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Abstract

Let G = (V,E) be a graph and q be an odd prime power. We prove that G
possess a proper vertex coloring with q colors if and only if there exists an odd vertex
labeling x ∈ FVq of G. Here x is called odd if there is an odd number of partitions
π = {V1, V2, . . . , Vt} of V whose blocks Vi are G-bipartite and x-balanced, i.e., such
that G|Vi is connected and bipartite, and

∑
v∈Vi xv = 0. Other new characterizations

concern edge colorability of graphs and, on a more general level, blocking sets of
projective spaces. Some of these characterizations are formulated in terms of a new
switching game.

1 Introduction

The results in this paper are based on the study of a new switching game (Section 2).
We view this game as an auxiliary tool only. Many of our results are formulated without
mentioning it and provide new equivalents for the colorability of graphs, for example. Our
auxiliary switching game is a single player game with complete information. The player’s
objective is to modify a certain initial pattern step by step and to reach a certain zero
pattern eventually. The number of moves needed does not matter here. The question is
whether it is possible to reach the zero pattern at all. We already studied some similar
generalizations of Berlekamp’s Switching Game in [Sch1, Sch2]. These games were closely
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related to anti-codes (codes with restricted maximal weight) and to flows of graphs. We
did also obtain some graph colorability results, some Alon-Tarsi-like results, but only by
using the duality of flows and colorings. The switching game that we are going to study
here is more directly related to colorings. Actually, there is only one natural step between
our switching games and graph colorability, which are blocking sets (Section 3) of finite
vector spaces V = Fqn. As blocking sets over Fq are a generalization of non-q-colorable V

graphs, as we will see, it is natural to study them first. We will show that a subset B ⊆ V B

is a blocking set if and only if there exist a winning strategy in our switching game. Here
the set of available moves is defined with respect to B, so that the switchability of the
initial pattern actually depends on B. We will also present some best possible strategies,
i.e., general strategies that turn out to be winning strategies whenever the game actually
can be won. All these strategies and the whole concept of switchability can be expressed
as mere linear combinations and linear dependencies of certain vectors in ZV (or in ZVr ).

We then turn to graphs (Section 4). Graphs G = (V,E) correspond to blocking sets G = (V,E)

with special properties. Hence, our results about blocking sets hold for graphs as well,
and we can even simplify or improve them based on the additional properties of graphs.
It turns out that some quantitative statements about certain classes of partitions of V
are equivalent to the q-colorability of G. The general form of these equivalents might be
technical, but in some special cases we obtain cleaner results. For example, if q is an odd
prime power, we can prove that the graph G possesses a proper vertex coloring using at
most q many colors if and only if there exists an odd vertex labeling x ∈ FVq of G. Here
x is called odd if there is an odd number of partitions π = {V1, V2, . . . , Vt} of V whose
blocks Vi are G-bipartite and x-balanced, i.e., such that G|Vi is connected and bipartite,
and

∑
v∈Vi xv = 0. Other new characterizations concern edge colorability of graphs.

We also obtain some results with respect to the number of colorings in modular arith-
metic, when we count modulo some r > 2. Many algebraic tools work or can be applied r

in modular arithmetic. In some of the applications of such tools, it can be important
to know that the number of colorings of a graph is nonzero modulo r. This can be a
problem. For example, one can sometimes use the Combinatorial Nullstellensatz to prove
the colorability of some graphs or to generalize colorability results to list coloring results,
as e.g. in [Sch3, Sec. 5]. In such approaches, one usually has to show that a certain coeffi-
cient in a certain polynomial is nonzero. Sometimes, this coefficient equals the number of
colorings of the examined graph G. Hence, it seems that, in that case, one should already
be satisfied with the existence of colorings. However, in modular arithmetic, having a
coloring and having a nonvanishing number of colorings is not the same. The number
might be zero modulo r, even though colorings exist. Therefore, it might be good to
know that, with just one additional linear restriction on the colorings, one can actually
force that number to be nonzero modulo r. More precisely, if Cq(G) ⊆ Fqn denotes the Cq(G)

set of colorings with colors taken from Fq, we show that to any divisor r of q − 1 there

exists an x ∈ V = Fqn such that |Cq(G)\x⊥|
q−1

is nonzero modulo r, provided Cq(G) 6= ∅. It
is conceivable that one can find ways to employ this, for example in connection with the
Combinatorial Nullstellensatz.
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2 Switching Games

