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Abstract

We explore a new type of replacement of patterns in permutations, suggested
by James Propp, that does not preserve the length of permutations. In particular,
we focus on replacements between 123 and a pattern of two integer elements. We
apply these replacements in the classical sense; that is, the elements being replaced
need not be adjacent in position or value. Given each replacement, the set of
all permutations is partitioned into equivalence classes consisting of permutations
reachable from one another through a series of bi-directional replacements. We
break the eighteen replacements of interest into four categories by the structure of
their classes and fully characterize all of their classes.

1 Introduction

A permutation is said to contain a pattern if it has a subpermutation which is order-
isomorphic to the pattern. Modern study of permutation patterns was prompted by
Donald Knuth in the form of stack-sortable permutations in [4], but has since evolved
into an active combinatorial field. (For various other applications and motivations see
Chapters 2 and 3 in the book by Sergey Kitaev [3].) Much of the work on permutation
patterns has dealt with counting permutations that contain or avoid certain patterns.

The notion of replacing a pattern in a permutation with a new pattern was first men-
tioned in different forms, as the plactic and Chinese monoids, by Alain Lascoux and Marcel
P. Schützenburger in [8], Gérard Duchamp and Daniel Krob in [2], and Julien Cassaigne
et al. in [1]. These have since been translated into the language of pattern replacements
and further studied. Steven Linton et al. consider in [9] several bi-directional pattern re-
placements between 123 and another pattern of length 3, as well as cases where multiple
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such replacements are allowed at the same time. They inspect these replacements when
applied to elements in general position, elements with adjacent positions, and elements
with adjacent positions and adjacent values. A couple papers, [11], by James Propp et
al., and [6], by William Kuszmaul, follow up on replacements on elements with adjacent
positions. Together these three papers enumerate the equivalence classes in a general Sn
and count the size of the class containing the identity for almost all cases. In addition,
William Kuszmaul and Ziling Zhou examine in [7] equivalence classes under more general
families of replacements. Throughout all of this work, permutation length was preserved
under replacements.

James Propp has suggested considering pattern replacements that do not preserve
permutation length; that is, when a pattern is replaced with another pattern of different
length. This paper takes the first step in this new direction by examining a group of
replacements between patterns with three integer elements and two integer elements. We
choose to use the classical type of replacement in which replaced elements need not be
adjacent in position or value. To accommodate patterns of different lengths, we use a
modified definition of patterns that includes the character ∗ in place of certain integer
elements, acting as a placeholder in the replacement procedure. Like previous works, we
define equivalence as reachability through a series of bi-directional replacements, using
which we can partition the set of permutations of all lengths into equivalence classes.

In particular, in this paper we investigate the equivalence classes for the 18 replace-
ments of the form 123 ↔ β, where β contains exactly one ∗ and two integers. First, we
provide an overview of relevant definitions and notations in Section 2. Then, we break
the 18 replacements into four categories and spend each of Sections 3, 4, 5, and 6 dealing
with one of these categories. We fully characterize all equivalence classes for each of the
considered replacements.

2 Definitions

We will use the standard definition of a permutation.

Definition 1. A permutation π is a finite, possibly empty string consisting of the first
n positive integers. We refer to n as the length of the permutation, denoted by |π|.

The permutation of length 0 is the empty permutation, denoted by ∅. We will refer
to the identity permutation of length n, 123 . . . n (or ∅ if n = 0), by id(n) and the reverse
identity permutation of length n, n(n− 1)(n− 2) . . . 1 (or ∅ if n = 0), by rid(n).

We will also mention here a term that will emerge in Section 6:

Definition 2. An element of a permutation is a left-to-right minimum if it has a
value less than every element to its left.

The terms left-to-right maximum, right-to-left minimum, and right-to-left maximum
are defined similarly.

We now introduce the classical notion of a pattern.
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Definition 3. Let π and µ be permutations. A substring p of π forms a copy of the
pattern µ if it is order-isomorphic to µ. If such a substring exists, π contains µ.
Otherwise, π avoids µ.

The definition of patterns must be extended for our purposes to accommodate patterns
that may contain ∗.

Definition 4. Let ρ and δ be strings each consisting of distinct positive integers and ∗’s.
A substring r of ρ forms a copy of the ∗-pattern δ if the following conditions are met:

• r and δ have stars in the same positions, and

• r and δ, when ignoring all stars, are order-isomorphic to one another.

