Coxeter group. They started by exploring Bourbaki’s presentation [4, Chap. IV, Sec. 1,
Exer. 9] and elaborated on a huge spectrum of extensions of the permutation statistics
of Sn to the (general) alternating group.

In this paper, we study the subgroup of Gr,n, consisting of what we call alternating
colored permutations, which is the analogue of the usual alternating group An in the
colored permutation group. For every n ∈ N and even r, the mapping which sends all
’Coxeter-like’ generators of Gr,n (see the definition in Section 2) to −1 is a Z2-character,
whose kernel is what we call here the group of alternating colored permutations, denoted
by Ar,n. We present here a generalization of Bourbaki’s presentation, for r = 4k + 2,
equipped with a set of canonical words, an algorithm to find a canonical presentation for
each element of the group, and a combinatorial length function.

For the study of permutation statistics of An, Regev and Roichman [15] used a covering
map from An+1 to Sn, which enabled them to pass parameters from Sn to the alternating
group An+1. In this paper, we use a similar idea, where in this time we consider the group
of alternating colored permutations as a 2n−1-cover of the group of colored permutations
of half the number of colors. We use this technique to shed a combinatorial flavor on our
length function and to pass some statistics and their generating function to the group of
alternating colored permutations.

Note that there are two additional candidates for the group of alternating colored
permutations. Namely, every Z2-character of Gr,n provides a kernel which deserves to be
called a group of alternating colored permutations. A work in this direction, which gives
a profound treatment to the other two non-trivial kernels, and points out the connections
between the three groups, and some interesting properties of each group separately is in
progress.

The paper is organized as follows. In Section 2, we gather the needed definitions on
the colored permutation group, as well as some notations which we use in the sequel.
A Coxeter-like presentation for the group of colored permutations, Gr,n, is presented at
the end of this section. The notion of alternating colored permutations is introduced in
Section 3. We present its set of generators, and show their corresponding relations. In
Section 4, we present an algorithm for writing each element as a product of the generators.
A detailed analysis of that algorithm yields a set of canonical words, as well as a length
function. Section 5 is devoted to some technical proofs, as well as to the generating
function of the length function.

In Section 6, we present the covering map and study the structure of the cosets, thereby
providing a way to decompose the length function via the quotient group. The part of the
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length which varies over each coset (fiber) is called the fibral length and is studied here
in a combinatorial way. Then we provide a generating function for this parameter. In
Section 7, we give some examples for using the covering map for lifting parameters from
the colored permutations group of half the number of colors to the group of alternating
colored permutations.

2 Preliminaries and notations

In this section, we gathered some notations as well as preliminary notions which will be
needed for the rest of the paper.

2.1 The group of colored permutations

Definition 1. Let r and n be positive integers. The group of colored permutations of n
digits with r colors is the wreath product

Gr,n = Zr ≀ Sn = Z
n
r ⋊ Sn,

consisting of all pairs (~z, τ), where ~z is an n-tuple of integers between 0 and r − 1 and
τ ∈ Sn. The multiplication is defined by the following rule: for ~z = (z1, . . . , zn) and
~z′ = (z′1, . . . , z

′
n),

(~z, τ) · (~z′, τ ′) = ((z1 + z′τ−1(1), . . . , zn + z′τ−1(n)), τ ◦ τ ′) (1)

(the operation + is taken modulo r).

Another way to present Gr,n is as follows: Consider the alphabet

Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}

as the set {1, . . . , n} colored by the colors 0, . . . , r − 1. Then, an element of Gr,n is a
colored permutation, i.e., a bijection π : Σ → Σ satisfying the following condition: if
π
(
i[α]

)
= j[β], then π

(
i[α+1]

)
= j[β+1] (the addition in the exponents is taken modulo r).

Using this approach, the element π = ((z1, . . . , zn), τ) ∈ Gr,n is the permutation on Σ,
satisfying π(i) = π(i[0]) = τ(i)[zτ(i)] for each 1 6 i 6 n. For example, the element π =
(

(2, 1, 0, 3, 0, 0),

(
1 2 3 4 5 6
2 1 4 3 6 5

))

∈ G6,6 satisfies: π(1) = 2[1], π(2) = 1[2], π(3) =

4[3], π(4) = 3[0], π(5) = 6[0], π(6) = 5[0].
For an element π = (~z, τ) ∈ Gr,n with ~z = (z1, . . . , zn), we write zi(π) = zi, and

denote |π| = (~0, τ). We define also ci(π) = r − zi(π
−1) and ~c(π) = ~c = (c1, . . . , cn). Using

this notation, the element π = (~z, τ) =

(

(2, 1, 0, 3, 0, 0),

(
1 2 3 4 5 6
2 1 4 3 6 5

))

satisfies

~c = (1, 2, 3, 0, 0, 0).
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We usually write π in its window notation (or one line notation): π =
(

a
[c1]
1 · · · a

[cn]
n

)

,

where ai = τ(i), so in the above example, we have: π = (2[1]1[2]4[3]3[0]6[0]5[0]) or just
(

2̄¯̄1¯̄̄4365
)

.

Note that zi is the color of the digit i (i is taken from the window notation), while cj
is the color of the digit τ(j). Here, j stands for the place, whence i stands for the value.

The group Gr,n is generated by the set of generators S = {s0, s1, . . . , sn−1}, defined by
their action on the set {1, . . . , n} as follows:

si(j) =







i+ 1 j = i
i j = i+ 1
j otherwise,

whereas the generator s0 is defined by

s0(j) =

{
1̄ j = 1
j otherwise.

It is well-known that the group Gr,n has the following ’Coxeter-like’ presentation with
respect to the set of generators S (see e.g. [6]):

Presentation 2.

• sr0 = 1,

• s2i = 1 for 1 6 i 6 n− 1,

• sisi+1si = si+1sisi+1 for 1 6 i < n,

• sisj = sjsi for 1 6 i < j < n, j − i > 1,

• (s0s1)
2r = 1.

2.2 Some permutation statistics

For π ∈ Gr,n, define the length of π with respect to the set of generators S to be the
minimal number of generators whose product is π. Formally:

ℓ(π) = min {r ∈ N : π = si1 · · · sir , for i1, . . . , ir ∈ {0, . . . , n− 1} } .

Definition 3. The length order on the alphabet

Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}

is defined as follows:

n[r−1] < · · · < n̄ < · · · < 1[r−1] < · · · < 1̄ < 1 < · · · < n (2)
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Let σ ∈ Gr,n. We define:

csum(σ) =
n∑

i=1

ci(σ) =
n∑

i=1

zi(σ).

For π ∈ Gr,n, the inversion number, inv(π), is defined as follows:

inv(π) = |{(i, j) | i < j, π(i) > π(j)}|,

where the partial order is the length order defined above.

For any a, n ∈ N, let Rn(a) be the representative of [a] ∈ Zn satisfying 0 6 a < n.
Moreover, assume that r = 4k + 2 for k ∈ N.

In the sequel, we will use the following operator:

Definition 4. Let a ∈ N. Define:

a⊘ 2 =

{
R r

2

(
a
2

)
a ≡ 0(mod 2)

R r
2

(
a+ r

2

2

)

a 6≡ 0(mod 2)
(3)

It is clear that the operator ⊘ commutes with the addition operation in Z r
2
, i.e.