Our single player switching game is played on the board V := Fqn. A pattern is a function V

f : V −→ Z. Typically, we start with the fixed initial pattern f0 := qn−1{0}, defined by f0

qn−1{0}(x) :=

{
qn−1 if x = 0,

0 if x ∈ V\0.
(1)

This initial pattern will then be modified by adding integral multiples mf of certain
available patterns f ,

f0 7−→ f0 +mf. (2)

This is called making a move. We also say that we switch f exactly m many times, where
negative multiplicities m are allowed. The class of available patterns f will be defined
later and will vary from case to case; hence, actually we will examine several different
games. We say that we can switch off f0, or that f0 is switchable, if there is a finite
sequence of moves that results in the zero function denoted ∅. For an integer r > 2, we ∅

rsay that we can switch off f0 modulo r, or that f0 is switchable modulo r, if we can switch
it off, but with all function values of all patterns taken modulo r. One could also say that
a winning strategy exists, or that it exists modulo r, in that case.

Before we play the game, here are some more conventions:
We identify subsets U ⊆ V with their characteristic functions V −→ {0, 1} as 0-1

patterns: U(x)

U(x) :=

{
1 if x ∈ U ,

0 if x ∈ V \ U .
(3)

This is used extensively. It simplifies notation but can lead to unusual expressions. For
example, the singletons {u} ⊆ V are also viewed as 0-1 patterns {u}

{u} : V −→ {0, 1}, x 7−→ {u}(x). (4)

These one-point sets form the standard basis of the Z-module ZV of all patterns. They ZV

are usually not available as moves, only the initial pattern, as a multiple of {0}, could be
considered as an unavoidable initial move.

Note that both the board V := Fqn, as well as the set of patterns ZV , carry the structure
of a module. Our board V is a module over Fq, while ZV is a module over Z. They both
provide an addition. Therefore, we have to be careful with the notation. Subsets of
V are usually viewed as 0-1 patterns in ZV and added in (ZV ,+), while elements of V ,
or combinations of one element and one subset of V , are always added in (V ,+). For
example, if n = 2 and we consider (0, 1) and (1, 0) as two points of the board V = Fq2, we
have

(0, 1) + (1, 0) = (1, 1) ∈ V , (5)

as we would view the + as addition in V here, and

(0, 1) + {(1, 0)} = {(1, 1)} ∈ {0, 1}V ⊆ ZV , (6)
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again with the addition in V (with x+ U = {x+ u ¦ u ∈ U}), but

{(0, 1)}+ {(1, 0)} = {(0, 1), (1, 0)} ∈ ZV , (7)

where the + is meant as addition in ZV . Similar rules are used for the two scalar multi-
plications; hence, for example,

2{(1, 0)} 6= {2(1, 0)}, (8)

where the left scalar multiplication is meant in ZV and produces the pattern that has the
value 2 in (1, 0) and 0 elsewhere, while the right scalar multiplication is in V = Fq2 and
produces the pattern {(2, 0)}, which has the value 1 in (2, 0) and 0 elsewhere. The reader
may try to read the left side of the first equation in Theorem 3.3 with these conventions.
There, we view a linear combination inside ZV of certain patterns 〈S〉 ∈ ZV , and evaluate
it in a point x. However, the patterns 〈S〉 appear as linear spans inside the vector space
V first. One has to recognize that they, as subsets of V , also are patterns in ZV .

3 Blocking Sets

A blocking set in the Fq-vector space V := Fqn is a subset B such that each hyperplane V, B

H l V contains at least one element of B, B ∩ H 6= ∅. Usually, this is formulated in l

the language of projective spaces, but we do not do it here. To characterize blocking sets
B ⊆ V in terms of switchability, we have to recall some basic facts about the subspaces of
our Fq-vector space V . Such enumerative facts are most elegantly denoted with q-analogs,
in particular, the q-numbers [m]q

[m]q :=
qm − 1

q − 1
= qm−1 + · · ·+ q1 + q0. (9)

Our first lemma counts hyperplanes, i.e., maximal proper subspaces H of V , H l V . We
frequently will use them, and define, for A,B ⊆ V and a ∈ V , HBA

HB
A := {H l V ¦ A ⊆ H, B ∩H = ∅}, HB

a := HB
{a}, HB := HB

∅ , etc. (10)

We recall some basic enumerative facts about HA and translate them into our switching
game notation:

Lemma 3.1. Let U be an m-dimensional proper subspace of the n-dimensional vector
space V := Fqn over Fq, and let x ∈ V\U . Then

|HU | = [n−m]q and |HU∪{x}| = [n−m−1]q.