If a copy of δ in ρ exists, ρ contains δ. Otherwise, ρ avoids δ.

We take interest in replacements of patterns in permutations, that are not necessarily
adjacent, to form new permutations of possibly different lengths. We define replacements
using ∗-patterns to be able to work with changes in length:

Definition 5. Let α and β be ∗-patterns of equal length. Given a permutation π, we say
another permutation σ is a result of the replacement α → β on π if σ can be obtained
from the following steps on π:

1. As necessary, renumber the integers in π, while preserving relative order, and add
instances of ∗ anywhere. Call this result ρ(1).

2. Choose some substring a of ρ(1) that forms a copy of α. Also, choose a string b of
distinct positive integers and ∗’s such that the following are true:

• b is itself a copy of β,

• all elements common to both b and ρ(1) are contained in a, and

• for all x ∈ N contained in both α and β, if y ∈ N in a is at the same position
as x in α, then y is in b at the same position as x in β.

Replace a in ρ(1) with b and call the result ρ(2).

3. Drop all instances of ∗ in ρ(2) and renumber, while preserving relative order, so that
the final result is a permutation ρ(3) = σ.

For example, the intermediate results in applying the replacement 123 → 3∗2 to the
pattern 125 in 14253 would be ρ(1) = 14253, ρ(2) = 54∗23, and ρ(3) = 4312, respectively.
Note that both α and β can contain ∗, so, for example, applying 12∗ → 3∗2 to 12 in 14253
could have intermediate steps ρ(1) = 1526∗3, ρ(2) = 45∗623, and ρ(3) = 34512. Finally,
also note that, in some cases, applying a specific replacement to a certain substring of a
given permutation can different results depending on the choice of b in the second step.
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For clarity, in this paper we will show alongside replacements the involved substrings
in the original and resulting permutations with square brackets. For example, applying
12∗ → 3∗2 to 12 in 14253 would be written [125→ 41]. Note that in the above definition
it is possible that |π| 6= |σ|; that is, replacements do not necessarily preserve length.

We now introduce the notion of equivalence between permutations of possibly different
lengths using two directions of a replacement.

Definition 6. We call two permutations π and σ equivalent, written π ≡ σ, under the
bi-directional replacement α ↔ β if σ can be attained through a sequence of α → β and
β → α replacements on π.

We use this definition of equivalence to partition the set of all permutations, S0∪S1∪
S2 ∪ · · · , into equivalence classes. Our aim is to eventually characterize these classes.

Sometimes we find that it is impossible to apply a given replacement to a permutation,
so that it is in its own class, which we will refer to by the following term.

Definition 7. The permutation π is isolated under a replacement α↔ β if the equiva-
lence class containing it has no other permutations.

The following property, which arises in particular in Section 3, if established gives
great insight into the structure of equivalence classes.

Definition 8. We say a replacement α↔ β has the unraveling property if any given
permutation is equivalent under α↔ β to an identity permutation.

It is notable that if a replacement has the unraveling property, then there is at most
one class per identity permutation.

It will be helpful in Sections 4 and 6 to talk about the shortest permutation equivalent
to some given permutation under a replacement, for which we have the following definition.

Definition 9. The primitive permutation τ of π under a replacement α ↔ β is the
unique permutation of shortest length equivalent to π, if it exists.

Note that for some permutations and replacements, a shortest equivalent permutation
might not be unique, so in such cases we say that a primitive permutation does not exist.

Finally, we briefly note a symmetry that effectively cuts the number of distinct cases
in half: if β and γ are reverse complements of one another, then π and σ are equivalent
under 123 ↔ β if and only if their reverse complements are equivalent under 123 ↔ γ.
(Here reverse means flipped order of elements and complement means flipped value of
elements.) For example, because 2314 ≡ 231 under 123 ↔ 13∗, we have 1423 ≡ 312
under 123↔ ∗13. Note that this symmetry is due to the fact that 123 is its own reverse
complement.

