More on the Wilson $W_{t k}(v)$ matrices

M.H. Ahmadi N. Akhlaghinia G.B. Khosrovshahi Ch. Maysoori
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
P.O. Box 19395 - 5746, Tehran, Iran
\{h.ahmadi117, narges.nia, rezagbk\}@ipm.ir, changiz.maysoori@gmail.com

Submitted: Nov 9, 2013; Accepted: Jun 14, 2014; Published: Jun 27, 2014
Mathematics Subject Classifications: 05B20

Abstract

For integers $0 \leqslant t \leqslant k \leqslant v-t$, let X be a v-set, and let $W_{t k}(v)$ be a $\binom{v}{t} \times\binom{ v}{k}$ inclusion matrix where rows and columns are indexed by t-subsets and k-subsets of X, respectively, and for row T and column $K, W_{t k}(v)(T, K)=1$ if $T \subseteq K$ and zero otherwise. Since $W_{t k}(v)$ is a full rank matrix, by reordering the columns of $W_{t k}(v)$ we can write $W_{t k}(v)=(S \mid N)$, where N denotes a set of independent columns of $W_{t k}(v)$. In this paper, first by classifying t-subsets and k-subsets, we present a new decomposition of $W_{t k}(v)$. Then by employing this decomposition, the Leibniz Triangle, and a known right inverse of $W_{t k}(v)$, we construct the inverse of N and consequently special basis for the null space (known as the standard basis) of $W_{t k}(v)$.

Keywords: Signed t-design; Leibniz Triangle; Standard basis; Right inverse; Root of a block; \mathcal{R}-ordering; B-changer

1 Introduction

Integers t, k, and v with $0 \leqslant t \leqslant k \leqslant v-t$ are considered. Let X be a linearly ordered v-set, and let

$$
\binom{X}{i}:=\{A \subseteq X:|A|=i\}, \quad 0 \leqslant i \leqslant v .
$$

For the sake of brevity, we will denote a set $\left\{a_{1}, \ldots, a_{i}\right\}$ by the string " $a_{1} \ldots a_{i}$ ", and assuming that $a_{1}<a_{2}<\cdots<a_{i}$. The elements of $\binom{X}{k}$ and $\binom{X}{t}$ are called blocks and t-subsets, respectively.

The inclusion matrix $W_{t k}(v)$ (known as Wilson matrix) is defined to be a $\binom{v}{t}$ by $\binom{v}{k}$ $(0,1)$-matrix whose rows and columns are indexed by (and referred to) the members of
$\binom{X}{t}$ and $\binom{X}{k}$, respectively, and where

$$
W_{t k}^{v}(T, K):=\left\{\begin{array}{ll}
1 & \text { if } T \subseteq K \\
0 & \text { otherwise }
\end{array}, \quad T \in\binom{X}{t}, K \in\binom{X}{k} .\right.
$$

For the sake of convenience, sometimes we use $W_{t k}$ or just a bare W for $W_{t k}(v)$.
Let $S=x_{1} x_{2} \ldots x_{n}$ be a finite set, and let \mathbb{F} be an arbitrary ring. An \mathbb{F}-collection of the elements of S is a function $f: S \rightarrow \mathbb{F}$, with the vector representation $\left(f\left(x_{1}\right), \cdots, f\left(x_{n}\right)\right)^{T}$, for $i, 1 \leqslant i \leqslant n, f\left(x_{i}\right)$ is defined to be the value of x_{i} in f.

It is well known that $W_{t k}$ is a full rank matrix over $\mathbb{Q}[8]$. As a linear operator, $W_{t k}$ acts on a \mathbb{Z}-collection of blocks, and algebraically counts the number of times that any member of $\binom{X}{t}$ appears in the blocks of the collection.

In the set of our notations, for any matrix M, the free \mathbb{Z}-module generated by rows and columns of matrix M will be denoted by $\operatorname{row}_{\mathbb{Z}}(M)$ and $\operatorname{col}_{\mathbb{Z}}(M)$, respectively, and $\operatorname{null}_{\mathbb{Z}}(M)$ will be the free \mathbb{Z}-module orthogonal to $\operatorname{row}_{\mathbb{Z}}(M)$.