In particular,∑
H∈HU

H = [n−m]qU + [n−m−1]q(V\U) = qn−m−1U + [n−m−1]qV ,

and this equation also holds for the full space U = V if we set [−1]q := −q−1.

the electronic journal of combinatorics 21(2) (2014), #P2.3 4



We also will need enumerative facts about HB:

Lemma 3.2. Let ∅ 6= B ⊆ V. Then

|HB| =
∑
S⊆B

(−1)|S| [n− dim〈S〉]q =
1

q − 1

∑
S⊆B

(−1)|S| qn− dim〈S〉,

where the first equation also holds for B = ∅.

Proof. There are [n− dim〈S〉]q many hyperplanes containing a given subset S ⊆ B. There-
fore, the first equation follows from the principle of inclusion exclusion. The second equa-
tion easily follows from our Definition (9) of q-numbers, using that, for B 6= ∅,∑

S⊆B
(−1)|S| = 0. (11)

At this point, one may observe that the last formula for |HB| contains a not obvious
insight about the spanning subsets of blocking sets. If we read our formula only modulo
q, we may omit all summands with dim〈S〉 < n, so that the sum only runs over spanning
subsets S ⊆ B, 〈S〉 = V . Hence, if B is a blocking set, |HB| = 0, we see that

q divides
∑
S⊆B
〈S〉=V

(−1)|S|. (12)

This might be of some interest on its own, but we also need it at some point. More
important, however, is the following application of the lemmas above:

Theorem 3.3. Let ∅ 6= B ⊆ V and x ∈ V. Then(∑
S⊆B

(−1)|S|qn−dim〈S〉〈S〉
)

(x) = q|HB
x | − |HB|.

Or, put another way, ∑
S⊆B
〈S〉3x

(−1)|S|qn−dim〈S〉 = q|HB
x | − |HB|.

Proof. Using q[m− 1]q = [m]q − 1, which also holds for m = 0, we calculate:∑
S⊆B

(−1)|S|qn−dim〈S〉〈S〉

3.1
=

∑
S⊆B

(−1)|S| q
( ∑
H∈HS

H − [n−dim〈S〉−1]qV
)

= q
∑
HlV

( ∑
S⊆B∩H

(−1)|S|
)
H −

∑
S⊆B

(−1)|S| [n−dim〈S〉]qV +
∑
S⊆B

(−1)|S|V
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3.2
= q

∑
HlV
H∩B=∅

H − |HB| V + ∅

=
∑
x∈V

(
q|HBx | − |HB|

)
{x}.

If B is a blocking set, HB = ∅, this theorem simplifies to the following equation:

Corollary 3.4. If B is a blocking subset of V, then∑
S⊆B

(−1)|S|qn−dim〈S〉〈S〉 = ∅.

With this, we are able to prove the following theorem:

Theorem 3.5. Let q be a prime power and assume r ∈ N does not divide qn−1. For any
subset B ⊆ V := Fqn, the following are equivalent over the board V:

(i) B is a blocking set.

(ii) The pattern qn−1{0} can be switched off by switching each hyperplane that contains
at least one b ∈ B exactly −1 times and by switching the full space V exactly [n−1]q
many times.

(iii) The pattern qn−1{0} can be switched off by switching for each nonempty S ⊆ B the
span 〈S〉 exactly (−1)|S|qn−dim〈S〉−1 many times (which then automatically adds up
to an integral number of switches for any possible span 〈S〉).

(iv) The pattern qn−1{0} can be switched off modulo r by switching affine lines u + 〈b〉
with directions b taken from B.

(v) Some modulo r nonvanishing multiple `{0} of {0} can be switched off modulo r by
switching affine subspaces u+U whose corresponding direction subspaces U contain
at least one b ∈ B.

Proof. To prove (i) ⇒ (ii), assume that B is a blocking set. Then any hyperplane H
contains at least one element b ∈ B and shall be switched in Statement (ii). If we actually
switch each hyperplane H exactly −1 time, then the point 0 is switched −[n]q many times,
while any other point x 6= 0 is switched −[n−1]q many times. Thus, if we also switch the
full space V exactly [n−1]q many times, the points x 6= 0 remain unswitched, while 0 is
switched −[n]q + [n−1]q = −qn−1 many times, canceling the initial pattern qn−1{0}.

