Partitions of Z_m with the same weighted representation functions

Zhenhua Qu*

Department of Mathematics Shanghai Key Laboratory of PMMP East China Normal University Shanghai 200241, P.R. China

zhqu@math.ecnu.edu.cn

Submitted: Feb 6, 2014; Accepted: Jun 19, 2014; Published: Jun 27, 2014 Mathematics Subject Classifications: 11B34, 05A15

Abstract

Let $\mathbf{k} = (k_1, k_2, \dots, k_t)$ be a *t*-tuple of integers, and *m* be a positive integer. For a subset $A \subset \mathbf{Z}_m$ and any $n \in \mathbf{Z}_m$, let $r_A^{\mathbf{k}}(n)$ denote the number of solutions of the equation $k_1a_1 + \dots + k_ta_t = n$ with $a_1, \dots, a_t \in A$. In this paper, we give a necessary and sufficient condition on (\mathbf{k}, m) such that there exists a subset $A \subset \mathbf{Z}_m$ satisifying $r_A^{\mathbf{k}} = r_{\mathbf{Z}_m \setminus A}^{\mathbf{k}}$. This settles a problem of Yang and Chen.

Keywords: Representation function, Partition, Sárközy problem.

1 Introduction

We use **N** to denote the set of nonnegative integers. For any subset $A \subset \mathbf{N}$ and $n \in \mathbf{N}$, define the representation functions $R_1(A, n)$, $R_2(A, n)$ and $R_3(A, n)$ to be the number of solutions of the equations

$$n = a + a', \quad a, a' \in A,$$

$$n = a + a', \quad a, a' \in A, \quad a < a',$$

and

$$n = a + a', \quad a, a' \in A, \quad a \leqslant a',$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(2) (2014), #P2.55

^{*}This work was supported by the National Natural Science Foundation of China, Grant No. 11101152.

respectively. Representation functions first appeared in the celebrated paper of Erdős and Turán [12], and were extensively studied by Erdős, Sárközy and Sós (see [7, 8, 11, 9, 10]).

Sárközy asked for each i = 1, 2, 3, whether there exist sets A and B with infinite symmetric difference such that $R_i(A, n) = R_i(B, n)$ for all sufficiently large integers n. There have been quite some work around Sárközy's problem. Dombi [5] observed that the answer is negative for i = 1, and constructed a subset $A \subset \mathbf{N}$ such that $R_2(A, n) =$ $R_2(\mathbf{N} \setminus A, n)$ for all $n \in \mathbf{N}$. An analogous example for $R_3(A, n)$ was constructed by Chen and Wang [3]. For i = 2, 3, Lev [6], Sándor [13] and Tang [14] determined all subsets $A \subset \mathbf{N}$ such that $R_i(A, n) = R_i(\mathbf{N} \setminus A, n)$ for all $n \ge 2N - 1$. The asymptotic behavior of the representation functions of these special sequences was studied by Chen and Tang (see [1, 2]).

Analogously, for any two positive integers k_1, k_2 , any subset $A \subset \mathbf{N}$, one can define the weighted representation function $r_{k_1,k_2}(A, n)$ as the number of solutions of the equation $n = k_1a_1 + k_2a_2$ with $a_1, a_2 \in A$. Cilleruelo and Rué [4] proved that $r_{k_1,k_2}(A, n)$ can not be eventually constant. Yang and Chen [15] proved that there exists a set $A \subset \mathbf{N}$ such that $r_{k_1,k_2}(A, n) = r_{k_1,k_2}(\mathbf{N} \setminus A, n)$ for all sufficiently large n if and only if $k_1 \mid k_2$ and $k_1 < k_2$.

Let $\mathbf{k} = (k_1, k_2, \dots, k_t)$ be a *t*-tuple of integers, and *m* be a positive integer. For any $A \subset \mathbf{Z}_m$ and $n \in \mathbf{Z}_m$, denote the number of solutions of the equation $k_1a_1 + \dots + k_ta_t = n$ with $a_1, \dots, a_t \in A$ by $r_A^{\mathbf{k}}(n)$. We call $r_A^{\mathbf{k}}$ the weighted representation function on \mathbf{Z}_m with respect to *A* and weight \mathbf{k} . For t = 2, $\mathbf{k} = (k_1, k_2)$, Yang and Chen [16] characterized all subsets $A \subset \mathbf{Z}_m$ with the property that $r_A^{\mathbf{k}} = r_{\mathbf{Z}_m \setminus A}^{\mathbf{k}}$.