((a+ b)⊘ 2) ≡ ((a⊘ 2) + (b⊘ 2))
(

mod
r

2

)

(4)

3 The group of alternating colored permutations

The main target of this paper is the group of alternating colored permutations. We define
it now. Let ϕ be the function defined on the set S by ϕ(si) = −1 for any 0 6 i 6 n−1. It
is easy to see that for even r, ϕ can be uniquely extended to a homomorphism from Gr,n

to Z2, since the lengths of all the relations in Presentation 2 are even (see Lemma 1.4.1
in [5] for the corresponding proof for all Coxeter groups). so the following is well-defined:

Definition 5. Let r be an even positive number. Define:

Ar,n = ker(ϕ).

The group Ar,n is called the alternating subgroup of Gr,n.

Since Ar,n is a subgroup of index 2, we have: |Ar,n| =
rnn!
2
.

In this paper, we concentrate on the case r = 4k + 2 where k ∈ N. The other case,
r = 4k where k ∈ N, will be treated in a subsequent paper.

We start by presenting a set of generators for Ar,n (we prove that they indeed generate
the group in Theorem 11). Define:

A = {a0, a1, a
−1
1 , a2, . . . , an−1},

the electronic journal of combinatorics 21(2) (2014), #P2.29 5



where:
ai = s

r
2
0 si for 1 6 i 6 n− 1

a0 = s20.

Using Presentation 2, and the definition of the generators ai, one can verify that the
following translation relations hold in Gr,n:

1. sisj = aiaj for i, j ∈ {2, . . . , n− 1},

2. s1si = a−1
1 ai for i ∈ {2, . . . , n− 1},

3. sis1 = aia1 for i > 2,

4. s0s1 = a
r+2
4

0 a1,

5. s1s0 = a−1
1 a

r+2
4

0 ,

6. a
r
2
0 = 1,

7. s0si = a
r+2
4

0 ai.

4 Combinatorial algorithm for presenting elements

of Ar,n

In this section, we introduce an algorithm which presents each element of Ar,n as a product
of the set of generators A of Ar,n in a canonical way.

Let π ∈ Ar,n. We first refer to π as an element of Gr,n and apply the known algorithm
on π to write it as a product of elements in S. In the second step, we translate that
presentation into the set of generators A of Ar,n.

The algorithm for writing π as a product of elements in S consists of two parts: the
coloring part and the ordering part.

In the coloring part, we start from the identity element and color all the digits i having
zi 6= 0. This part terminates with an ordered permutation σ with respect to the length
order. In the second part, we use only generators of the set S − {s0} to arrive at π from
the ordered permutation σ.

4.1 The coloring part

Define: Col(π) = {1 6 i 6 n | zi(π) 6= 0}, and col(π) = |Col(π)|. Note that the set Col(π)
contains the colored digits in the image of π, (i.e. those appearing in the window notation),
and not their places. We order Col(π) as follows: Col(π) = {i1 < i2 < · · · < icol(π)}.

We start with the identity element and color each digit i ∈ Col(π) by zi colors. This
process is done according to the order of the elements in Col(π). We use the element
sik−1sik−2 · · · s1s

z
0 to color the digit ik by z colors.
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Example 6. Let π =
(
12[2]45[1]3[3]

)
∈ G6,5.

(12345)
s1s20→

(
2[2]1345

) s2s1s30→
(
3[3]2[2]145

) s4s3s2s1s0→
(
5[1]3[3]2[2]14

)
= σ.

The permutation σ is an ordered permutation with respect to the length order.

4.2 The ordering part

For simplifying the presentation, in this part we start with π and arrive at the ordered
permutation σ, instead of continuing the algorithm from the point we have left it at the
end of the coloring part.

We start by pushing the element i1 = |σ|(1) in the window notation of π to its correct
place. Let p = |π|−1(i1). The pushing is done by multiplying π (from the right) by the
element u1 = sp−1sp−2 · · · s1.

Now, we continue to push the other digits of π: for each 1 < k 6 n− 2, if ik = |σ|(k)
is located at position p, we use the element sp−1sp−2 · · · sk in order to push the digit ik to
its correct place.

Example 7. We continue the previous example. Again, let π =
(
12[2]45[1]3[3]

)
. The

coloring part ends with the following ordered permutation:

σ =
(
5[1]3[3]2[2]14

)
.

Now, we go the other way around: we start with π and order it until we reach σ:

π =
(
12[2]45[1]3[3]

) s3s2s1→
(
5[1]12[2]43[3]

) s4s3s2→

→
(
5[1]3[3]12[2]4

) s3→
(
5[1]3[3]2[2]14

)
= σ.

Therefore, we have:

π = s1s
2
0 · s2s1s

3
0 · s4s3s2s1s0

︸ ︷︷ ︸

coloring part

· s3 · s2s3s4 · s1s2s3
︸ ︷︷ ︸

ordering part

.

The algorithm described above gives a reduced word representing π in the generators
of Gr,n. This fact was proved in [2, Theorem 4.3]. The same algorithm can also be found
in [17]; see also [16]. The word which was obtained in this way is called the canonical
decomposition of π.

4.3 Translation

Now, we translate the word obtained by the algorithm described above into a word in the
generators in A: Let π ∈ Ar,n. Use the above algorithm to write a reduced expression of
π (in the usual generators of Gr,n) in the form: si1si2 · · · si2k . Divide the elements of the
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reduced expression into pairs: (si1si2) · · · (si2k−1
si2k). Now, insert s

r
2
0 s

r
2
0 inside each pair,

as follows:
(

si1s
r
2
0 s

r
2
0 si2

)

· · ·
(

si2k−1
s

r
2
0 s

r
2
0 si2k

)

=
(

si1s
r
2
0

)(

s
r
2
0 si2

)

· · ·
(

si2k−1
s

r
2
0

)(

s
r
2
0 si2k

)

=

= a
εi1
i1

· · · a
εi2k
i2k

,

where εij = 1 if ij > 1, εij ∈ {±1} if ij = 1, and εij ∈
{
1, . . . , r

2
− 1

}
if ij = 0.

Example 8. We continue with π =
(
12[2]45[1]3[3]

)
∈ A6,5 from the previous examples. As

we saw, π = s1s
2
0s2s1s

3
0s4s3s2s1s0s3s2s3s4s1s2s3. Now, we perform the translation:

π = (s1s0)(s0s2)(s1s0)(s0s0)(s4s3)(s2s1)(s0s3)(s2s3)(s4s1)(s2s3) =

= (s1s
3
0)(s

3
0s0)(s0s

3
0)(s

3
0s2)(s1s

3
0)(s

3
0s0)(s0s

3
0)(s

3
0s0)(s4s

3
0)(s

3
0s3) ·

·(s2s
3
0)(s

3
0s1)(s0s

3
0)(s

3
0s3)(s2s

3
0)(s

3
0s3)(s4s

3
0)(s

3
0s1)(s2s

3
0)(s

3
0s3) =

= a−1
1 a2

0
a2

0
a2a

−1
1 a2

0
a2

0
a2

0
a4a3a2a1a

2
0a3a2a3a4a1a2a3 =

= a−1
1 a0a2a

−1
1 a4a3a2a1a

2
0a3a2a3a4a1a2a3.

In the last equality, we cancelled some appearances of the bold-faced generator a0, since
in A6,5, a

3
0 = 1.

4.4 Analysis of the algorithm

For analyzing the algorithm described above, we define the following sets of elements of
Gr,n and Ar,n.

4.4.1 The coloring part

Let

C1 =
{
1, s20, s

4
0 . . . , s

r−2
0

}
=

{

1, a0, . . . , a
r−2
2

0

}

.