To gain insight in the implication (i)⇒ (iii), we divide the equation in Corollary 3.4
by q and move the summand corresponding to S = ∅ to the other side. The equation
obtained can then be viewed as a switching procedure. As mentioned, this procedure
necessarily involves an integral number of switches of any 〈S〉, which easily follows from
Statement (12).
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The implications (ii) ⇒ (iv) and (iii) ⇒ (iv) follow from the fact that any subspace
that contains a b ∈ B can be decomposed into parallels of the line 〈b〉.

The implication (iv)⇒ (v) is trivial.

In order to prove ¬(i)⇒ ¬(v), assume that a hyperplane H is not blocked by B. Then
any legitimate move u+ U in Part (v) is not parallel to H, as there is a b ∈ B with

U 3 b /∈ H. (13)

It intersects H, as well as any fixed parallel h + H 6= H of H, in exactly qdim(U)−1 many
points,

|(u+ U) ∩ (h+H)| = qdim(U)−1 = |(u+ U) ∩H|. (14)

Applied to any pattern f ∈ ZV , the move u+ U will not change the difference

∆(f) :=
∑
x∈H

f(x) −
∑

x∈h+H

f(x). (15)

This difference is an invariant,

∆(f + (u+ U)) = ∆(f), (16)

where, in this expression, one should recognize the different additions in V and ZV . If the
invariant is nonzero at the beginning, then it will stay nonzero forever. In particular, the
pattern f = `{0}, with ` 6≡ 0 (mod r), cannot be transformed into ∅ modulo r, as this
would require a change of the invariant modulo r.

An equivalence like this is usually more powerful if it connects weak and strong state-
ments; thus, we tried to make the weak ones weaker and the strong ones stronger. In our
theorem, Statement (iv) is relatively weak and most similar to the switching rules in the
Berlekamp games described in [Sch1] and [Sch2]. The weakest switchability statement in
our equivalence is Statement (v), but it could be weakened even more. If q = pβ and Fp is
the prime field of Fq, we may even allow switching of all affine Fp-subspaces u + U with
U ⊇ 〈b〉Fq for some b ∈ B. Our strong switchability statements (ii) and (iii) are already
very narrow and precise. They describe the best possible winning strategies mentioned
in the introduction. In all these different games, the reader may just wonder about the
unexpected multiplier qn−1 in our initial pattern qn−1{0}. This actually can be altered in
some cases. If we play modulo r, with r ∈ N\0 coprime to q (so that 1 is a multiple of
qn−1 modulo r), then we may replace qn−1{0} by the neater {0} as initial pattern.

The next equivalent is formulated without mentioning any games. Its equations might
also be viewed as linear dependencies of some patterns in ZV :

Theorem 3.6. Let q be a prime power and ∅ 6= B ⊆ V := Fqn. If r > 1 divides q − 1,
then the following are equivalent:

(i) B is a blocking set.

(ii)
∑
S⊆B

(−1)|S|qn−dim〈S〉 = 0.
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(iii)
∑
S⊆B
〈S〉3x

(−1)|S|qn−dim〈S〉 = 0 for all x ∈ V.

(iv)
∑
S⊆B
〈S〉3x

(−1)|S| ≡ 0 (mod r) for all x ∈ V.

Moreover, if Condition (iii) or Condition (iv) is not fulfilled in x = 0, then these conditions
are not fulfilled in a further point x ∈ V.

Proof. The equivalence (i)⇔ (ii) is the content of Lemma 3.2.
The implication (i)⇒ (iii) is the content of Corollary 3.4, and (iii)⇒ (iv) is trivial.
That (iv) ⇒ (i), follows from the implication (v) ⇒ (i) in Theorem 3.5. Indeed,

assuming Condition (iv), we know that the switchable pattern

U :=
∑
S⊆B
S 6=∅

(−1)|S|qn−dim〈S〉〈S〉 ≡
∑
S⊆B
S 6=∅

(−1)|S| (mod r) (17)

is zero modulo r in any x 6= 0. However, in 0 it is nonzero modulo r, as by Theorem 3.3,

U(0) = q|HB0 | − |HB| − qn = (q − 1)|HB| − qn ≡ −qn ≡ −1 6≡ 0 (mod r). (18)

Hence, by Theorem 3.5, B is a blocking set.
To verify the additional statement, assume that Condition (iii) or Condition (iv) is

not fulfilled for x = 0. Then, as we have shown already, B is not a blocking set, so that
no switchable pattern is a (modulo r nonvanishing) multiple of {0}. In particular, this
holds for the pattern U above. Therefore, as already U(0) 6≡ 0 (mod r), U must differ
from the pattern U(0){0}, and be nonzero modulo r in another point x. However, for
x 6= 0, U(x) is, modulo r, exactly the value of the sums in Condition (iii) and Condition
(iv); hence, both conditions are not met in that point, too.