In the remainder of this paper we examine equivalence classes of replacements of the
form 123 ↔ β, where β contains two of {1, 2, 3} and one ∗ in some order. We cover the
cases in which the integer elements of β are in decreasing order in Section 3. Then, in
Section 4 we analyze cases where the two integer elements in β are in the same positions
as in 123. In Section 5 we consider when the two integer elements of β are both shifted
left or right one from their positions in 123. We deal with the four remaining cases in
Section 6.
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3 β Decreasing

In this section we characterize the classes of the nine replacements in which β has integer
elements in decreasing order. We will use 123↔ 31 to represent an arbitrary replacement
out of the three replacements 123 ↔ ∗31, 123 ↔ 3∗1, and 123 ↔ 31∗. Similarly, we use
123 ↔ 32 to simultaneously discuss all three of 123 ↔ ∗32, 123 ↔ 3∗2, and 123 ↔ 32∗.
For analyzing 123 ↔ 21, which denotes 123 ↔ ∗21, 123 ↔ 2∗1, and 123 ↔ 21∗, we will
make use of reverse complement symmetries with 123↔ 32.

Under all nine replacements, descents are allowed to be rearranged into increasing
order, which naturally suggests that each replacement has the unraveling property. This
is indeed the case:

Lemma 10. If β is decreasing, then 123↔ β has the unraveling property.

Proof. The following proof is valid for any of 123 ↔ 31 or 123 ↔ 32. This will then
cover 123↔ 21 by the reverse complement symmetry.

We proceed by inducting on the length of the permutation over the nonnegative inte-
gers. For the base case of length zero, we note that the only such permutation, ∅, is itself
an identity permutation. Assume for the inductive step that any permutation of length
n is equivalent to some identity permutation and consider any permutation π of length
n+ 1. By the inductive hypothesis, we may apply replacements on the last n integers of
π so that they become an increasing string of m integers. Suppose the first element in
this result is k. Then, we have

π ≡ k123 . . . (k − 1)(k + 1) . . . (m+ 1)

≡ 12(k + 1)34 . . . (k)(k + 2) . . . (m+ 2) [k1→ 12(k + 1)]

≡ 1234(k + 2)5 . . . (k + 1)(k + 3) . . . (m+ 3) [(k + 1)3→ 34(k + 2)]

... (a total of k − 1 replacements)

≡ 12345 . . . (2k − 2)(2k − 1)(2k) . . . (m+ k),

or π ≡ 123 . . . (m+ k) ≡ id(m+ k), as desired.

Now we turn our attention to only the identity permutations. Here we must deal with
123↔ 31 separately:

Lemma 11. Under 123↔ 31, all identity permutations of length 4 or greater are equiv-
alent to one another.

Proof. First, we show that id(5) ≡ id(6):

12345 ≡ 2134 [123→ 21]

≡ 231 [134→ 31]

≡ 3124 [31→ 124]

≡ 12435 [31→ 124]

≡ 123456. [43→ 345]
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Thus, in general for n > 6 we can apply the above replacements to the first five elements
of id(n) to obtain id(n) ≡ id(n+ 1), so that id(5) ≡ id(6) ≡ id(7) ≡ . . . , which was to be
shown.

However, this misses id(4). We now show id(4) ≡ id(7), which will complete the proof.
Under 123 ↔ ∗31 (and similarly under 123 ↔ 3∗1) we have 1234 ≡ 431 ≡ 321. Under
123 ↔ 31∗, we have 1234 ≡ 421 ≡ 321. In all three cases, we have 1234 ≡ 321, from
which we continue,

1234 ≡ 321

≡ 2341 [32→ 234]

≡ 23145 [41→ 145]

≡ 213456 [31→ 134]

≡ 1234567, [21→ 123]

as desired.

Now we prove the same thing for the other replacements:

Lemma 12. Under 123 ↔ 32 and 123 ↔ 21, all identity permutations of length 4 or
greater are equivalent to one another.

Proof. We show this for 123↔ 32 and the result for 123↔ 21 will follow.
First, we have that id(4) ≡ id(5):

1234 ≡ 132 [234→ 43]

≡ 2134 [32→ 134]

≡ 12345. [21→ 123]

For n > 5 we can apply the above replacements to the first four elements of id(n) to
obtain id(n) ≡ id(n+ 1), so that id(4) ≡ id(5) ≡ id(6) ≡ . . . .

Combining the above lemmas, we can explicitly find all the equivalence classes:

Theorem 13. If β is decreasing, there are only five equivalence classes under 123 ↔ β.
They are {∅}, {1}, {12}, {123, 21}, and a fifth class containing all other permutations.