Let 1 be the all 1 vector, and let λ be a nonnegative integer. We call the following equation the fundamental equation of design theory:

$$
\begin{equation*}
W_{t k} f=\lambda \mathbf{1} \tag{1}
\end{equation*}
$$

Every integral solution of equation (1) is called a signed t - (v, k, λ) design. For more on this, see $[4,8]$.

Since W is a full rank matrix, by reordering the columns of W we can write W as $W=(S \mid N)$, where N denotes a set of independent columns of W. Therefore, there is a matrix C such that $N^{-1}(S \mid N)=(C \mid I)$. Let \mathbb{S} be a matrix defined by stacking an identity matrix above the matrix $-C$,i.e., $\mathbb{S}:=\left(\frac{\mathrm{I}}{-C}\right)$. Since $W \mathbb{S}=0$ and W is full rank, the columns of \mathbb{S} form a basis for $\operatorname{null}_{\mathbb{Z}}(W)$.

Now, we would like to give a rather comprehensive view on the problem addressed in this paper: We start with the halving conjecture. In 1987 A. Hartman [9] stated the following conjecture which is now known as the halving conjecture:

$$
\begin{aligned}
& \text { For } 0 \leqslant i \leqslant t \text {, there is a }(1,-1) \text {-vector in } \operatorname{null}_{\mathbb{Z}}(W) \text { if and only if } \\
& \binom{v-i}{k-i} \equiv 0(\bmod 2) \text {. }
\end{aligned}
$$

Up to our knowledge, the conjecture has been settled for $t=2$ utilizing a recursive construction [2], and some infinite classes have been constructed too [10].

Since every $(1,-1)$-vector in $\operatorname{null}_{\mathbb{Z}}(W)$ is a linear combination of the columns of \mathbb{S}, therefore the null space of the W should be studied more carefully. For this, we have to know the components, row structure and column structure of \mathbb{S}.

- In what follows, an explicit formula for the entries of N^{-1} and consequently a closed formula for the entries of \mathbb{S} are presented.
- For the row structure of \mathbb{S}, there are two conjectures on the table:
- The elements of every row of \mathbb{S} have the same sign.
- For $t>1$, the matrix \mathbb{S} contains a nowhere zero row.

In [1] these two conjectures have been settled for $t=2$ and $k=3$.

- In [1] the columns of $\mathbb{S}_{23}(v)$ have been classified into five classes and by utilizing these classes the correctness of the halving conjecture has been established.

2 Classification of blocks and t-subsets

Definition 1. For $m, 1 \leqslant m \leqslant k$, let $A=\left\{a_{k-m+1}, \ldots, a_{k}\right\} \in\binom{X}{m}$, and

$$
L_{A}=\left\{i: a_{i} \leqslant 2 i-k+t, k-m+1 \leqslant i \leqslant k\right\} .
$$

Let $\ell_{A}=\max \left(L_{A}\right)$. Note that $\max (\varnothing):=0$, here. Now, $\mathcal{R}_{t k}(A):=\left\{a_{k-m+1}, \ldots, a_{\ell_{A}}\right\}$ is called the root of A.

Example 2. For $A=3458$, we obtain:

i	a_{i}	$2 i-k+t$	ℓ_{A}	
4	8	7		
3	5	5	\checkmark	
2	4	3		
1	3	1		
$\ell_{A}=3 \Rightarrow \mathcal{R}_{34}(3458)=345$				

i	a_{i}	$2 i-k+t$	ℓ_{A}
4	8	6	
3	5	4	
2	4	2	
1	3	0	

For $B=1478$, we obtain:

i	a_{i}	$2 i-k+t$	ℓ_{B}
5	8	8	\checkmark
4	7	6	
3	4	4	
2	1	2	
$\ell_{B}=5 \Rightarrow \mathcal{R}_{35}(1478)=1478$			

i	a_{i}	$2 i-k+t$	ℓ_{B}	
5	8	7		
4	7	5		
3	4	3		
2	1	1	\checkmark	
$\ell_{B}=2 \Rightarrow \mathcal{R}_{25}(1478)=1$				

In $[6,14]$, a decomposition of $W_{t k}(v)$ is presented:

$$
W_{t k}(v)=\begin{array}{|c|c|}
\hline W_{t-1, k-1}(v-1) & 0 \tag{2}\\
\hline W_{t, k-1}(v-1) & W_{t k}(v-1) \\
\hline
\end{array}
$$

Now, we propose a new ordering of blocks and t-subsets and consequently a new decomposition.