For each 1 < i 6 n, define for odd i− 1:

C0
i =

{
s0si−1 · · · s1, s0si−1 · · · s1s

2
0, s0si−1 · · · s1s

4
0, . . . , s0si−1 · · · s1s

r−2
0

}

C1
i =

{
1, si−1 · · · s1s0, si−1 · · · s1s

3
0, . . . , si−1 · · · s1s

r−1
0

}
,

or, in the language of the set A of generators of Ar,n:

C0
i =

{

a
r+2
4

0 ai−1 · · · a1, a
r+2
4

0 ai−1 · · · a1a0, a
r+2
4

0 ai−1 · · · a1a
2
0, . . . ,

a
r+2
4

0 ai−1 · · · a1a
r
2
−1

0

}

C1
i =

{

1, ai−1 · · · a
−1
1 , ai−1 · · · a2a

−1
1 a0, . . . , ai−1 · · · a

−1
1 a

r
2
−1

0

}

.

For even i− 1, we define:

C0
i =

{
s0si−1 · · · s1s0, s0si−1 · · · s1s

3
0, . . . , s0si−1 · · · s1s

r−1
0

}

C1
i =

{
1, si−1 · · · s1, si−1 · · · s1s

2
0, si−1 · · · s1s

4
0, . . . , si−1 · · · s1s

r−2
0

}
,
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or, in the language of the set A of generators of Ar,n:

C0
i =

{

a
r+2
4

0 ai−1 · · · a
−1
1 , a

r+2
4

0 ai−1 · · · a
−1
1 a0, a

r+2
4

0 ai−1 · · · a
−1
1 a20, . . . ,

a
r+2
4

0 ai−1 · · · a
−1
1 a

r
2
−1

0

}

C1
i =

{

1, ai−1 · · · a1, ai−1 · · · a1a0, ai−1 · · · a1a
2
0, . . . , ai−1 · · · a1a

r
2
−1

0

}

.

Define also:

Ci = C0
i ∪ C1

i and Cn+1 =
{

1, a
r+2
4

0

}

.

Let π ∈ Ar,n. Write π as a product of the generators of Gr,n in the canonical form
described above.

If there is no coloring part, then π ∈ An (the classical alternating group in Sn), so
its expression contains an even number of generators from the set {s1, . . . , sn−1}. We
can easily make the pairing by the relations mentioned above. The length of such an
expression is clearly inv(π) (note that in this case, it does not matter whether we use the
length order or the usual order).

Otherwise, we start with the coloring part. Denote by i = i1 the smallest colored digit
in the window notation of π, and by z = zi1 its color. We divide our treatment into four
cases:

1. i−1 and z are both even: In this case, we translate si−1 · · · s1 to ai−1 · · · a1 and sz0
to a

z
2
0 , so the contribution of this sub-expression is i−1+R r

2
( z
2
) = i−1+R r

2
(z⊘2).

We have used ai−1 · · · a1a
z
2
0 ∈ Ci.

2. i − 1 is even and z is odd: In this case, we translate

si−1 · · · s1s
z−1
0

to ai−1 · · · a1a
z−1
2

0 ∈ Ci and leave an additional generator s0 which will be treated
during the coloring of the next digit, or just before the ordering part. Note that since
π ∈ Ar,n, there must be some sj, j 6= 0, appearing right after the sub-expression
si−1 · · · s1s

z
0. In calculating the contribution of coloring the current digit (including

the missing generator s0 which will be paired later), consider the sub-expression:

sz0sj = s
r
2
0 s

z+ r
2

0 sj = a
z+ r

2
2

0 s
r
2
0 sj = a

z+ r
2

2
0 aj = az⊘2

0 aj.

Hence, i contributes i− 1 +R r
2
(z ⊘ 2). We have used:

ai−1 · · · a1a
z−1
2

0 ∈ Ci,

and note that in the next colored digit, we complete the remaining a
r+2
4

0 , since

z ⊘ 2 = z−1
2

+ r+2
4
. If i is the last colored digit, then the term a

r+2
4

0 ∈ Cn+1 will be
chosen from the set Cn+1.
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3. i − 1 and z are both odd: In this case, the sub-expression si−1 · · · s2 will be

translated to ai−1 · · · a2 and s1s
z
0 will be written as s1s

r
2
0 s

z+ r
2

0 = a−1
1 az⊘2

0 .

This expression contributes i− 1 +R r
2
(z ⊘ 2) to the length of π, and we have used:

ai−1 · · · a2a
−1
1 az⊘2

0 ∈ Ci.

4. i − 1 is odd and z is even: Here, again, the sub-expression si−1 · · · s2 will be

translated to ai−1 · · · a2 and s1s
z−1
0 will be translated to a−1

1 a
z−1+ r

2
2

0 = a−1
1 a

(z−1)⊘2
0 ,

so we use:
ai−1 · · · a2a

−1
1 a

(z−1)⊘2
0 ∈ Ci,

and leave an additional generator s0 which will be paired with some sj during the
coloring of the next digit or just before the ordering part. In order to calculate
the contribution of coloring this digit to the length of π (including the missing
generator s0 which will be paired later), we borrow the generator sj appearing just

after the coloring expression of the current digit: s1s
z
0sj = s1s

r
2
0 s

z+ r
2

0 sj. Since we

wrote: s1s
r
2
0 = a−1

1 , we are left with s
z+ r

2
0 sj = az⊘2

0 . The contribution in this case is
again i− 1 +R r

2
(z ⊘ 2). Now, since

z ⊘ 2 ≡

(

(z − 1)⊘ 2 +
r + 2

4

)(

mod
r

2

)

,

we take:
ai−1 · · · a

−1
1 a

(z−1)⊘2
0 ∈ Ci

and the remaining a
r+2
4

0 will be taken from the next colored digit or from Cn+1 (as
in case (2)).

Now, we apply the same procedure to the next colored digits, but note that there
might be a situation in which the expression coloring the digit j is s0sj−1sj−2 · · · , due
to the debt of the generator s0 from the preceding colored digit, so the cases might be

switched after converting s0sj to a
r+2
4

0 aj−1.

The following example will illuminate the situation.

Example 9. Let π =
(
12[2]45[1]3[3]

)
∈ A6,5. Then the ordered permutation is: σ =

(
5[1]3[3]2[2]14

)
. We perform the coloring part:

(12345)
1© s1s0=a−1

1 a20−→
(
2[1]1354

) 2© s0s2s1s30=a20a2a
−1
1−→

(
3[3]2[2]145

)
→

3© s4s3s2s1=a4a3a2a1
−→

(
53[3]2[2]14

)
= σ′.

Step 1©: The smallest colored digit is 2, which has to be colored by two colors, so we
are in case (4). We choose s1s0 = a−1

1 a20 from C1
2 . The additional generator s0 will be
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treated in the next step. Note that in the calculation of the contribution of this step to
the length of π we borrow the generator s2 from the next colored digit:

s1s
2
0s2 = s1s

3+2+3
0 s2 =

(
s1s

3
0

)
s20

(
s30s2

)
= a−1

1 a0a2.

This expression contributes only 2 to the length of π. The generator a2 will be counted
in the next step.

Step 2©: The next colored digit is 3, and we have a debt of a generator s0 from the
previous step. Thus, we choose:

s0s2s1s0s0s0 = s40
(
s30s2

) (
s1s

3
0

)
= a20a2a

−1
1 ∈ C0

3 .

Even though i − 1 = 2 is even and z = 3 is odd (case (2)), after s0s2 in the previous
step, we are actually again in case (4). Note that the expressions a−1

1 a20 from step 1© and
a20a2a

−1
1 from step 2© join together to be a−1

1 a0a2a
−1
1 .