We also provide the following more quantitative version:

Theorem 3.7. Let q be a prime power, ∅ 6= B ⊆ V := Fqn and assume r > 1 is a divisor
of q − 1. Then ∑

S⊆B
〈S〉3x

(−1)|S| ≡ −|HB∪{x}| (mod r) for all x ∈ V,

and
|HB∪{x}| 6≡ 0 (mod r) for at least one x ∈ V\0

if and only if B is not a blocking set.

Proof. The first part can be deduced from Theorem 3.3 as follows:∑
S⊆B
〈S〉3x

(−1)|S| ≡
∑
S⊆B
〈S〉3x

(−1)|S|qn−dim〈S〉 ≡ 1|HBx | − |HB| = −|HB \ HBx | = −|HB∪{x}| (mod r).

(19)

The second part ensues from this equality and Equivalence 3.6.
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We close this section with an example. This example shows that, in Equivalent (v)
of Theorem 3.5, we cannot ignore the point of origin 0 ∈ V . If this were possible, it
would lead to a characterization of blocking sets trough the linear independence of the
corresponding available moves (as patterns over V\0). Actually, during our research, we
had the idea that this could be possible. In the similar switching game in our paper
[Sch2] it was possible to ignore the point of origin (and we then played the game over the
projective space PGn−1(Fq)). The example is the following:

Example 3.8. Let V := F3
2 and B := {e1, e2, e3 + e2, e3 + e1}, where e1, e2 and e3 denote

the vectors of the standard base of V . Then 〈e1 + e2〉⊥ is not blocked by B, so that we
cannot switch patterns of the form `{0} 6= ∅ in any of our games. However,

e⊥1 − e⊥2 − 〈e2〉 − 〈e3 + e2〉+ 〈e1〉+ 〈e3 + e1〉 = ∅. (20)

This linear dependence would be a proper switchability condition over the board V\0,
where `{0} = ∅. Indeed, it is easy to check that all summands here are legal moves in the
game of Equivalent (v) of Theorem 3.5.

In the next section, we will connect graphs to blocking sets. Actually, with this
connection, one can show that another counterexample arises from the complete tripartite
graph K7,7,7, for instance. Hence, even in the more special graph theoretical situation,
the point of origin is indispensable.

4 Graph Colorings

In this section, let G = (V,E) be a graph on n vertices with at least one edge. For vertices
v ∈ V , let v̂

Vv̂ := (?(u=v))u∈V ∈ V := FVq (21)

be the tuple with a 1 in position v and zeros elsewhere. For edges e = uv := {u, v} ∈ E, uv

we define ê

ê := û− v̂ ∈ V . (22)

Obviously, this is not well defined, since the edge e can be written in two ways, as uv and
as vu. However, ê is well defined up to the sign only, but the sign will not matter in our
investigations. Therefore, we just stick to one of the two possible choices for each edge e.
With that, we define to every set S ⊆ E of edges a corresponding set Ŝ of vectors, Ŝ

Ŝ := {ê ¦ e ∈ S} ⊆ V , (23)

and a corresponding partition π(S) = π(V, S) of the set of vertices V , π(S)

π(S) := {U ⊆ V ¦ U is vertex set of a connected component of the graph (V, S)}. (24)

Hence, if Π(V ) denotes the set of all partitions π of V , and Πc(G) denotes the set of those Π(V )

π whose blocks U ∈ π are connected in G, Πc(G)
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Πc(G) := {π ∈ Π(V ) ¦ ∀ U ∈ π : G|U is connected}, (25)

then
{π(S) ¦ S ⊆ E} = Πc(G). (26)

Indeed, one can easily find to any π ∈ Πc(G) an edge set Sπ ⊆ E with π(Sπ) = π, and
use this fact to prove this equation. Moreover, for x ∈ V = FqV , we say that a subset
U ⊆ V of vertices is x-balanced if the restriction x|U : U −→ Fq, u 7−→ xu has vanishing
value sum, ∑

u∈U

xu = 0. (27)

A partition π of V is x-balanced if each of its blocks is x-balanced. We denote with 〈π〉q,
or just 〈π〉, the subspace of all vectors x for which π is x-balanced, 〈π〉

〈π〉 = 〈π〉q :=
{
x ∈ V ¦

∑
u∈U

xu = 0 for all U ∈ π
}

6 V . (28)

We can use our definitions to calculate the linear spans 〈Ŝ〉 that correspond to edge sets
S ⊆ E. In the simplest case, if (V, S) is connected,