Definition 3. For given t, k, and X, let

$$
\left\{\begin{array}{l}
\mathcal{B}_{i}=\left\{B:\left|\mathcal{R}_{t k}(B)\right|=i, B \in\binom{X}{k}\right\}, \\
\mathcal{T}_{j}=\left\{T:\left|\mathcal{R}_{t k}(T)\right|=j, T \in\binom{X}{t}\right\},
\end{array}\right.
$$

If we order every B_{i} and T_{j} in reverse lexicographic ordering, then $B_{0}, B_{1}, \ldots, B_{k}$ and $T_{0}, T_{1}, \ldots, T_{t}$ are orders on $\binom{X}{k}$ and $\binom{X}{t}$, respectively. This ordering is called \mathcal{R}-ordering.

$$
W_{t k}(v)=\begin{array}{|c|c|}
\hline E & 0 \tag{3}\\
\hline \mathcal{A} & W_{t k}(t+k) \\
\hline
\end{array}
$$

Here the rows and the columns of $W_{t k}(t+k)$ are indexed by \mathcal{T}_{t} and \mathcal{B}_{k} elements, respectively. In passing we note that the matrix E contains $(v-k-t)$ copies of intersecting submatrices $W_{t-1, k-1}(v-1)$.

Example 4. The above decomposition of $W_{23}(7)$ is:

Table 1. The decompostion of $W_{23}(7)$.
(In tables throughout this paper, unless otherwise indicated, blanks are zeros.)

Remark 5. To obtain the inverse of N, first we construct the inverse of $W_{t k}(t+k)$. In the next section, we introduce a right inverse of W.

3 Right inverse of W and Leibniz Triangle

Around 1980, Graham, Li, and Li [7] presented a right inverse for W with a closed formula. Later on, Bapat [3] constructed a right inverse for W in a recursive form. The elements of these right inverses are multiples of the entries of Leibniz Triangle (Table 2).

Table 2. Leibniz Triangle.
For given $0 \leqslant r \leqslant n$, the (n, r)-th position of Leibniz Triangle was introduced as the (n, r)-th harmonic coefficient which is defined to be

$$
\begin{equation*}
\mathcal{H}_{r}^{n}=\frac{1}{(n+1)\binom{n}{r}}=\frac{1}{(r+1)\binom{n+1}{r+1}} . \tag{4}
\end{equation*}
$$

Now we index the rows and the columns of the right inverse of W by the elements of $\binom{X}{k}$ and $\binom{X}{t}$, respectively. According to [7] and (4) every entry of this matrix comes from the following relation:

$$
\begin{align*}
\operatorname{GLL}(B, T) & =\frac{(-1)^{(k-t)}(k-t)}{(-1)^{|B-T|}|B-T|} \cdot \frac{1}{\binom{v-t}{|B-T|}} \tag{5}\\
& =(-1)^{k-t+|B-T|}(k-t) \mathcal{H}_{|B-T|}^{v-t-1},
\end{align*}
$$

where $B \in\binom{X}{k}, T \in\binom{X}{t}$.

Now back to the inverse of $W_{t k}(t+k)$. We replace $v-t$ by k in (5), and then every element of the inverse of $W_{t k}(t+k)$, denoted by $F(B, T)$, is defined as

$$
\begin{equation*}
F(B, T):=(-1)^{(t-\theta)}(k-t) \mathcal{H}_{\theta}^{k-1} \tag{6}
\end{equation*}
$$

where $\theta=|B \cap T|$.
Let B be an arbitrary block such that $\left|\mathcal{R}_{t k}(B)\right|=k$. Suppose that $\mathbf{b}=\left(b_{1}, \ldots, b_{\binom{v}{t}}\right)$ is a vector where $b_{i}=F\left(B, T_{i}\right), T_{i} \in\binom{X}{t}$. Now we compute the product of \mathbf{b} in the column B^{\prime} of W. The product is the sum of those $F\left(B, T_{i}\right)$ where $T_{i} \subseteq B^{\prime}$.

$$
\begin{equation*}
\text { b. } B^{\prime}=(k-t) \sum_{\theta=0}^{t}(-1)^{t-\theta}\binom{s}{\theta}\binom{k-s}{t-\theta} \mathcal{H}_{\theta}^{k-1}=(-1)^{t}\binom{k-s-1}{t}, \tag{7}
\end{equation*}
$$

where $s=\left|B \cap B^{\prime}\right|$.
The above formula is easily verified by Maple [13] and exhibits a very interesting relation between Leibniz Triangle and binomial triangle.