Proof. It can easily be verified that each permutation in the first four classes is equiv-
alent to every other permutation in that class, and that applying 123 ↔ β permutation
in the first four classes produces a permutation also already in that class. Thus, the first
four listed classes contain no other permutations. Also, by Lemma 10 every permutation
not in those four classes must be equivalent to an identity of length at least 4. Then
by Lemmas 11 and 12, all identities of length at least 4 are equivalent, so all remaining
permutations are equivalent to one another, forming the fifth class.
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4 Drop Only: 123↔ ∗23, 123↔ 1∗3, and 123↔ 12∗
The replacements 123↔ ∗23, 123↔ 1∗3, and 123↔ 12∗ simply drop or add an element
in a 123 pattern. In the remainder of this section we will proceed simultaneously with
12∗ and 1∗3 by using γ to denote an arbitrary selection from the two, and later use the
reverse complement symmetry to state the result of equivalence classes for 123↔ ∗23.

We begin by defining a function that will take any given permutation to what we will
show to be its primitive permutation.

Definition 14. We define a function pγ(π) for a given permutation π and replacement
123↔ γ as follows:

1. Begin with the string π.

2. If the current string avoids 123, skip to step 4. Otherwise, find the leftmost copy of
123 in the current string first by comparing the smallest elements, then the middle
elements (if necessary), and finally the largest elements (if necessary). Apply 123→
γ to this copy of 123.

3. Repeat step 2 on the resulting string.

4. Define pγ(π) to be the permutation order-isomorphic to the current string.

For example, if π = 152364 and γ = 12∗, the results of the iterations of step 2 are
15234 (using 156), 1524 (using 123), and 152 (using 124), so that pγ(π) = 132.

The facts below follow immediately from the definition:

• For every permutation π, |pγ(π)| 6 |π| with |pγ(π)| = |π| only if pγ(π) = π.

• For every permutation π, pγ(π) avoids 123.

• If a permutation π avoids 123, then pγ(π) = π.

• For every permutation π, pγ(π) ≡ π.

First we show that pγ is preserved under one direction of the replacement:

Lemma 15. If σ is the result of 123→ γ applied to π, then pγ(π) = pγ(σ).

Proof. When written out in terms of their elements, let π = π1 . . . πk−1πkπk+1 . . . πn and
σ = σ1 . . . σk−1σk+1 . . . σn, so that n = |π| = |σ| + 1 and if πk is dropped from π the
remaining elements are order-isomorphic to σ. We now proceed with the proof separately
for γ = 12∗ and γ = 1∗3.

First consider γ = 12∗. We will simultaneously compare the processes of calculating
pγ(π) and pγ(σ). Each iteration of step 2 in Definition 14 will be performed on copies of
123 at the same positions for computing pγ(π) and pγ(σ) when the entire copy of 123 is
in the first k− 1 elements. The first iteration of step 2 in pγ(π) for which this is not true
must be performed on a copy of 123 in which πk is the third element, because at least one
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such copy exists (the one on which 123↔ 12∗ was applied to form σ). All iterations after
this must again be performed on the same positions for pγ(π) and pγ(σ). Furthermore,
the resulting strings of each iteration will be order-isomorphic for the two processes, so
that the end results will be equal.

Now suppose γ = 1∗3. Again, each iteration of step 2 performed completely in the
first k − 1 elements will be on the same positions for pγ(π) and pγ(σ). However, on the
iterations for pγ(π) in which πk is the third element of a 123 pattern, a copy of 123 will
be chosen for pγ(σ) in which the first two elements are at the same positions as those for
pγ(π), but the third element will be to the right of σk−1. (We know at least one such
third element exists: the third element of the 123 copy on which 123↔ 1∗3 was applied
to form σ.) Even though the copy of 123 chosen for pγ(π) and pγ(σ) are different, the
middle elements that are dropped will be in the same positions. Finally, on the iteration
for pγ(π) in which πk is the middle element (this iteration must take place because an
appropriate 123 copy must exist), πk will be dropped. The resulting strings at this point
for pγ(π) and pγ(σ) will be order-isomorphic, so the final permutations pγ(π) and pγ(σ)
will be equal.

Now, we can put a condition on equivalency involving pγ:

Lemma 16. Under 123↔ γ, we have π ≡ σ if and only if pγ(π) = pγ(σ).