〈Ŝ〉 = {x ∈ V ¦
∑
v∈V

xv = 0} = 〈{V }〉. (29)

Here, {V } is the trivial partition of V , and our definition of 〈π〉 simplifies for π = {V }
to the set in the middle. That this set contains Ŝ and its linear span 〈Ŝ〉 is obvious.
Conversely, that the set in the middle is contained in 〈Ŝ〉 follows easily from the fact that,
due to the connectedness of (V, S), all vectors x ∈ V with just one 1 and one −1 entry
(apart from zeros) already belong to 〈Ŝ〉. The general case can be reduced to this case.
Obviously, for any S ⊆ E,

〈Ŝ〉 = 〈π(S)〉. (30)

In particular,
dim〈Ŝ〉 = dim〈π(S)〉 = n− |π(S)|. (31)

We will also need that ∑
S⊆E
〈π(S)〉3x

(−1)|S| =
∑

π∈Πc(G)
〈π〉3x

∑
S⊆E
π(S)=π

(−1)|S|

=
∑

π∈Πc(G)
〈π〉3x

∑
S⊆E
π(S)=π

∏
U∈π

(−1)|S|U |

=
∑

π∈Πc(G)
〈π〉3x

∏
U∈π

∑
S⊆E(G|U )

π(U,S)={U}

(−1)|S|,

(32)

where, in the first equation, we replaced the condition 〈π(S)〉 3 x, which means that
π(S) ∈ Πc(G) is x-balanced, by the condition that π(S) is equal to a partition π ∈ Πc(G)
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that is x-balanced. In the second equation, we just decomposed the edge sets S into their
connected components S|U . Finally, in the third equation, we have to find (and then
sum over) all edge sets S ⊆ E with the blocks U of π as connected components. This
is the same as, first, to find to every block U of π all edge sets SU that connect U , and,
second, to combine them in all possible ways (which the distributive law accomplishes for
us automatically).

With these definitions, it should be clear that G has a proper vertex coloring with q
colors if and only if Ê is not a blocking set, Cq(G)

Cq(G) := {c ∈ V ¦ c is coloring of G} 6= ∅ ⇐⇒ HÊ 6= ∅. (33)

Indeed, if c ∈ V (c : V −→ Fq) is a vertex labeling then, for any edge e = uv ∈ E,

c(u) 6= c(v) ⇐⇒ c(u)− c(v) 6= 0 ⇐⇒ c · ê 6= 0 ⇐⇒ c⊥ 63 ê, (34)

with the standard scalar product ± c · ê = c(u)− c(v) in V . Hence,

c ∈ Cq(G) ⇐⇒ c⊥ ∈ HÊ. (35)

The correspondence between hyperplanes and colorings is 1 to q − 1 here, as there are
q − 1 elements in the multiplicative group of Fq (and 0 /∈ Cq(G), as G contains an edge).
Hence,

|Cq(G)| = (q−1)|HÊ|. (36)

Our correspondence also can be restricted to Cq(G) \ x⊥ and HÊ∩{x} (for any x ∈ V), so
that

|Cq(G) \ x⊥| = (q−1)|HÊ∪{x}|. (37)

In particular,
q − 1 divides |Cq(G) \ x⊥|, (38)

which we will not mention further when we use the quotient of these two numbers. Another
well known fact, is the following formula:

|Cq(G)| =
∑
S⊆E

(−1)|S|q|π(S)|. (39)

We know this already from Lemma 3.2. However, a main difference here, and the main
reason for the additional results about graphs in this section, is that this does not just
hold for one initially given prime power q. In contrast to the blocking set candidates
B ⊆ V := FVq of the last section, the graph G is defined independently from q and Fq.
Accordingly, the set Ê can be interpreted as a subset of FVq for any prime power q. Hence,
Cq(G) is defined, and the formula holds, for every prime power q. Actually, not even the
restriction to prime powers is required here. We just have to extend our definition of
Cq(G) ⊆ V := FVq slightly. In fact, our definition inside Statement (33) makes sense for
any set Fq of q fixed colors, if we set V := FVq as before. We only need Fq to be a field
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when we apply the results of the previous sections, and then q necessarily has to be a
prime power.

We start the transfer of results with the following specialization of Theorem 3.6, which
contains one additional equivalent based on Equation (32):

Theorem 4.1. Let q be a prime power. If r > 1 is a divisor of q − 1, then the following
are equivalent:

(i) G has a q-coloring.