Step 3©: The next colored digit is 5. We choose:

s4s3s2s1 =
(
s4s

3
0

) (
s30s3

) (
s2s

3
0

) (
s30s1

)
= a4a3a2a1 ∈ C1

5 ,

and leave the treatment of the additional generator s0 to the next step (in this case, to
the transition between the coloring part and the ordering part, i.e. a20 ∈ C6). We will
elaborate on this point after describing the ordering part.

4.4.2 The ordering part

We turn now to the ordering part. For 1 6 k 6 n− 1, define the sets Ok as follows:

O1 =
{

sisi−1 · · · s1s
r
2
ε

0 | 1 6 i 6 n− 1, ε ≡ i(mod 2)
}

∪ {1} =

= {aiai−1 · · · a
1−2ε
1 | 1 6 i 6 n− 1, ε ≡ i(mod 2)} ∪ {1},

and for 2 6 k 6 n− 1:

Ok =
{

sisi−1 · · · sks
r
2
ε

0 | k 6 i 6 n− 1, ε ≡ (i+ 1− k)(mod 2)
}

∪ {1} =

= {aiai−1 · · · ak | k 6 i 6 n− 1} ∪ {1}.

We start by pushing the digit i1 = |σ|(1) of π to its correct place. Let p1 = |π−1|(i1).
The pushing will be done by multiplying π (from the right) by the element o1 ∈ O1,
where:

o1 =

{

sp1−1sp1−2 · · · s1 = ap1−1 · · · a1 p1 − 1 is even

sp1−1sp1−2 · · · s1s
r
2
0 = ap1−1 · · · a2a

−1
1 p1 − 1 is odd.

Now, we continue to push the other digits of π: for each 1 < k 6 n− 2, assuming that
the digit ik = σ(k) is now located at position pk, we use the element ok ∈ Ok defined by:

ok =

{

spk−1spk−2 · · · sk = apk−1 · · · ak pk − k is even

spk−1spk−2 · · · sks
r
2
0 = apk−1 · · · ak pk − k is odd,

in order to push the digit ik to its correct place in π. Now, we have two possibilities:
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• The coloring part was completed without remainders, which means that both the
coloring part and the ordering part consist of even number of Gr,n-generators. In
this case, we choose 1 ∈ Cn+1, and we have that:

π = γ1 · · · γn · 1 · o
−1
n−1 · · · o

−1
1 ,

where γi ∈ Ci for 1 6 i 6 n, and oi ∈ Oi for 1 6 i 6 n− 1.

• The coloring part has a remainder of the generator s0. This means that the coloring
part required an odd number of Gr,n-generators, and therefore the ordering part
had an odd number of Gr,n-generators as well (since the sum of their lengths is

even). Thus, in the ordering part, there will be a remainder of s
r
2
0 , so we choose

s
r
2
0 s0 = s

r
2
+1

0 = a
r+2
4

0 ∈ Cn+1, and we have that:

π = γ1 · · · γn · a
r+2
4

0 · o−1
n−1 · · · o

−1
1 ,

where γi ∈ Ci for 1 6 i 6 n, and oi ∈ Oi for 1 6 i 6 n− 1.

In both cases, we have now: π = σ · o−1
n−1 · · · o

−1
1 , and we are done.

Example 10. We continue the previous example. Again, let π =
(
12[2]45[1]3[3]

)
. After

the completion of the coloring part, we have reached the permutation: σ′ =
(
53[3]2[2]14

)
.

Now, we go the other way around: we start with π and order it to obtain σ′:

(
12[2]45[1]3[3]

) 7© s3s2s1=a3a2a
−1
1 s30−→

(
5[4]12[2]43[3]

) 6© s4s3s2s30=a4a3a2
−→

→
(
5[1]3[3]12[2]4

) 5© s3s30=a3
−→

(
5[4]3[3]2[2]14

)
→

4© s−4
0 =a−2

0−→
(
53[3]2[2]14

)
= σ′.

In step 7©, we push the digit 5 to its correct place with respect to the permutation
σ′. We use s3s2s1s

3
0 = a3a2a

−1
1 ∈ O1. Note that the digit 5 is bearing extra three colors.

In step 6©, we push the digit 3 into its place, using s4s3s2s
3
0 = a4a3a2 ∈ O2. Note that

the color of the digit 5 is correct again. Next, in step 5©, we push 2 to its correct place
using s3s

3
0 = a3 ∈ O3.

Now, note that after completing step 5©, we still did not arrive at σ′, since the digit
5 has again a wrong color. On the other hand, we have a debt of a generator s0 from the
coloring part. Both problems would be solved simultaneously by using s−1

0 s−3
0 = a−2

0 ∈
C−1

6 . This is exactly what we have done in step 4©.

From the above analysis, we can conclude that each permutation π ∈ Ar,n has a
canonical decomposition with respect to the set A. This is the content of the following
theorem.
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Theorem 11. The set A = {ai | 0 6 i 6 n − 1} ∪ {a−1
1 } generates Ar,n. Moreover, for

each π ∈ Ar,n, there is a unique presentation as:

π = γ1 · · · γnγn+1 · o
−1
n−1 · · · o

−1
1 ,

where γi ∈ Ci for 1 6 i 6 n + 1 and oj ∈ Oj for 1 6 j 6 n − 1. This presentation is
called the canonical decomposition of π.

Proof. Let M be the Cartesian product:

M = C1 × · · · × Cn × Cn+1 ×On−1 × · · · ×O1.

We start by defining a subset L of M which we call the set of legal vectors. A vector
~ω = (γ1, . . . , γn, γn+1, on−1, . . . , o1) ∈ M is called a legal vector if it satisfies the following
two conditions:

1. Let i and j be two indices satisfying γk = 1 for all i < k < j, γi 6= 1 and γj 6= 1 (i.e.
the digits i and j are colored, but the digits between them are not colored). If γi
ends with sr−1

0 , then γj does not start with s0.

2. Let i and j be two indices satisfying γk = 1 for all i < k < j, γi 6= 1 and γj 6= 1. If
γi ends with s1, then γj starts with s0.

We have to prove the following two claims:

(a) The algorithm associates a legal vector in L to any π ∈ Ar,n. This proves the
existence of the presentation.

(b) |L| = rnn!
2
(= |Ar,n|), which implies the uniqueness of the presentation.

Claim (a) is implied immediately from the algorithm, so we pass to the proof of Claim
(b). For that, we define the notions of external and internal components of a vector:

~ω = (γ1, . . . , γn, γn+1, on−1, . . . , o1) ∈ L.

A component γi ∈ Ci is called external, if it ends either with sr−1
0 or with s1 (i.e. a

component which imposes a restriction on the next non-trivial component), and internal
otherwise. Note that γ1 is always internal, since by definition, the generator s1 does not
appear in γ1 and it cannot end with the expression sr−1

0 since r − 1 is odd.
For constructing an element of L, we start by choosing the element γ1 ∈ C1, out of

r
2
possibilities. Next, we choose which components will be external. Note that for each

external component there are two possibilities, but each external component restricts the
possibilities for the next non-trivial component (i.e. γi 6= 1). Next, for each internal
component, we choose one out of r − 1 possibilities.

When the coloring part is over, we have two possibilities: If we have no remainder
from the coloring part, then we choose γn+1 = 1 ∈ Cn+1, and we have to complete the
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process by a permutation of Sn of even length. On the other hand, if we do have a
remainder, then we choose γn+1 = a

r+2
4 ∈ Cn+1 and we have to complete the process

by a permutation of Sn of odd length. Altogether, this contributes n! possibilities for
completing the presentation.

Following the above discussion, we have that the number of legal vectors is:

|L| =
r

2
·

[
n−1∑

i=0

(
n− 1

i

)

(r − 1)n−1−i

]

· n! =
r · n!