4 The inverse of \mathbf{N}

The construction of the inverse of N is based on (6), but first we should partition W into independent and dependent columns. The function which is defined on blocks in [5, 11], classifies the blocks into $t+2$ classes. Although through that classification independent and dependent columns are separated, the partitioning is not refined enough to be useful for the inverse construction. Here we introduce a new function to partition subsets of X, which is based on \mathcal{R}-ordering.

Definition 6. The block B is called a starting block if $0 \leqslant\left|\mathcal{R}_{t k}(B)\right|<k-t$, and a non-starting block if $k-t \leqslant\left|\mathcal{R}_{t k}(B)\right| \leqslant k$.

Notation. $k_{B}:=\left|\mathcal{R}_{t k}(B)\right|$.
Now, we omit the columns indexed by the starting blocks from W and we denote the remaining matrix by $N_{t k}$. If we \mathcal{R}-order the t-subsets and non-starting blocks, then:

$N_{t k}=$| $\frac{k_{B}-(k-t)}{\left\|\mathcal{R}_{t k}(T)\right\|}$ | 0 | 1 | 2 | \cdots | t |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | | 0 | 0 | 0 | 0 |
| 1 | | | 0 | 0 | 0 |
| 2 | | | | 0 | 0 |
| \vdots | | | | | 0 |
| t | | | | | |
| | | | | | |

Note. The entries of shaded boxes could be zero or one.
Let B be a non-starting block and $T \in\binom{X}{t}$. If $k_{B}-(k-t)=i$ and $\left|\mathcal{R}_{t k}(T)\right|<i$, then $k-k_{B}<t-\left|\mathcal{R}_{t k}(T)\right|$. That is to say that there exists an element in T which is not in B. Therefore, $N_{t k}(T, B)=0$.

Lemma 7. For given t, k, and X, the number of non-starting blocks is $\binom{v}{t}$.
Proof. For $0 \leqslant m \leqslant t$, let $A=\left\{a_{k-t+m}, \ldots, a_{k}\right\}$ and $\mathcal{R}_{t k}(A)=\varnothing$. If $A \subseteq T$ and $\left|\mathcal{R}_{t k}(T)\right|=m-1$, then $T \backslash \mathcal{R}_{t k}(T)=A$. Let $\mathcal{R}_{t k}(T)=\left\{a_{k-t+1}, \ldots, a_{k-t+m-1}\right\}$, by Definition 2.1, $a_{k-t+m-1} \leqslant k-t+2 m-2$. Therefore, the number of T such that $A \subseteq T$ is equal to $\binom{k-t+2 m-2}{m-1}$.

Similarly the number of non-starting blocks B such that $A \subseteq B$ and $\left|\mathcal{R}_{t k}(B)\right|=$ $k-t+m-1$ is equal to $\binom{k-t+2 m-2}{k-t+m-1}$.

Now, we have to show that different A 's with the same size, produce different t-subsets and different blocks.

Let A_{1}, A_{2}, D_{1}, and D_{2} be subsets of X. Suppose $R_{t k}\left(A_{1}\right)=R_{t k}\left(A_{2}\right)=\varnothing, A_{1} \neq A_{2}$, and $\left|A_{1}\right|=\left|A_{2}\right|$. We show that, if

$$
A_{1} \subseteq D_{1}, A_{2} \subseteq D_{2}, \text { and }\left|\mathcal{R}_{t k}\left(D_{1}\right)\right|=\left|\mathcal{R}_{t k}\left(D_{2}\right)\right|=\left|D_{1}\right|-\left|A_{1}\right|,
$$

then $D_{1} \neq D_{2}$.
Suppose $D_{1}=D_{2}$. Since $A_{1} \neq A_{2}$, there is an $e \in A_{1}$, such that $e \in \mathcal{R}_{t k}\left(D_{2}\right)$. Hence, by Definition $2.1\left|\mathcal{R}_{t k}\left(D_{2}\right)\right|=\left|D_{2}\right|-\left|A_{2}\right|-1$, and this is a contradiction. Therefore, there exists a bijection from the set of non-starting blocks to all the t-subsets.