Proof. First, we prove the if direction. Suppose pγ(π) = pγ(σ). Then we have π ≡
pγ(π) = pγ(σ) ≡ σ, so that π ≡ σ as desired.

For the only if direction assume π ≡ σ. By definition of equivalence, there must
exist some sequence of permutations π(0) = π, π(1), π(2), . . . , π(k) = σ where π(i+1) is the
result of performing a 123 → γ or a γ → 123 replacement on π(i). We claim that
pγ

(
π(i)

)
= pγ

(
π(i+1)

)
for all 0 6 i 6 k − 1.

Suppose π(i+1) is the result of a 123 → γ replacement on π(i). Then by Lemma
15, pγ

(
π(i)

)
= pγ

(
π(i+1)

)
. On the other hand, if π(i+1) is the result of a γ → 123

replacement, then π(i) is the result of a 123→ γ on π(i+1). Thus, by Lemma 15 again we
have pγ

(
π(i)

)
= pγ

(
π(i+1)

)
.

Therefore, pγ(π) = pγ
(
π(0)

)
= pγ

(
π(1)

)
= · · · = pγ

(
π(k)

)
= pγ(σ), as desired.

Now we have enough to show that pγ(π) is the primitive permutation of π:

Lemma 17. Under 123↔ γ, pγ(π) is the primitive permutation of π.

Proof. By Lemma 16, we have π ≡ pγ(π), so it remains to show that there does not exist
a permutation σ such that σ ≡ π with σ not order-isomorphic to pγ(π) and |σ| 6 |pγ(π)|.

For sake of contradiction, assume that some σ ≡ π exists that is not order-isomorphic
to and no longer than pγ(π). If |σ| < |pγ(π)|, then |pγ(σ)| 6 |σ| < |pγ(π)|, so pγ(π) 6=
pγ(σ) =⇒ π 6≡ σ, contradiction. Otherwise, |σ| = |pγ(π)|, and we must have pγ(π) =
pγ(σ), so |σ| = |pγ(σ)|. Thus σ is order-isomorphic to pγ(σ) = pγ(π), contradiction.
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We restate the definition of the primitive permutation without using pγ(π) so that we
can include 123↔ ∗23.

Theorem 18. For β = 12∗, 1∗3, ∗23, the primitive permutation of π under 123 ↔ β is
the result of repeatedly applying to π the replacement 123 → β on any choice of a 123
pattern until none exist.

Proof. We first show this for β = 12∗ and β = 1∗3. Suppose the result of applying to π
the replacement 123 → β repeatedly to arbitrary choices of copies of 123 until no copies
of 123 remain is σ. If σ = pβ(π), the result is true. Otherwise, because σ avoids 123 we
have pβ(σ) = σ 6= pβ(π), so by Lemma 16 π 6≡ σ, which is a contradiction.

For β = ∗23, we use the reverse complement symmetry: the theorem statement is true
for β = 12∗, and the reverse complement of the statement is the statement itself, so it is
true for β = ∗23.

As a result, the primitive permutations characterize the equivalence classes:

Theorem 19. For β = 12∗, 1∗3, ∗23, under 123↔ β, for each τ avoiding 123, there exists
a distinct class consisting of all π whose primitive permutation (as defined in Theorem
18) is τ .

Proof. Note that for each τ avoiding 123, τ itself along with all other permutations
whose primitive permutation is τ will be equivalent by Definition 9, and thus are in the
same class.

Suppose now there exists another permutation σ that is in the same class as π, but
has primitive permutation ω different than τ . However, this is a contradiction because
both ω and τ are defined to be the unique permutation of shortest length equivalent to
π.

Note that while the above statement of the equivalence classes is the same for all three
possible replacements, the classes themselves are different. This is because a given per-
mutation has different primitive permutations for different β. For example, the primitive
permutation of 1243 is 12 under 123↔ 12∗ is 12 and 132 under 123↔ 1∗3.

5 Shift Right and Shift Left:

123↔ ∗12 and 123↔ 23∗
We now deal with the replacements that shift two elements of a 123 pattern to the left or
right and drop the third. We may immediately characterize the classes with the following
theorem. In the proof, we draw inspiration from the stooge sort, in a manner similar to
the proof of Proposition 2.17 in [6].