Note that if $A \subset \mathbf{Z}_m$ satisfying $r_A^{\mathbf{k}} = r_{\mathbf{Z}_m \setminus A}^{\mathbf{k}}$, then *m* is even and $|A| = \frac{m}{2}$. Indeed, this follows from the fact that

$$|A|^t = \sum_{n \in \mathbf{Z}_m} r_A^{\mathbf{k}}(n) = \sum_{n \in \mathbf{Z}_m} r_B^{\mathbf{k}}(n) = |B|^t.$$

For any nonzero integer k, we use $v_2(k)$ to denote the largest nonnegative integer l such that $2^l \mid k$. The following result is also proved in [16].

Theorem 1. Let k_1, k_2 be nonzero integers, and $\mathbf{k} = (k_1, k_2)$. For a subset $A \subset \mathbf{Z}_m$ satisfying $r_A^{\mathbf{k}} = r_{\mathbf{Z}_m \setminus A}^{\mathbf{k}}$ to exist, it is necessary and sufficient that one of the following holds:

- (*i*) $k_1 + k_2$ is even;
- (ii) $k_1 + k_2$ is odd and $v_2(k_1k_2) < v_2(m)$.

It is natural to consider the following problem suggested by Yang and Chen [16].

Problem 2. For $t \ge 3$, determine all $\mathbf{k} = (k_1, k_2, \cdots, k_t)$ and m such that there exists a subset $A \subset \mathbf{Z}_m$ with the property that $r_A^{\mathbf{k}} = r_{\mathbf{Z}_m \setminus A}^{\mathbf{k}}$.

In this paper, we give a complete answer to this problem. Since k_1, \dots, k_t are only considered modulo m, we may assume k_1, \dots, k_t are all positive integers, and write

$$|\mathbf{k}| = k_1 + k_2 + \dots + k_t$$

The electronic journal of combinatorics $\mathbf{21(2)}$ (2014), #P2.55

Let $\mathcal{A}(\mathbf{k}, m)$ be the set of all subsets $A \subset \mathbf{Z}_m$ such that $r_A^{\mathbf{k}} = r_{\mathbf{Z}_m \setminus A}^{\mathbf{k}}$. We also identify an integer with its canonical image in \mathbf{Z}_m . Our main result is the following.

Theorem 3. The following statements are equivalent:

- (i) $\mathcal{A}(\mathbf{k},m)$ is nonempty;
- (*ii*) $\{0, 1, \cdots, [\frac{m}{2}] 1\} \in \mathcal{A}(\mathbf{k}, m);$

(iii) m is even, and either $|\mathbf{k}|$ is even, or $0 < v_2(k_i) < v_2(m)$ for some $i \in [1, t]$.

Currently we have no answer for the following problem.

Problem 4. Determine the set $\mathcal{A}(\mathbf{k}, m)$.

We give an example illustrating the complexity of Problem 4. For any even divisor $s \mid m$, a subset $A \subset \mathbb{Z}_m$ is said to be *balanced modulo* s if for any integer k, we have

$$|\{a \in A : a \equiv k \pmod{s}\}| = |\{a \in A : a \equiv k + \frac{s}{2} \pmod{s}\}|.$$

Example 5. Let $m = 2^l$, $l \ge 2$, $k_1 = 2$, $k_2 = \cdots = k_t = 1$.

(i) If t is even, then $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if |A| = m/2, and A is balanced modulo 2, in other words, A has same number of odd elements and even elements.

(ii) If t is odd, then $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if |A| = m/2, and for any integer $s \in [2, l]$, A is balanced modulo 2^{s-1} or 2^s , or both.

2 Proofs

For a subset $A \subset \mathbf{Z}_m$, we always use B to denote the complement $\mathbf{Z}_m \setminus A$. Let

$$f_A(x) = \sum_{a \in A} x^a$$

and

$$T(x) = \prod_{i=1}^{t} f_A(x^{k_i}) - \prod_{i=1}^{t} f_B(x^{k_i}).$$

These polynomials are considered in the ring $\mathbf{Z}[x]/(x^m-1)$.

Lemma 6. $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if T(x) = 0.

Proof. Since

$$\prod_{i=1}^{l} f_A(x^{k_i}) = \sum_{a_1, \cdots, a_t \in A} x^{k_1 a_1 + \dots + k_t a_t} = \sum_{n \in \mathbf{Z}_m} r_A^{\mathbf{k}}(n) x^n,$$

and similarly

$$\prod_{i=1}^{l} f_B(x^{k_i}) = \sum_{n \in \mathbf{Z}_m} r_B^{\mathbf{k}}(n) x^n,$$

we conclude that $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if T(x) = 0.

The electronic journal of combinatorics $\mathbf{21(2)}$ (2014), #P2.55

3

Let $d_i = (k_i, m), i \in [1, t]$. For any positive integer d, we write $\xi_d = e^{2\pi i/d}$. For $d \mid m$, it makes sense to write $f(\xi_d)$ for $f(x) \in \mathbb{Z}[x]/(x^m - 1)$, and we use I(d) to denote the set of indices $i \in [1, t]$ such that $d \nmid d_i$.