Corollary 8. The main diagonal boxes of $N_{t k}$ are square matrices.
Example 9. Table 3 demonstrates the boxing structure of $N_{23}(6)$.

Definition 10. For given t, k, and X, let B be a non-starting block. For any $A \subseteq X$ such that $|A| \leqslant|B|, A \backslash\left(B \backslash \mathcal{R}_{t k}(B)\right)$ denoted by $\mathcal{R}_{t k}(A, B)$ is called the root of A with respect to B.

Example 11. $\mathcal{R}_{24}(58,3458)=5, \mathcal{R}_{34}(5678,1234)=5678$, and $\mathcal{R}_{34}(5678,1478)=56$.

Now, to show that the columns of $N_{t k}$ are linearly independent, first we define a matrix $\mathcal{F}_{t k}(v)$, whose rows and columns are indexed by non-starting blocks and t-subsets, respectively. We note that the non-starting blocks and t-subsets are \mathcal{R}-ordered. Then $\mathcal{F}_{t k}(v)$ is defined as:

$$
\mathcal{F}_{t k}(v)(B, T):= \begin{cases}F\left(\mathcal{R}_{t k}(B), \mathcal{R}_{t k}(B, T)\right) & k-k_{B}=t-\left|\mathcal{R}_{t k}(B, T)\right|, \tag{8}\\ 0 & k-k_{B} \neq t-\left|\mathcal{R}_{t k}(B, T)\right|,\end{cases}
$$

where $F(B, T)=(-1)^{(t-\theta)}(k-t) \mathcal{H}_{\theta}^{k-1}$ as in (6). Now let $M:=\mathcal{F}_{t k}(v) N_{t k}$. Naturally the rows and the columns of M are indexed by non-starting blocks.

Example 12.

$\mathcal{F}_{23}(6)=$		56	46	36	26	16	45	35	34	25	24	23	15	14	13	12
	$\begin{aligned} & 156 \\ & 146 \end{aligned}$	1														
	$\begin{aligned} & 236 \\ & 136 \\ & 126 \end{aligned}$	$-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$	$\begin{aligned} & -\frac{1}{2} \\ & -\frac{1}{2} \\ & -\frac{1}{2} \end{aligned}$	$\frac{1}{2}$ $-\frac{1}{2}$	$\begin{array}{r} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{array}$	$\begin{array}{r} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \hline \end{array}$										
	345	- $\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	1	${ }^{\frac{1}{3}}$	${ }^{\frac{1}{3}}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$
	245	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{8}$	$-\frac{1}{6}$	${ }^{\frac{1}{3}}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$
	235	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	${ }^{\frac{1}{3}}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$
	234	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$
	145	$-\frac{1}{6}$	$-\frac{1}{6}$	${ }^{\frac{1}{3}}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$
	135	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$
	134	${ }^{\frac{1}{3}}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$
	125	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$
	124	$\frac{1}{3}$		$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$
	123	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$

Notation. $t_{B}:=t-\left(k-k_{B}\right)$.
Lemma 13. If for two non-starting blocks B and $B^{\prime}, k_{B}=k_{B^{\prime}}$, then $\left|\mathcal{R}_{t k}(B) \cap \mathcal{R}_{t k}\left(B^{\prime}\right)\right| \geqslant$ $k_{B}-t_{B}$.

Proof. Since $k_{B}=k_{B^{\prime}}$, every element of $\mathcal{R}_{t k}(B)$ and $\mathcal{R}_{t k}\left(B^{\prime}\right)$ is at most $2 k_{B}-k+t=k_{B}+t_{B}$ by Definition 1 . Hence $\left|\mathcal{R}_{t k}(B) \cap \mathcal{R}_{t k}\left(B^{\prime}\right)\right| \geqslant k_{B}-t_{B}$.