2
((r − 1) + 1)n−1 =

rnn!

2
,

as needed.

Remark 12. Note that we do not claim that the presentation described above is irre-
ducible as it. Take for example the expression for π = (12[2]45[1]3[3]), computed in Example
8, to be:

a−1
1 a2

0
a2

0
a2a

−1
1 a2

0
a2

0
a2

0
a4a3a2a1a

2
0a3a2a3a4a1a2a3,

which can be shortened to a−1
1 a0a2a

−1
1 a4a3a2a1a

2
0a3a2a3a4a1a2a3. On the other hand, after

we cancel all the redundant appearances of a0, we do obtain an irreducible expression, as
will be proven in the next section (Corollary 21).

For π ∈ Ar,n, let LA(π) be the number of generators needed to write π as a product
of the Ar,n-generators by the algorithm.

As a consequence of the analysis of the algorithm, we have the following result:

Theorem 13. 1. Let π ∈ Ar,n, and let ω = sz10 b1s
z2
0 b2 · · · s

zn
0 bn where bi ∈ (S − {s0})

∗

(i.e. a word written using generators from S − {s0}) be its canonical presentation
with respect to S. Then the translation of ω to the generators in A will be

az1⊘2
0 b′1a

z2⊘2
0 b′2 · · · a

zn⊘2
0 b′n,

where b′i ∈ (A− {a0})
∗.

Moreover, if bi = si1 · · · sik , then b′i = a
εi1
i1

· · · a
εik
ik

, where εij ∈ {±1} if ij = 1 and
εij = 1 otherwise.

2. Let π ∈ Ar,n. Then:

LA(π) =
∑

zi(π) 6=0

(i− 1) + inv(π) +
n∑

i=1

(zi(π)⊘ 2) .

Proof. Part (1) is straightforward from the analysis of the algorithm, so we proceed to
the proof of part (2).

In [2, Theorem 4.3], the algorithm for presenting an element in Gr,n is described (see
also [17]). It is proven that for π ∈ Gr,n, the length of π, with respect to the generators
in S, is:

ℓGr,n
(π) =

∑

zi(π) 6=0

(i− 1) + inv(π) +
n∑

i=1

zi(π),
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so by part (1) we have:

LA(π) =
∑

zi(π) 6=0

(i− 1) + inv(π) +
n∑

i=1

(zi(π)⊘ 2) . (5)

Another consequence of the algorithm is the following criterion for being an element
in the group Ar,n:

Theorem 14. Let π ∈ Gr,n. Then: π ∈ Ar,n if and only if:

csum(π) + inv(|π|) ≡ 0(mod 2).

Proof. By the definition, π ∈ Ar,n if and only if ℓGr,n
(π) ≡ 0 (mod 2). By the algorithm

described above, ℓGr,n
(π) = csum(π)+k, where k is the number of generators si, for i 6= 0,

used in the presentation of π. On the other hand, if we remove the appearances of s0
from the presentation of π, we get |π|. Since lengths of different presentations of the same
element of Sn have the same parity, we have that k ≡ inv(|π|)(mod 2), and therefore the
criterion follows.

5 The presentation of Ar,n and its length function

In [6], Dynkin-like diagrams were presented for the groups Gr,n. Such diagrams are based
on a Coxeter-like presentation. In this section, we compute a Coxeter-like presentation
for Ar,n, as well as a Dynkin-like diagram for the groups Ar,n.

5.1 The presentation of Ar,n

We start with the presentation of Ar,n.

Theorem 15. The set A = {a0, a
±1
1 , . . . , an−1} generates Ar,n, subject to the following

relations:

1. a
r
2
0 = 1,

2. a41 = 1,

3. a2i = 1 for i > 1,

4. aiaj = ajai for |i− j| > 1 and i, j 6= 1,

5. (aiai+1)
3 = 1 for i > 1,

6. (a0a1)
2r = 1,
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7. (a0a
−1
1 )2r = 1,

8. a0a
2
1 = a21a0,

9. a1ai = aia
−1
1 for i > 2.

We denote by R the above set of relations.

Remark 16. Note that relation (5) implies (a−1
1 a2)

3 = 1 too, and relation (8) implies
a−1
1 a0a

−1
1 = a1a0a1 and a−1

1 a0a1 = a1a0a
−1
1 .

Proof. We have already shown in Theorem 11 that A generates Ar,n. Here, we prove that
the set R is a complete set of relations for Ar,n.

We imitate the idea of the proof of Proposition 2.1.1 in [7].
Consider the abstract group A+

r,n generated by the elements:

A = {a0, a1, a
−1
1 , . . . , an−1},

with R as the set of relations. Note that the set mapping α : A → A+
r,n defined by:

α(aε1) = a−ε
1 for ε ∈ {−1, 1},

α(ai) = ai for i ∈ {0, 2, . . . , n− 1},

extends to a group automorphism α on A+
r,n. Indeed, considering Ar,n as a subgroup of

Gr,n, α is the inner automorphism defined by the conjugation by s
r
2
0 .

Thus, the group Z2 = {1, α} acts on A+
r,n and we have the semidirect product A+

r,n⋊Z2,
where the product is defined as follows:

(x1α
i) · (x2α

j) = x1α
i(x2) · α

i+j .

The semidirect product has the following presentation:

A+
r,n ⋊ Z2 =

〈

α, a0, a1, a
−1
1 , a2, . . . , an−1

∣
∣
∣
∣

R, αaiα = α(ai) for all i
αa−1

1 α = α(a−1
1 )

〉

. (6)

We prove now that Gr,n
∼= A+

r,n ⋊ Z2. In order to do this, we define the following two
homomorphisms, which are inverses of each other:

ρ : A+
r,n ⋊ Z2 → Gr,n,

defined on the generators by:

α 7→ s
r
2
0

a0 7→ s20

ai 7→ s
r
2
0 si for i > 1,
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and
ϕ : Gr,n → A+

r,n ⋊ Z2,

defined on the generators by:

s0 7→ αa
r+2
4

0

si 7→ αai for i > 1.

It is easy to see that ρ and ϕ are isomorphisms, since ρ◦ϕ = Igr,n and ϕ◦ρ = IA+
r,n⋊Z2

,

so we have that Gr,n
∼= A+

r,n ⋊ Z2.
Now, since ρ(A+

r,n) ⊆ Ar,n and Ar,n, A
+
r,n are both subgroups of Gr,n of index 2, they

must be isomorphic.

The relations defining Ar,n can be graphically described by the following Dynkin-
like diagram, where the numbers inside the circles are the orders of the corresponding
generators, an edge without a label between two circles means that the order of the
multiplication of the two corresponding generators is 3, and an edge labeled 2r between
two circles means that the order of the multiplication of the two corresponding generators
is 2r (two circles with no connecting edge mean that the two corresponding generators
commute):

r
2

4

4

2 2 2

2r

2ra0

−1a1

a1

a2 a3
an−1

Figure 1: Dynkin-like diagram of Ar,n

5.2 The length function

Given a group G, generated by a set A, we denote by ℓA the length function on G with
respect to A. Explicitly, for each π ∈ G:

ℓA(π) = min{u | g = a1 · · · au, where ai ∈ A}.

In this section, we prove that the algorithm described above, indeed gives us a reduced
word with respect to the set of generators A. In other words, we prove that for each
π ∈ Ar,n, ℓA(π) = LA(π), where LA(π) is the number of generators in the presentation of
π, obtained by the algorithm (and was computed in Theorem 13(2)).

We start with the following set of definitions:
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Definition 17.