Theorem 20. Under 123↔ ∗12 (and similarly under 123↔ 23∗), each reverse identity
is isolated and all other permutations are in the same class.
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Proof. Note that the two replacements are reverse complements of one another, and the
reverse complement version of the theorem’s statement is the same as the statement, so
we only work with 123↔ ∗12.

It is not possible to apply either direction of the replacement 123↔ ∗12 to a reverse
identity, so each reverse identity must not be equivalent to any other permutation and is
thus isolated.

On the other hand, we claim that the permutations that are not reverse identities
are equivalent. Note that immediately we have 12 ≡ 123. Therefore, for n > 2 we
may transform the first two elements of id(n) into 123 so that id(n) ≡ id(n + 1). Thus,
id(2) ≡ id(3) ≡ id(4) ≡ . . . .

Now, we will prove that all non-reverse identity permutations of length n are equivalent
to id(n) by inducting on n > 3. (The cases for n = 0, 1, 2 are trivial.) The base case of
n = 3 may be checked computationally. Now, assume the statement is true for n = k− 1,
and suppose π 6= rid(n) is some given permutation of length n. If the first n− 1 elements
of π are not order-isomorphic to rid(n− 1), we apply the inductive hypothesis to the first
n−1 elements, then the last n−1 elements, and finally the first n−1 elements again; the
result is id(n). If the first n− 1 elements of π are order-isomorphic to rid(n− 1), then we
instead apply the inductive hypothesis on the last n−1 elements, the first n−1 elements,
and finally the last n − 1 elements. (We can not have both the first n − 1 elements and
the last n−1 elements of π order-isomorphic to rid(n−1), because then π = rid(n).) The
result of this procedure is again id(n), so that π ≡ id(n), as desired.

Because all permutations that are not reverse identities are equivalent to the identity
of the same size, and all identities that are not also reverse identities are equivalent, we
have that all non-reverse identity permutations are equivalent, completing the proof for
123↔ ∗12.

Note that taking the reverse complements of each permutation in the classes described
above results in exactly the same classes, so the result for 123↔ 23∗ is the same.

6 Switch with Neighbor and Drop:

123↔ 2∗3, 123↔ ∗13, 123↔ 13∗, and 123↔ 1∗2
We first consider 123↔ 13∗, whose reverse complement is 123↔ ∗13:

Lemma 21. Two permutations π and σ of equal length are equivalent under 123 ↔ 13∗
if they are equivalent under 123↔ 132.

Proof. It suffices to show both directions of 123 ↔ 132 can be performed through a
series of 123 ↔ 13∗ replacements. Suppose π1 < π2 < π3 are three elements of π that
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form a copy of 123. We show that we may transform π1π2π3 into π1π3π2:

π ≡ . . . π1 . . . π2 . . . π3 . . .

≡ . . . π1 . . . π2 . . . (π2 + 1)(π3 + 1) . . . [π2π3 → π2(π2 + 1)(π3 + 1)]

≡ . . . π1 . . . π3 . . . π2 . . . [π1π2(π3 + 1)→ π1π3]

Thus, we may perform 123 → 132 replacements by a series of 123 ↔ 13∗ replacements.
For the other direction, 132→ 123, we simply reverse the above process.

By using this mechanism we may swap any two elements that are not left-to-right
minima:

Lemma 22. Suppose a permutation π and two of its non-left-to-right minimum elements
are given. Order these two elements in decreasing order then drop the rightmost one, and
call the result π′. Under 123↔ 13∗, π ≡ π′.

Proof. Let π = . . . π1 . . . π2 . . . π3 . . . and its two non-left-to-right minima be π2 and
π3 (one is not necessarily larger than the other), where π1 is the rightmost left-to-right
minimum to the left of π2. It suffices to show π′ can be produced with 123 ↔ 13∗
replacements on π.

If π2 < π1, then π2 itself is a left-to-right minimum; therefore, we must have π2 > π1.
Now, if π3 > π1, then π1π2π3 form a copy of either 123 or 132, and thus π1 and π2

can be swapped if necessary via Lemma 21 so that they are in increasing order. Then,
applying 123→ 13∗ produces π′.