Lemma 7. For $A \subset \mathbf{Z}_m$ with |A| = m/2, $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if for any positive divisor $d \mid m$ with |I(d)| odd, there exists $i \in I(d)$ such that $f_A(\xi_{d/(d,d_i)}) = 0$.

Proof. By Lemma 6, $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if T(x) = 0. This is true if and only if for every positive divisor $d \mid m$, we have $T(\xi_d) = 0$. For any $d \mid m$, if $d \mid k_i$, then

$$f_A(\xi_d^{k_i}) = f_B(\xi_d^{k_i}) = m/2.$$
(1)

If $d \nmid k_i$, then

$$f_A(\xi_d^{k_i}) + f_B(\xi_d^{k_i}) = \sum_{n=0}^{m-1} \xi_d^{nk_i} = 0,$$

thus

$$f_A(\xi_d^{k_i}) = -f_B(\xi_d^{k_i}).$$
 (2)

Combining (1) and (2), we have

$$T(\xi_d) = \left(\frac{m}{2}\right)^{t-|I(d)|} \left(1 - (-1)^{|I(d)|}\right) \prod_{i \in I(d)} f_A(\xi_d^{k_i}).$$

If |I(d)| is even, it is always true that $T(\xi_d) = 0$. If |I(d)| is odd, then $T(\xi_d) = 0$ if and only if $f_A(\xi_d^{k_i}) = 0$ for some $i \in I(d)$. Since $\xi_d^{k_i}$ is a $d/(d, d_i)$ -th primitive root of unity and f has rational coefficients, any primitive $d/(d, d_i)$ -th root of unity is a root of f_A . In particular $f_A(\xi_{d/(d,d_i)}) = 0$ and vice versa. This completes the proof of Lemma 7. \Box

We are now ready to prove Theorem 3.

Proof of Theorem 3. (ii) \Rightarrow (i) is trivial.

We now show that (i) \Rightarrow (iii). Assuming $\mathcal{A}(\mathbf{k}, m)$ is nonempty, m must be even. Suppose on the contrary that (iii) fails, then $|\mathbf{k}|$ is odd and either $v_2(k_i) = 0$ or $v_2(k_i) \ge v_2(m)$ for every $i \in [1, t]$, and it is clear that the number of $i \in [1, t]$ with $v_2(k_i) = 0$ is odd. For any positive number $s \le v_2(m) =: l$, consider $d = 2^s \mid m$. Since $I(d) = \{i \in [1, t] : v_2(k_i) = 0\}$, |I(d)| is odd. By Lemma 7, we have $f_A(\xi_d) = 0$. Since this is true for all $s \le l$, we conclude that the product of all 2^s -th cyclotomic polynomials for $s \in [1, l]$ divides $f_A(x)$, i.e.

$$1 + x + \dots + x^{2^{l-1}} \mid f_A(x).$$

For $i \in [0, 2^l - 1]$, let n_i denote the number of elements $a \in A$ such that $a \equiv i \pmod{2^l}$. Then

$$f_A(x) = \sum_{a \in A} x^a \equiv \sum_{i=0}^{2^i - 1} n_i x^i \pmod{1 + x + \dots + x^{2^l - 1}},$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 21(2) (2014), #P2.55

hence

$$1 + x + \dots + x^{2^{l}-1} \mid \sum_{i=0}^{2^{l}-1} n_{i} x^{i}.$$

It follows that $n_0 = n_1 = \cdots = n_{2^l-1} =: n$, $|A| = 2^l n$. However |A| = m/2, $v_2(|A|) = v_2(m) - 1 = l - 1$, and this contradicts $|A| = 2^l n$, therefore (iii) is true.

Finally we show that (iii) \Rightarrow (ii). So *m* is even, and we put

$$A = \{0, 1, \cdots, \frac{m}{2} - 1\}.$$

Then

$$f_B(x) = x^{m/2} f_A(x),$$

and

$$T(x) = (1 - x^{|\mathbf{k}|m/2}) \prod_{i=1}^{t} f_A(x^{k_i}).$$

If $|\mathbf{k}|$ is even, then $x^m - 1$ divides $1 - x^{|\mathbf{k}|m/2}$, thus T(x) = 0. By Lemma 6, we have $A \in \mathcal{A}(\mathbf{k}, m)$. Now suppose $|\mathbf{k}|$ is odd, and there exists $j \in [1, t]$ such that $0 < v_2(k_j) < v_2(m)$. Let d be any positive divisor of m such that |I(d)| is odd. If $d \mid m/2$, then for any $i \in I(d)$, letting $d' = d/(d, d_i)$, we have

$$f_A(\xi_{d'}) = \sum_{i=0}^{m/2-1} \xi_{d'}^i = \frac{\xi_{d'}^{m/2} - 1}{\xi_{d'} - 1} = 0.$$