Now, we have

$$
M\left(B, B^{\prime}\right)= \begin{cases}(-1)^{t_{B}}\left({ }^{\left.k_{B}-\mid \mathcal{R}_{t k}(B) \cap_{\mathcal{R}_{t k}\left(B^{\prime}, B\right) \mid-1}\right)} \mathrm{t}_{B}=\left|\mathcal{R}_{t k}\left(B^{\prime}, B\right)\right|,\right. \tag{9}\\ 0 & k_{B} \neq\left|\mathcal{R}_{t k}\left(B^{\prime}, B\right)\right| .\end{cases}
$$

For clarity we add the following statements:

- $k_{B}-\left|\mathcal{R}_{t k}(B) \cap \mathcal{R}_{t k}\left(B^{\prime}, B\right)\right|-1=-1$ if and only if $B=B^{\prime}$, and $\binom{-1}{t_{B}}=(-1)^{t_{B}}$;
- $k_{B}=\left|\mathcal{R}_{t k}\left(B^{\prime}, B\right)\right|$ and $B \neq B^{\prime}$, then $\mathcal{R}_{t k}\left(B^{\prime}, B\right) \mid=\mathcal{R}_{t k}\left(B^{\prime}\right)$, and $0 \leqslant k_{B}-\mid \mathcal{R}_{t k}(B) \cap$ $\mathcal{R}_{t k}\left(B^{\prime}, B\right) \mid-1<t_{B}$, implying that the binomial coefficient is 0 .

By Corollary 8 , (9), and the above statements, the main diagonal boxes of matrix M are identity matrices. Therefore, M is a lower triangular matrix.

Example 14.

Theorem 15. The columns indexed by non-starting blocks in W are linearly independent.
Definition 16. For a given non-starting block B, a block A is called a B-changer, if the following conditions hold:
(i) $k_{B}>k_{A}$,
(ii) $\left|\mathcal{R}_{t k}(B) \cap \mathcal{R}_{t k}(A, B)\right|<k_{B}-t_{B}$,
(iii) $B \backslash \mathcal{R}_{t k}(B) \subseteq A \backslash \mathcal{R}_{t k}(A, B)$.

Lemma 17. Let B and A be two non-starting blocks such that $A \neq B$. Then A is a B-changer if and only if $M(B, A) \neq 0$.

Proof. For a given block B, let A be a B-changer. By Definition 16 we have $\mid \mathcal{R}_{t k}(A) \cap$ $\mathcal{R}_{t k}(B) \mid \leqslant k_{B}-t_{B}-1$. Therefore, by (9) it follows that $M(B, A) \neq 0$.

Now assume that $M(B, A) \neq 0$, again by (9) we have $k_{B} \geqslant k_{A}$ and $\mid \mathcal{R}_{t k}(B) \cap$ $\mathcal{R}_{t k}(A, B) \mid<k_{B}-t_{B}-1$. If $k_{B}=k_{A}$, then based on Lemma 13 and (9) we have $M(B, A)=0$, which is a contradiction. Therefore, $k_{B}>k_{A}$ and A is a B-changer.

Theorem 18. Suppose that the rows and the columns of matrix N^{-1} are indexed by non-starting blocks and t-subsets, respectively. For a block B and at-subset T, we have:

$$
N_{t k}^{-1}(B, T)= \begin{cases}F\left(\mathcal{R}_{t k}(B), \mathcal{R}_{t k}(T, B)\right)-\sum_{A} M(B, A) N_{t k}^{-1}(A, T) & k-k_{B}=t-\left|\mathcal{R}_{t k}(T, B)\right|, \tag{10}\\ 0 & k-k_{B} \neq t-\left|\mathcal{R}_{t k}(T, B)\right| .\end{cases}
$$

Proof. The correctness of the statement of the theorem can be easily established by the elementary row operations.

Example 19.