• Let ω = b0s
i1
0 b1s

i2
0 b2 · · · s

ik
0 bks

ik+1

0 bk+1 be any factorization of π ∈ Ar,n as a product
of the generators of S, such that bi ∈ (S − {s0})

∗ for 0 6 i 6 k + 1.

• Let n(ω) be the number of generators si in ω such that i 6= 0.

• Let β(ω) =
k+1∑

u=1

(iu ⊘ 2).

• Let µ(π) be the minimal value of β(ω) + n(ω), obtained over all possible factoriza-
tions, ω, of π to Gr,n-generators as above.

Theorem 18. Let π ∈ Ar,n. Then: ℓA(π) = µ(π).

Proof. Let π ∈ Ar,n. We start by proving the inequality: ℓA(π) > µ(π). Let ω be a
reduced word in generators from A. Apply the map ρ, defined in the proof of Theorem

15 above, which sends ai to s
r
2
0 si for i ∈ {1, . . . , n− 1}, a−1

1 to s1s
r
2
0 , and a0 to s20 on each

letter separately, and concatenate.
This yields a word η, factorizing π in Gr,n-generators, satisfying: ℓA(π) = β(η)+n(η).

This implies that the minimal value of µ over all the factorizations of π to Gr,n-generators
is at most ℓA(π), since µ(π) is defined as the minimal value of all such expressions. So,
we have: ℓA(π) > µ(π) (see Example 19(a) below).

In order to prove the opposite inequality: µ(π) > ℓA(π), let ω be a factorization
of π to Gr,n-generators which achieves the minimal value of µ(π). Apply the map ϕ,

defined in the proof of Theorem 15, which sends s0 to αa
r+2
4

0 , and for all i > 1 sends
si to αai on each letter separately, and concatenate. This gives us a factorization η of
π in A ∪ {α}-generators, having n(ω) generators ai with i 6= 0 and β(ω) occurrences of
a0. The factorization η contains also an even number of occurrences of the letter α (one
occurrence for each si for i > 0; recall that the number of si’s is even by definition). By
using the relations αaiα = ai for 0 6 i 6 n, i 6= 1 and αaε1α = a−ε

1 for ε ∈ {±1}, we
can cancel out all occurrences of α and we have an A∗-word factorization of π of length
µ(π) (see Example 19(b) below). This proves that µ(π) > ℓA(π), since the length is the
minimal number of generators of any presentation of π.

Example 19.

(a) We illustrate the proof of the first direction of the above proof: Let

π =
(
1[5]3[3]2[3]4[0]

)
∈ A6,4.

The A∗-word w = a0a
−1
1 a2a1a2a

−1
1 is a reduced factorization of π. Apply the map ρ on ω

to get:
η = s20s1s

3
0s

3
0s2s

3
0s1s

3
0s2s1s

3
0.
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One can calculate that:

β(η) + n(η) = (2⊘ 2) + (6⊘ 2) + (3⊘ 2) + (3⊘ 2) + (3⊘ 2) + 5 =

= 1 + 0 + 0 + 0 + 0 + 5 = 6 = ℓA(π).

(b) In this part, we illustrate the derivation described in the second direction of the above
proof: Let π =

(
1[2]2[0]4[0]3[1]

)
, and let ω = s20s2s1s0s1s2s3 be a factorization of π (here

β(ω) + n(ω) = 8 is indeed minimal). Then:

ϕ(ω) = αa20αa
2
0αa2αa1αa

2
0αa1αa2αa3 = η.

Now, after canceling out the appearances of α, we get the A∗-word:

a20a
2
0a2a1a

2
0a1a2a3 = a0a2a1a

2
0a1a2a3,

whose length is 8 too.

Theorem 20. Let π ∈ Ar,n. Then:

LA(π) = µ(π).

Proof. Let π ∈ Ar,n. The canonical decomposition of π demonstrates the inequality
LA(π) > µ(π). For the opposite inequality, assume to the contrary that there is some
decomposition ω of π satisfying:

n(ω) + β(ω) < LA(π).

This contradicts the fact that Equation (5) is the length of π with respect to the usual
generators of Gr,n.

Hence, we have obtained the following corollary, which is the main result of this section:

Corollary 21. The function LA is indeed the length function of the group of alternating
colored permutations with respect to the set of generators A. Explicitly: for each π ∈ Ar,n,

ℓA(π) = LA(π).

Consequently, we can easily get the generating function for the length function:

Corollary 22. The generating function for the length function ℓA is:

∑

π∈Ar,n

qℓA(π) =
1

2
[n]!q

n∏

j=1

(
1 + qj−1(1 + 2q + · · ·+ 2q

r
2
−1)

)
.
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Proof. Each π ∈ Ar,n has a canonical decomposition into generators from the set S. By
Theorem 4.4 of [2], the generating function for the length with respect to the set S over
the whole group Gr,n is:

∑

π∈Gr,n

qℓS(π) = [n]!q

n∏

j=1

(
1 + qj−1(1 + q + · · ·+ qr−1)

)
.

By Theorem 13(1), the factor sj−1 · · · s1s
z
0 which colors the digit j by z colors is con-

verted to aj−1 · · · a
±1
1 az⊘2

0 . Since the mapping Zr → Z r
2
is a 2:1-epimorphism, the factor

(1 + qj−1(1 + q + · · ·+ qr−1)) is converted to
(
1 + qj−1(1 + 2q + · · ·+ 2q

r
2
−1)

)
. Finally,

after completing the coloring part, only half of the permutations of Sn are permitted
(since the total length of the word in Gr,n-generators should be even), so we have to
divide the generating function by 2.

6 The group of alternating colored permutations as

a covering group

In [15], a covering map f : An+1 → Sn was defined and used to lift some identities of Sn

to An+1. In this section, we use a similar technique with a covering map from Ar,n to
G r

2
,n. Unlike the case of An+1, this map is an epimorphism, and hence the kernel of this

map will be combinatorially described. We also present a section s : G r
2
,n → Ar,n which

gives us a way to decompose the length function, ℓA(π), into two summands, one of them
is constant on the coset of π, while the other, which will be called the fibral length, varies
over the coset. We present a nice combinatorial interpretation of the last parameter, as
well as a generating function for it over each coset. In Section 7, we use this covering map
to lift some identities and permutation statistics from G r

2
,n to Ar,n.

Define the following projection:

p : Ar,n → G r
2
,n,

as follows: if π =
(

b
[c1]
1 · · · b

[cn]
n

)

, then:

p(π) =
(

b
[c1⊘2]
1 · · · b[cn⊘2]

n

)

.

Example 23. Let π =
(
3[0]2[1]4[2]1[3]

)
∈ A6,4. Then:

p(π) =
(
3[0⊘2]2[1⊘2]4[2⊘2]1[3⊘2]

)
=

(
3[0]2[2]4[1]1[0]

)
∈ G3,4.

Then, we have:

Lemma 24. The map p is an epimorphism. Moreover, the kernel of p is the normal
closure of a21 in Ar,n. Thus: G r

2
,n
∼=

Ar,n

≪a21≫
.
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Proof. The map p is clearly a homomorphism since the operator ⊘ commutes with the

addition operation in Z r
2
(see Equation (4)). Now, if σ =

(

b
[c1]
1 · · · b

[cn]
n

)

∈ G r
2
,n, and

j ∈ {1, . . . , n} satisfies bj = 1, then, by Theorem 14, we have either

(

b
[2c1]
1 · · · b

[2cj ]
j · · · b[2cn]n

)

∈ Ar,n or

(

b
[2c1]
1 · · · b

[2cj+ r
2 ]

j · · · b[2cn]n

)

∈ Ar,n,

where the computations are made modulo r. This implies that p is indeed an epimorphism.