(ii)
∑
S⊆E

(−1)|S|q|π(S)| 6= 0.

(iii)
∑
S⊆E
〈π(S)〉3x

(−1)|S|q|π(S)| 6= 0 for an x ∈ V.

(iv)
∑
S⊆E
〈π(S)〉3x

(−1)|S| 6≡ 0 (mod r) for an x ∈ V.

(v)
∑

π∈Πc(G)
〈π〉3x

∏
U∈π

∑
S⊆E(G|U )

π(U,S)={U}

(−1)|S| 6≡ 0 (mod r) for an x ∈ V.

Moreover, if Condition (iii) or (iv) or (v) is satisfied in x = 0, then these conditions hold
true in a further point x ∈ V.

From Theorem 3.7, we obtain the following:

Theorem 4.2. Let q be a prime power, and assume r > 1 is a divisor of q − 1. Then∑
π∈Πc(G)
〈π〉3x

∏
U∈π

∑
S⊆E(G|U )

π(U,S)={U}

(−1)|S| =
∑
S⊆E
〈π(S)〉3x

(−1)|S| ≡ −|Cq(G) \ x⊥|
q − 1

(mod r) for all x ∈ V,

and
|Cq(G) \ x⊥|

q − 1
6≡ 0 (mod r) for at least one x ∈ V\0,

if and only if G is q-colorable.

We also mention that the expression |Cq(G) \ x⊥| in this theorem can be replaced by
−|Cq(G) ∩ x⊥| frequently. For example, we know that

q! divides |Cq(G)|, (40)

if G is not colorable with just q− 2 colors, as there are q! many permutations of q colors.
Hence, in this case, if r 6= q − 1, indeed,

|Cq(G) \ x⊥|
q − 1

=
|Cq(G)|
q − 1

− |Cq(G) ∩ x⊥|
q − 1

≡ −|Cq(G) ∩ x⊥|
q − 1

(mod r). (41)
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For r = 2, we also obtain the following corollary:

Corollary 4.3. Let q be an odd prime power. Then∣∣{S ⊆ E ¦ 〈π(S)〉 3 x}
∣∣ ≡ |Cq(G) \ x⊥|

q − 1
(mod 2) for any x ∈ V,

and ∣∣{S ⊆ E ¦ 〈π(S)〉 3 x}
∣∣ 6≡ 0 (mod 2) for one x ∈ V\0

if and only if G is q-colorable.

To achieve further simplifications in our colorability criteria, we have to examine the
most inner sum in Condition (v) of Theorem 4.1. Formulated for V and G, instead of U
and G|U , this is ∑

S⊆E
π(S)={V }

(−1)|S|. (42)

For this sum, one can find some interesting interpretations in the literature. At first,
one may try to pair off and cancel as many as possible oppositely signed summands.
In this way, Whitney showed in [Wh] that one can restrict the summation range to
subsets S that do not contain a broken circuit. Here, a broken circuit is a circuit with its
biggest edge removed, i.e., biggest with respect to a given total ordering on E. Another
interesting interpretation was given by Greene and Zaslavsky in [GrZa, Theorem 7.3],
with a combinatorial proof in [GeSa, Theorem 1.2 & 1.3]. It states that our sum counts
the acyclic orientations of G with one fixed given sink v0 ∈ V . In our investigations,
we have the additional advantage that we have to count only modulo r. This allows the
following reinterpretation in terms of colorings based on Equation (39):∑

S⊆E
π(S)={V }

(−1)|S| =
∑
S⊆E
|π(S)|=1

(−1)|S| ≡
∑
S⊆E

(−1)|S|r|π(S)|−1 = 1
r
|Cr(G)| (mod r). (43)

With this, the last condition in Theorem 4.1 can be rewritten:

Theorem 4.4. Let q be a prime power. If r > 0 is a divisor of q − 1, then G is vertex
colorable with q many colors if and only if there exists an x ∈ V with∑

π∈Πc(G)
〈π〉3x

∏
U∈π

1

r

∣∣Cr(G|U)
∣∣ 6≡ 0 (mod r).

The sum in this theorem simplifies even more if r = 2, because 1
2
|C2(G|U)| is nonzero

modulo 2 only if G|U is bipartite and connected. Based on this observation, we say that
a set U ⊆ V of vertices is G-bipartite if the induced subgraph G|U is connected and
bipartite. A partition π of V is G-bipartite if each of its blocks is G-bipartite. Finally,
we say that x is odd if the number of x-balanced and G-bipartite partitions of V is odd.
With these definitions, we see that x is odd if and only if the sum in the last theorem is
nonzero modulo r = 2. Therefore, we obtain the following main result:
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Theorem 4.5. Let q be an odd prime power. Then a graph G admits a vertex coloring
with q colors if and only if it admits an odd vertex labeling x : V −→ Fq.