Otherwise, π3 < π1. In this case, we look to a fourth element for use in replacements:
a left-to-right minimum between π2 and π3 called π4. We can find π4 because a left-to-
right minimum must exist between π1 and π3, or else π3 is itself a left-to-right minimum.
Furthermore, π4 must be to the right of π2, or else π1 was chosen incorrectly. We note
that we must have π4 < π3 < π1 < π2, so we can perform the following operations. Note
that as elements are dropped or added with value less than another element, the latter’s
value will change by one.

π ≡ . . . π1 . . . π2 . . . π4 . . . π3 . . .

≡ . . . π1 . . . π2 . . . π4 . . . π3(π2 + 1) . . . [π1π2 → π1π2(π2 + 1)]

≡ . . . (π1 − 1) . . . (π2 − 1) . . . π4 . . . π2 . . . [π4π3(π2 + 1)→ π4π2]

≡ . . . (π1 − 1) . . . (π2 − 1) . . . π4 . . . [(π1 − 1)(π2 − 1)π2 → (π1 − 1)(π2 − 1)]

This is indeed π′.

While non-left-to-right minima can be manipulated as shown, there are two properties
of the set of non-left-to-right minima that must remain unchanged, in addition to the
number of left-to-right minima:

Lemma 23. Under 123 ↔ 13∗, two permutations π and σ are equivalent only if they
have the following equal:
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• the number of left-to-right minima,

• the position of the leftmost non-left-to-right minimum, and

• the largest value (relative to the left-to-right minima) of non-left-to-right minima.

Proof. To show that π ≡ σ only if the they share the three above properties, it suffices to
show that 123↔ 13∗ preserves these properties; moreover, only one direction is necessary
to prove because then the reverse must also preserve them. Thus, we consider the 123→
13∗ direction applied to the elements φ1 < φ2 < φ3 (from left to right) of an arbitrary
permutation φ to produce φ′1 and φ′3 in the result φ′ (i.e. [φ1φ2φ3 → φ′1φ

′
3]). Also, call k1

the position of φ1 and k2 that of φ2 when counting from the left.
We will undertake the first property by breaking the permutations at the k1-th position.

The substrings of the first k1 elements of φ and φ′ are order-isomorphic, so the two
substrings contain the same number of left-to-right minima. On the other hand, the
left-to-right minima to the right of φ1 in φ and to the right of φ′1 in φ have values less
than φ1 and φ′1. Furthermore, the substring of φ consisting of all elements except those
to the right of and greater than φ1 is order-isomorphic to the corresponding substring
of elements of φ′ that are not both to the right of and greater than φ′1. Therefore, the
numbers of left-to-right minima to the right of the k1-th element in each of φ and φ′ are
the same. We conclude that 123→ 13∗ preserves the number of left-to-right minima.

To prove the second property we will use the fact that the first k2 − 1 elements of
φ and φ′ are order-isomorphic. The leftmost non-left-to-right minimum of φ is at a
position of at most k2, because φ2 is a non-left-to-right minimum. Similarly, the leftmost
non-left-to-right minimum of φ′ has position at most k2. If φ2 is indeed the leftmost
non-left-to-right minimum, then φ′3 will be the leftmost non-left-to-right minimum in φ′

at the same position. Otherwise, the leftmost non-left-to-right minimum is in the first
k2 − 1 elements and thus in the same position in φ and φ′.

For the third property, it should be noted that when discussing a value relative to
those of left-to-right minima we are discussing the number of left-to-right minima less
than (or greater than) that value; such a notion is only valid when the number of left-to-
right minima is constant (which was shown above). Consider the greatest non-left-to-right
minimum in φ and φ′, which we will call φi and φ′i respectively. Note that φi can not be
φ2 because φ3 is a greater non-left-to-right minimum. Then, the relative order of values
of the set of elements from φ consisting of all left-to-right minima and φi is the same as
that of the set of elements from φ′ consisting of all of its left-to-right minima and φ′i, as
desired.

In terms of three properties we may exactly characterize the equivalence classes:

Theorem 24. Under 123↔ 13∗, there exists a distinct equivalence class for every triple
of integers (m, p, v), with 1 6 p, v 6 m, consisting of all permutations π with the following
properties:

• π has m left-to-right minima
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• the position (from the left) of the leftmost non-left-to-right minimum is p+ 1

• the value of the largest non-left-to-right minima is less than those of v left-to-right
minima

In addition, each reverse identity permutation is in a class only containing itself. There
are no other classes.

Proof. Note that if π is a reverse identity permutation, then it can not undergo either
direction of 123↔ 13∗, so it must be isolated.