It remains to find the kernel. Since a21 =
(

1[
r
2 ]2[

r
2 ]3[0] · · ·n[0]

)

, we have a21 ∈ ker(p),

thus ≪ a21 ≫6 ker(p). On the other hand, all the elements of ker(p) are of the form
(
1[c1]2[c2] · · ·n[cn]

)
, where ci ∈

{
0, r

2

}
and {i | ci 6= 0}| is even. For each i < j, we can

use the element ti,ja
2
1t

−1
i,j ∈≪ a21 ≫, where ti,j = si−1si−2 · · · s1 · sjsj−1 · · · s2 in order

to color digits i and j in r
2
colors without touching the other digits. This proves that

≪ a21 ≫= ker(p), as needed.

We emphasize the following two observations, which can be concluded from the proof
of the previous lemma, for a future use.

Observation 25. 1. | ker(p)| = 2n−1.

2. Let π, π′ ∈ Ar,n be such that p(π) = p(π′). Then, for each i ∈ {1, . . . , n}, ci(π) ≡
ci(π

′) (mod r
2
). Moreover, ci(π) and ci(π

′) differ by r
2
for an even number of indices.

The following obvious lemma presents the action of p on the generators of Ar,n:

Lemma 26.
p(ai) = si for 1 6 i 6 n− 1,
p(a−1

1 ) = s1,
p(a0) = s0.

We introduce the following section of the covering map p: Define

s : G r
2
,n → Ar,n

as follows: if π =
(

p
[c1]
1 · · · p

[cj ]
j · · · p

[cn]
n

)

and pj = 1, then:

π0 = s(π) =







(

p
[2c1]
1 · · · p

[2cj ]
j · · · p

[2cn]
n

)

inv(|π|) ≡ 0(mod 2)
(

p
[2c1]
1 · · · p

[2cj+ r
2 ]

j · · · p
[2cn]
n

)

inv(|π|) ≡ 1(mod 2),

where the computations are made modulo r. It is easy to verify that p ◦ s = Id.

Example 27. Let π =
(
2[1]3[0]4[1]1[2]

)
∈ G3,4. Then, inv(|π|) = 3 and j = 4. Thus,

(
2[2]3[0]4[2]1[4]

)
/∈ A6,4, so s(π) =

(
2[2]3[0]4[2]1[1]

)
∈ A6,4.
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6.1 The fibral length

For each π ∈ Ar,n, the length function of π with respect to the set of generators A can be
decomposed into two summands. The first summand is the length of p(π) as an element
in G r

2
,n, which is obviously invariant on the fiber of π. The second summand, which varies

along the fiber, will be called the fibral length. As will be shown in this section, it has a
nice combinatorial interpretation. We start with the definition of the fibral length.

Definition 28. For each π ∈ Ar,n, define the fibral length of π to be:

ℓF (π) = ℓA(π)− ℓA(s(p(π))).

For π ∈ Gr,n, denote c(π) =
∑

zi(π) 6=0

(i− 1). By the definition of π0 = s(p(π)), we have:

c(π)− c(π0) =
∑

{i|zi(π)= r
2}

(i− 1). (7)

We will need the following two lemmata in the sequel:

Lemma 29.

ℓF (π) = c(π)− c(π0) + inv(π)− inv(π0).

Proof. Let π ∈ Ar,n. Then, by Observation 25(2),

n∑

i=1

(zi(π)⊘ 2) =
n∑

i=1

(zi(π0)⊘ 2).

By Theorem 13(2), we are done.

Lemma 30. For each π ∈ Ar,n, we have: ℓF (π) > 0.

Proof. Let π ∈ Ar,n. By Lemma 29, we have:

ℓF (π) = c(π)− c(π0) + inv(π)− inv(π0).

By Equation (7), c(π) − c(π0) > 0. Now, let 1 6 k < m 6 n be such that π(k) =
i[α] < j[β] = π(m), but π0(k) = i[α

′] > j[β
′] = π0(m). A rather tedious calculation should

convince the reader that the only possibility is |π(k)| = i > j = |π(m)| with α = r
2
and

β = 0 (and hence α′ = β′ = 0), so that the digit i is colored in π but not in π0. Now, since
this situation can occur at most i− 1 times, the contribution of i to c(π)− c(π0) which is
i− 1, will cancel the corresponding negative contribution to inv(π)− inv(π0), and hence
the total sum will be positive.

In order to make the previous proof a bit more accessible, we provide an example.

Example 31. Let π =
(
3[3]21

)
∈ A3,4, so that π0 = (321). Then i = 3 contributes 2 to

c(π)− c(π0) and −2 to inv(π)− inv(π0) since 3[3] < 2, 3[3] < 1, but 3 > 1, 3 > 2. So, the
total sum remains positive.
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Denote by ℓG the length function of the group G r
2
,n. Then, we have:

Lemma 32. Let π ∈ Ar,n and π0 = s(p(π)). Then:

ℓA(π0) = ℓG(p(π)).

Proof. Let π ∈ Ar,n. Then:

(∗) ℓG(p(π)) =
∑

zi(p(π)) 6=0

(i− 1) + inv(p(π)) +
n∑

i=1

zi(p(π)) =

=
∑

zi(π)/∈{0, r2}

(i− 1) + inv(p(π)) +
n∑

i=1

(zi(π)⊘ 2).

Now,
∑

zi(π)/∈{0, r2}
(i− 1) =

∑

zi(π0) 6=0

(i− 1), since for all 1 < i 6 n, zi(π0) 6=
r
2
. Moreover,

one can check case-by-case that inv(p(π)) = inv(π0).
Finally, one can check that for each 1 6 i 6 n, one has: zi(π0) ⊘ 2 = zi(π) ⊘ 2 since

zi(π0)− zi(π) ∈ {0, r
2
}, and thus

n∑

i=1

(zi(π)⊘ 2) =
n∑

i=1

(zi(π0)⊘ 2).

Therefore, we have:

ℓG(p(π))
(∗)
=

∑

zi(π)/∈{0, r2}

(i− 1) + inv(p(π)) +
n∑

i=1

(zi(π)⊘ 2) =

=
∑

zi(π0) 6=0

(i− 1) + inv(p(π0)) +
n∑

i=1

(zi(π0)⊘ 2) = ℓA(π0),

as required.

As a corollary, we now have by Definition 28 and Lemma 32:

Corollary 33. Let π ∈ Ar,n and let p(π) be its projection into G r
2
,n. Then:

ℓA(π) = ℓF (π) + ℓG(p(π)).

6.2 A combinatorial interpretation of the fibral length

For presenting the fibral length in a combinatorial way, we introduce the following pa-
rameter on Ar,n.

Definition 34. For each π ∈ Ar,n, define the set of absolute transparent inversions by:

Tinv(π) =
{

(i, j) | zi(π) =
r

2
, i > j, and |π|−1(i) < |π|−1(j)

}

.

Define also:
tinv(π) = |Tinv(π)|.
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Example 35. If π =
(
2[2]4[4]3[3]1[5]

)
∈ A6,4, then Tinv(π) = {(3, 1)}, since

(
3[3], 1[5]

)
is

an absolute transparent inversion. Hence, tinv(π) = 1.