Moreover, the additional statement of Theorem 4.1 holds accordingly. If the all-zero
labeling 0 ∈ V is odd, then there are also other odd labelings x 6= 0. Our more precise
congruency in Theorem 4.2 can also be specialized:

Theorem 4.6. Let q be an odd prime power. Then, for any vertex labeling x ∈ V := FVq ,

|Cq(G) \ x⊥|
q − 1

is odd ⇐⇒ x is odd.

If q > 3 and G is not colorable with just 3 colors, then q(q − 1)(q − 2)(q − 3) divides

|Cq(G)|. Hence, |Cq(G)|
q−1

is then even, and, similarly as in Equation (41),

|Cq(G) ∩ x⊥|
q − 1

≡ |Cq(G) \ x⊥|
q − 1

(mod 2). (44)

In particular, (by Theorem 4.6) in this case any odd labeling x ∈ V guarantees not just a
coloring c that is not orthogonal to it, but it guarantees also at least one coloring that is
orthogonal to it.

Since the edge colorings of a graph are the vertex colorings of its line graph, we may
translate our theorems into the language of edge colorings. This is straightforward. We
just define the corresponding terms and formulate the theorem: We say that a set F ⊆ E
of edges is junction-free if the induced subgraph G|F is a path or an even cycle. If the
restriction to F of an edge labeling y : E −→ Fq has zero sum,

∑
e∈F ye = 0, we say that y

a set F ⊆ E of edges is y-balanced. We also say that a partition π of E is y-balanced,
respectively junction-free, if each of its blocks is y-balanced, respectively junction-free.
Finally, we say that y is odd if the number of y-balanced and junction-free partitions of
E is odd. With these definitions, we obtain the following result:

Theorem 4.7. If q is an odd prime power, then a graph G admits an edge coloring with
q colors if and only if it admits an odd edge labeling y : E −→ Fq.

If C ′q(G) denotes the set of proper edge colorings E −→ Fq, we also have the following: C′q(G)

Theorem 4.8. Let q be an odd prime power. Then, for any edge labeling y ∈ FEq ,

|C ′q(G) \ y⊥|
q − 1

is odd ⇐⇒ y is odd.

We finish with some remarks about the number and the lengths of paths in junction-
free edge partitions: If the number of vertices of odd degree is 2t, then the number of
unclosed paths in any junction-free partition π of E must be at least t. That is because,
any vertex v of odd degree must be the end of at least one path in π, as all other paths
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through v cover an even number of its edges. It follows that the average length of the
paths in π is at most |E|/t. Hence, for q-regular graphs, this upper bound for the average
length would be q.

Acknowledgement: We gratefully acknowledge the support provided by the King Fahd
University of Petroleum and Minerals under the project number IN100028. We thank
Ahmet Tatar for his help, and also Ellen Touchstone of the Continuing Support Team of
the Language Centre at Xi’an Jiaotong-Liverpool University.

References

[GeSa] D. D. Gebhard, B. E. Sagan: Sinks in Acyclic Orientations of Graphs. Journal of
Combinatorial Theory, Series B 80 (2000), 130–146.

[GrZa] C. Greene, T. Zaslavsky: On the Interpretation of Whitney Number through Ar-
rangements of Hyperplanes, Zonotopes, Non-Radon Partitions, and Orientations
of Graphs. Trans. Amer. Math. Soc. 280 (1983), 97–126.

[Sch1] U. Schauz: Colorings and Nowhere Zero Flows of Graphs in Terms of Berlekamp’s
Switching Game. The Electronic Journal of Combinatorics 18/1 (2011), #P65.

[Sch2] U. Schauz: Anti-Codes in Terms of Berlekamp’s Switching Game. The Electronic
Journal of Combinatorics 19/1 (2012), #P10.

[Sch3] U. Schauz: Algebraically Solvable Problems: Describing Polynomials as Equiv-
alent to Explicit Solutions. The Electronic Journal of Combinatorics 15 (2008),
#R10.

[Wh] H. Whitney: A Logical Expansion in Mathematics. Bull. Amer. Math. Soc. 38
(1932), 572-579.

the electronic journal of combinatorics 21(2) (2014), #P2.3 15