For the remainder of the theorem it suffices to show that, given two non-reverse-
identity permutations π and σ, π ≡ σ if and only if they have the same triple (m, p, v).
The only if direction was shown in Lemma 23. We will prove the other direction through
the use of a primitive permutation.

Suppose both π and σ have triple (m, p, v). From Lemma 23, any permutation equiv-
alent to π must have the same number of left-to-right minima. Also, it must have at least
one non-left-to-right minimum. Thus, the shortest permutation equivalent to π must have
at least m+ 1 elements. In fact, there is exactly one permutation of this length: the per-
mutation of length m+1 whose (p+1)-th element has value v+1 and remaining elements
are in decreasing order. We can indeed construct this permutation by applying Lemma
22 repeatedly to any pair of non-left-to-right minima until the resulting permutation τ
has length m+ 1.

In a similar manner, we may construct the primitive permutation of σ, which must
also be τ because it has the same (m, p, v) triple. Thus, π and σ have the same primitive
permutation and must be equivalent.

The remaining replacements 123 ↔ 1∗2 and 123 ↔ 2∗3 (which are reverse comple-
ments) have similar equivalence classes. Following logic analogous to Lemma 21, Lemma
22, Lemma 23, and Theorem 24, we may find that equivalence under 123 ↔ 1∗2 implies
and is implied by equivalence under 123 ↔ 132, with which we can identify three prop-
erties that are necessary and sufficient to infer equivalence. The result classifying the
equivalence classes under 123↔ 1∗2 is stated below:

Theorem 25. Under 123↔ 1∗2, there exists a distinct equivalence class for every triple
(m, p, v), with 1 6 p, v 6 m, consisting of all permutations π with the following properties:

• π has m left-to-right minima

• the position (from the right) of the rightmost non-left-to-right minimum is p+ 1

• the value of the smallest non-left-to-right minima is greater than those of v left-to-
right minima

In addition, each reverse identity permutation is isolated. There are no other classes.

The results for 123↔ ∗13 and 123↔ 2∗3 can be found by taking the reverse comple-
ment of each statement in Theorems 24 and 25, respectively. In particular, all instances
of left-to-right minima become right-to-left maxima.
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Summary

Table 1 summarizes the characterization of the equivalence classes for each of the 18
considered replacements. For replacements whose equivalence classes are described in the
form {π | π ≡ τ} for a certain τ , refer to their respective sections for algorithms that
produce the τ corresponding to a given π.

For the sake of abbreviation, we use LR and RL for left-to-right and right-to-left,
respectively. In addition, minima and maxima are written min and max, respectively.

Category β # Classes Equivalence Classes

β decreasing

∗32 5 {∅}, {1}, {12}, {123, 21}, {all else}
21∗ 5 {∅}, {1}, {12}, {123, 21}, {all else}
∗31 5 {∅}, {1}, {12}, {123, 21}, {all else}
2∗1 5 {∅}, {1}, {12}, {123, 21}, {all else}
3∗2 5 {∅}, {1}, {12}, {123, 21}, {all else}
31∗ 5 {∅}, {1}, {12}, {123, 21}, {all else}
∗21 5 {∅}, {1}, {12}, {123, 21}, {all else}
3∗1 5 {∅}, {1}, {12}, {123, 21}, {all else}
32∗ 5 {∅}, {1}, {12}, {123, 21}, {all else}

Drop Only

∗23 ∞ {π | π ≡ τ} | τ avoids 123
1∗3 ∞ {π | π ≡ τ} | τ avoids 123
12∗ ∞ {π | π ≡ τ} | τ avoids 123

Shift Right,
Shift Left

∗12 ∞ {rid(n)} | n ∈ Z>0, {all else}
23∗ ∞ {rid(n)} | n ∈ Z>0, {all else}

Switch with
Neighbor and

Drop

1∗2 ∞ {π | π ≡ τ} | τ has 0 or 1 non-LR min
13∗ ∞ {π | π ≡ τ} | τ has 0 or 1 non-LR min
∗13 ∞ {π | π ≡ τ} | τ has 0 or 1 non-RL max
2∗3 ∞ {π | π ≡ τ} | τ has 0 or 1 non-RL max

Table 1: Summary of Classes Under Replacements of the Form 123↔ β
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