$N_{23}^{-1}(6)=$		56	46	36	26	16	45	35	34	25	24	23	15	14	13	12
	156	1														
	146		1													
	236	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$											
	136	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$										
	126	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$										
	345	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$
	245	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$
	235	$-\frac{1}{6}$	$-\frac{2}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$								
	234	$-\frac{2}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$
	145	$-\frac{2}{3}$	$-\frac{2}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$
	135	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$
	134	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$
	125	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$
	124	1	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{3}$
	123	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	- $\frac{1}{6}$	$\frac{1}{3}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	- $\frac{1}{6}$	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$

5 Standard basis and the unique signed design

Let $\mathcal{F}_{t k}(v)$ and S be defined as before and let B and B^{s} be a non-starting and a starting block, respectively. Suppose $M^{s}:=\mathcal{F}_{t k}(v) S$. Clearly, the rows and the columns of M^{s} are indexed by non-starting blocks and starting blocks, respectively. By Definition 16 we have $k_{B}>k_{B^{s}}$. Every entry of matrix M^{s}, based on proof (9) is obtained as:

$$
M^{s}\left(B, B^{s}\right)= \begin{cases}(-1)^{t_{B}}\left({ }^{\left.k_{B}-\mid \mathcal{R}_{t k}(B) \cap_{\mathcal{R}_{t k}\left(B^{s}, B\right) \mid-1}\right)} k_{t_{B}}=\left|\mathcal{R}_{t k}\left(B^{s}, B\right)\right|,\right. \\ 0 & k_{B} \neq\left|\mathcal{R}_{t k}\left(B^{s}, B\right)\right|\end{cases}
$$

Example 20.

| | $\mathbf{4 5 6}$ | $\mathbf{3 5 6}$ | $\mathbf{3 4 6}$ | $\mathbf{2 5 6}$ | $\mathbf{2 4 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{23}^{s}(6)=$$\mathbf{1 5 6}$ 1 1 1
 $\mathbf{1 4 6}$ 1 1 1
 $\mathbf{2 3 6}$ -1
 $\mathbf{1 3 6}$ -1 -1 -1
 $\mathbf{1 2 6}$ -1 -1 -1
 $\mathbf{3 4 5}$
 $\mathbf{2 4 5}$
 $\mathbf{2 3 5}$
 $\mathbf{2 3 4}$
 $\mathbf{1 4 5}$
 $\mathbf{1 3 5}$ 1
 $\mathbf{1 3 4}$ 1
 $\mathbf{1 2 5}$
 $\mathbf{1 2 4}$ 1
 $\mathbf{1 2 3}$ 1 | | | | | |

Note 21. We recall that $C=N^{-1} S$. From this, it follows that the rows and the columns of C are indexed by non-starting and starting blocks, respectively.

Theorem 22. Let B and B^{s} be a non-starting and a starting block, respectively. Every entry of C is given by

$$
C\left(B, B^{s}\right)= \begin{cases}M^{s}\left(B, B^{s}\right)-\sum_{A} M(B, A) C\left(A, B^{s}\right) & k_{B}=\left|\mathcal{R}_{t k}\left(B^{s}, B\right)\right| \\ 0 & k_{B} \neq\left|\mathcal{R}_{t k}\left(B^{s}, B\right)\right|\end{cases}
$$

where A is a B-changer.

Example 23.

C_{23}| | $\mathbf{4 5 6}$ | $\mathbf{3 5 6}$ | $\mathbf{3 4 6}$ | $\mathbf{2 5 6}$ | $\mathbf{2 4 6}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1 5 6}$ | 1 | 1 | | 1 | |
| $\mathbf{1 4 6}$ | 1 | | 1 | | 1 |
| $\mathbf{2 3 6}$ | 1 | 1 | 1 | 1 | 1 |
| $\mathbf{1 3 6}$ | -1 | | | -1 | -1 |
| $\mathbf{1 2 6}$ | -1 | -1 | -1 | | |
| $\mathbf{3 4 5}$ | 1 | 1 | 1 | | |
| $\mathbf{2 4 5}$ | 1 | | | 1 | 1 |
| $\mathbf{2 3 5}$ | -1 | | -1 | | -1 |
| $\mathbf{2 3 4}$ | -1 | -1 | | -1 | |
| $\mathbf{1 4 5}$ | -1 | -1 | -1 | -1 | -1 |
| $\mathbf{1 3 5}$ | | | | | 1 |
| $\mathbf{1 3 4}$ | | | | 1 | |
| $\mathbf{1 2 5}$ | | | 1 | | |
| $\mathbf{1 2 4}$ | | 1 | | | |
| $\mathbf{1 2 3}$ | 1 | | | | |

In [12] Khosrovshahi and Tayfeh-Rezaie showed that by subtracting $\mathbf{1}$ from the sum of the columns of the standard basis of W, one obtains a unique signed t-design D. For more on this subject see [15]. Here we show that D is also obtained by the sum of the columns of the inverse of N.