We have now:

Theorem 36. Let π ∈ Ar,n. Then:

ℓF (π) = 2 ·
∑

{i|zi(π)= r
2}

(i− 1)− 2tinv(π). (8)

Proof. By Equation (7) and Lemma 29, it is sufficient to show that:

c(π)− c(π0) = inv(π)− inv(π0) + 2tinv(π). (9)

Let 1 < i 6 n be such that zi(π) = r
2
. Then, by Equation (7), the contribution of

i to the left hand side is i − 1, so we have to show that i contributes the same to the
right hand side, i.e. for each 1 6 j < i, the pair (i, j) contributes 1 to the expression
inv(π) − inv(π0) + 2tinv(π). This can be easily done by a subtle, though, direct check.
Note that i = 1 contributes 0 to both sides.

If 1 6 i 6 n satisfies zi(π) 6=
r
2
, then i contributes 0 to both sides.

We are interested in the distribution of the fibral length of π ∈ Ar,n over the coset
containing π. Define:

F (π) =
∑

σ∈p−1(p(π))

qℓF (σ).

It would be much easier to calculate this distribution if we translate Theorem 36 to the
language of Lehmer codes [13]. Recall that the Lehmer code of a permutation π ∈ Sn is
defined by:

L(π) =
(
lπ(1) · · · lπ(n)

)
,

where for each 1 6 i 6 n,

li = |{j | j > i, π−1(i) > π−1(j)}|.

For example, if π = (31452) ∈ S5 (in window notation), then:

L(π) = (l3l1l4l5l2) = (20110).

Note that this definition is slightly different from the usual definition of the Lehmer code.
For π ∈ Ar,n, let L(|π|) = (l1 · · · ln), and define:

εi(π) =

{
1 zi(π) =

r
2

0 zi(π) 6=
r
2
.

The parameter tinv(π) can be written as:

tinv(π) =
n∑

i=1

liεi(π),
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and Equation (8) can be restated as:

ℓF (π) = 2
n∑

i=1

εi(π)((i− 1)− li). (10)

The following theorem presents an expression for the generating function F (π), using
Equation (10).

Theorem 37. Let π ∈ Ar,n and define for each 2 6 i 6 n:

δi(π) =

{
1 zi(π) ∈

{
0, r

2

}

0 zi(π) /∈
{
0, r

2

}
.

Then:

F (π) =
n∏

i=2

(
1 + q2δi(i−1−li)

)
.

Proof. Let π =
(

a
[c1]
1 · · · a

[cn]
n

)

∈ Ar,n. By Observation 25(2), the coset of π is

{(

a
[d1]
1 · · · a[dn]n

)}

,

where the vector (d1, . . . , dn) is obtained from the vector (c1, . . . , cn) by an addition of r
2

to an even number of coordinates. Hence, the vectors (d1, . . . , dn), appearing as colors of
elements of the coset of π can be seen as forming the (n−1)−dimensional affine subspace
(c1, . . . , cn) + Sp({e1 − e2, . . . , en−1 − en}), where ei = (0, . . . , r

2
, . . . , 0) (i.e. r

2
in the i-th

coordinate and 0 elsewhere). Finally, note that when we run over all the elements of the
coset, only the coordinates with zi(π) ∈

{
0, r

2

}
and i 6= 1 contribute to ℓF (π).

7 Some permutation statistics

In this section, we present some permutation statistics for the group of alternating colored
permutations.

7.1 Passing parameters from Gr

2
,n to Ar,n

We exhibit now how to pass parameters defined on the full group of colored permutations
of half the number of colors to the group of alternating colored permutations. In order to
do that, we have to define the notion of a fiber-fixed parameter.

Definition 38. Let fA : Ar,n → N and fK : G r
2
,n → N be two permutation statistics.

The parameter fA is called fiber-fixed if for each π ∈ Ar,n,

fK(p(π)) = fA(π). (11)

the electronic journal of combinatorics 21(2) (2014), #P2.29 25



By Observation 25(1), we have the following connection between the corresponding
generating functions:

Lemma 39. Let fA : Ar,n → N and fK : G r
2
,n → N be such that fA is a fiber-fixed

parameter. Then:
∑

π∈Ar,n

qfA(π) = 2n−1
∑

π∈G r
2 ,n

qfK(p(π)).

Proof.
∑

π∈Ar,n

qfA(π) =
∑

π∈G r
2 ,n

∑

v∈p−1(π)

qfA(v) =
∑

π∈G r
2 ,n

∑

v∈p−1(π)

qfK(p(v)) =

= 2n−1
∑

π∈G r
2 ,n

qfK(π).

We give two examples of fiber-fixed parameters, the first one is the flag-inversion
number, and the second is the right-to-left minimum.

7.2 The flag-inversion number

The flag-inversion number was introduced by Foata and Han [9, 10]. Adin, Brenti and
Roichman [1] used it as a rank function for a weak order on the groups Gr,n. We introduce
it in Gr,n:

Definition 40. Let π ∈ Gr,n. The flag-inversion number of π is defined as:

finv(π) = r · inv(|π|) + csum(π).

In [11], the generating function of finv over Gr,n was computed:

Proposition 41.
∑

π∈Gr,n

qfinv(π) =
n∏

i=1

[ri]q.

We define here a version of the flag-inversion number for the alternating colored per-
mutations whose generating function over Ar,n can be computed using on the covering
map p.

Definition 42. Let π ∈ Ar,n. Define:

finvA(π) =
r

2
· inv(|π|) +

n∑

i=1

(ci(π)⊘ 2).

It is easy to see that the parameter finv is indeed fiber-fixed, in the sense of Equation
(11). Explicitly, for each π ∈ Ar,n, finvA(π) = finv(p(π)), since |π| = |p(π)| and ci(π)⊘ 2
is fixed on each fiber. Consequently, we have:
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Theorem 43.
∑

π∈Ar,n

qfinvA(π) = 2n−1

n∏

i=1

[r

2
· i
]

q
.

7.3 The right-to-left minima

Another parameter, which can be computed using the covering map, is the right-to-left
minima.

Definition 44. Let p = (a1, . . . , an) be a word over an ordered alphabet (Σ, <). Then
ai ∈ {1, . . . , n} is a right-to-left minimum if for any j > i, one has: aj > ai. The number
of right-to-left minima will be denoted by RtlMin(p).

Example 45. Let p = (31254) ∈ S5 (with the natural order), then 1, 2, 4 are right-to-left
minima and hence: RtlMin(p) = 3.

Regev and Roichman [16] defined a version of the right-to-left minima for Gr,n as
follows:

Definition 46. Let π =
(

a
[c1]
1 · · · a

[cn]
n

)

∈ Gr,n. Define:

RtlMin(π) = |{ai | ∀j > i : aj > ai, ci 6= 0}|.

They showed that the distribution of the parameter RtlMin over the full group of
colored permutations is (see Proposition 5.1 in [16] with L = {0, . . . , r − 1}):

∑

π∈Gr,n

qRtlMin(π) = ((r − 1)q + 1)((r − 1)q + r + 1) · · · ((r − 1)q + (n− 1)r + 1).

We introduce here a version of the right-to-left minima for Ar,n.

Definition 47. Let π ∈ Ar,n. Define:

RtlMinA(π) =
∣
∣
∣

{

ai

∣
∣
∣∀j > i, aj > ai, ci 6=

{

0,
r

2

}}∣
∣
∣ .

Again, it is easy to see that RtlMinA is fiber-fixed. Explicitly, for each π ∈ Ar,n, we
have RtlMinA(π) = RtlMin(p(π)), since we are considering only digits whose colors are
not 0 or r

2
. Hence, as an immediate corollary of Proposition 5.1 of [16], we get:

Theorem 48.
∑

π∈Ar,n

qRtlMinA(π) = 2n−1

n∏

i=1

(r

2
(q + i− 1) + 1− q

)

.
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