Let $\left(s_{i_{1}}, \ldots, s_{i}^{\binom{v}{k}-\binom{v}{t}}\right.$) $)$ be the i-th row of $\mathbb{S}_{t k}$ and $D=\left(d_{1}, \ldots, d_{\binom{v}{k}}\right)^{T}$. Therefore,

$$
d_{i}=\sum_{j=1}^{\binom{v}{k}-\binom{v}{t}} s_{i_{j}}-\mathbf{1} .
$$

Let $\left(\gamma_{i_{1}}, \ldots \gamma_{i}^{(v} \begin{array}{c}v \\ t\end{array}\right)$ be the i-th row of $N_{t k}^{-1}$. We have the following identities:

$$
\binom{v-t}{k-t} \sum_{m=1}^{\binom{v}{t}} \gamma_{i_{m}}=\sum_{m=1}^{\binom{v}{t}} \sum_{j=1}^{\binom{v}{k}} \gamma_{i_{m}} W_{m j}=\mathbf{1}-\sum_{j=1}^{\binom{v}{k}-\binom{v}{t}} s_{i_{j}}=d_{i} .
$$

Theorem 24. Let $\eta=\sum_{i=1}^{\binom{v}{t}} \Gamma_{i}$, where Γ_{i} 's are the columns of $N_{t k}^{-1}$, then $\binom{v-t}{k-t} \eta=D$.

Acknowledgements

We are grateful to the referee for carefully reading the manuscript and making useful comments.

References

[1] M.H. Ahmadi, N. Akhlaghinia, G.B. Khosrovshahi and Ch. Maysoori. On the inclusion matrix $W_{23}(v)$. Submitted.
[2] S. Ajoodani-Namini. All block designs with $b=\binom{v}{k} / 2$ exist. Discrete Math., 179:2735, 1998.
[3] R.B. Bapat. Moore-Penrose inverse of set inclusion matrices. Linear Algebra Appl., 318:35-44, 2000.
[4] P.J. Dukes and R.M. Wilson. Linear algebra and designs. In Handbook of Combinatorial Designs (C.J. Colbourn, J.H. Dinitz, eds.), pages 783-790. Chapman Hall/CRC, Boca Raton, 2007.
[5] E. Ghorbani, G.B. Khosrovshahi, Ch. Maysoori, and M. Mohammad-Noori. Inclusion matrices and chains. J. Combin. Theory Ser. A, 115(5):878-887, 2008.
[6] D.H. Gottlieb. A certain class of incidence matrices. Proc. Amer. Math. Soc., 17:12331237, 1966.
[7] R.L. Graham, S.-Y.R. Li, and W.-C.W. Li. On the structure of t-designs. SIAM J. Discrete Math., 1(1):8-14, 1980.
[8] J.E. Graver and W.B. Jurkat. The module structure of integral designs. J. Combin. Theory Ser. A, 15:75-90, 1973.
[9] A. Hartman. Halving the complete design. Ann. Discrete Math., 34:207-224, 1987.
[10] G.B. Khosrovshahi and S. Ajoodani-Namini. Combining t-designs. J. Combin. Theory Ser. A, 58(1):26-34, 1991.
[11] G.B. Khosrovshahi and Ch. Maysoori. On the structure of higher incidence matrices. Bull. Inst. Combin. Appl., 25:13-22, 1999.
[12] G.B. Khosrovshahi and B. Tayfeh-Rezaie. A new proof of a classical theorem in design theory. J. Combin. Theory Ser. A, 93(2):391-396, 2001.
[13] M. Petkovsek, H. Wilf, and D. Zeilberger. $A=B$. Peters, Massachusetts, 1996.
[14] R.M. Wilson. A diagonal form for the incidence matrices of t-subsets vs. k-subsets. Europ. J. Combin., 11(6):609-615, 1990.
[15] R.M. Wilson. The neccessary condition for t-design are sufficient for something. Util. Math., 4:207-213, 1973.