If $d \nmid m/2$, then $v_2(d) = v_2(m)$, and we have $j \in I(d)$. Since $2 \mid (d_j, d)$, therefore $d/(d, d_j) \mid m/2$. Let $d' = d/(d_j, d)$, then again,

$$f_A(\xi_{d'}) = \sum_{i=0}^{m/2-1} \xi_{d'}^i = \frac{\xi_{d'}^{m/2} - 1}{\xi_{d'} - 1} = 0.$$

By Lemma 7, we conclude that $A \in \mathcal{A}(\mathbf{k}, m)$. This completes the proof of Theorem 3. \Box

We now explain Example 5. Assume therefore that $m = 2^l$, $l \ge 2$, $k_1 = 2$, $k_2 = \cdots = k_t = 1$, and $A \subset \mathbb{Z}_m$ with |A| = m/2.

Lemma 8. For any integer $s \in [1, l]$, $f_A(\xi_{2^s}) = 0$ if and only if A is blanced modulo 2^s .

Proof. For $k \in [0, 2^s - 1]$, let n_k denote the number of elements $a \in A$ such that $a \equiv k \pmod{2^s}$. $f_A(\xi_{2^s}) = 0$ if and only if $(1 + x^{2^{s-1}}) \mid f_A(x)$. We have

$$f_A(x) = \sum_{a \in A} x^a \equiv \sum_{k=0}^{2^{s-1}-1} (n_k - n_{k+2^{s-1}}) x^k \pmod{1 + x^{2^{s-1}}}.$$

It follows that $(1 + x^{2^{s-1}}) \mid f_A(x)$ if and only if $n_k = n_{k+2^{s-1}}$ for any $k \in [0, 2^{s-1} - 1]$, i.e. A is balanced modulo 2^s .

The electronic journal of combinatorics $\mathbf{21(2)}$ (2014), #P2.55

Explanation of Example 5. If t is even, consider $d \mid m$ with |I(d)| odd, it is easy to see that d = 2. By Lemma 7, $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if $f_A(\xi_2) = 0$. By Lemma 8, this is equivalent to A being balanced modulo 2.

If t is odd, then $d \mid m$ with |I(d)| odd if and only if $d = 2^s$ such that $2 \leq s \leq l$. By Lemma 7, $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if for any $s \in [2, l]$, we have either $f_A(\xi_{2^s}) = 0$ or $f_A(\xi_{2^{s-1}}) = 0$. By Lemma 8, this is equivalent to A being balanced modulo 2^{s-1} or 2^s , or both.

Acknowledgements

I am grateful to the referee for his/her detailed comments.

References

- Y.-G. Chen, On the values of representation functions, Sci. China Math. 54 (2011), 1317–1331.
- [2] Y.-G. Chen and M. Tang, Partitions of natural numbers with the same representation functions, J. Number Theory 129 (2009), 2689–2695.
- [3] Y.-G. Chen and B. Wang, On additive perperties of two special sequences, Acta Arith. 110 (2003), 299–303.
- [4] J. Cilleruelo and J. Rué, On a question of Sárközy and Sós for bilinear forms, Bull. Lond. Math. Soc. 41 (2009), 274–280.
- [5] G. Dombi, Additive properties of certain sets, Acta Arith. 103 (2002), 137–146.
- [6] V.F. Lev, Reconstructing integer sets from their representation functions, Electron. J. Combin. 11 (2004), R78.
- [7] P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences, I, Pacific J. Math. 118 (1985), 347–357.
- [8] P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences, II, Acta Math. Hungar. 48 (1986), 201–211.
- [9] P. Erdős, A. Sárközy, and V. T. Sós, Problems and results on additive properties of general sequences, IV, Number Theory (Proceedings, Ootacamund, India), Lecture Notes in Math., vol. 1122, Springer-Verlag, Berlin, 1984, pp. 85–104.
- [10] P. Erdős, A. Sárközy, and V. T. Sós, Problems and results on additive properties of general sequences, V, Monatsh. Math. 102 (1986), 183–197.
- [11] P. Erdős, A. Sárközy, and V. T. Sós, Problems and results on additive properties of general sequences, III, Studia Sci. Math. Hungar. 22 (1987), 53–63.
- [12] P. Erdős and P. Turán, On a problem of sidon in additive number theory and some related problems, J. London Math. Soc. 16 (1941), 212–215.
- [13] C. Sándor, Partitions of natural numbers and their representation functions, Integers 4 (2004), A18.

- M. Tang, Partitions of the set of natural numbers and their representation functions, Discrete Math. 308 (2008), 2614–2616.
- [15] Q.-H. Yang and Y.-G. Chen, Partitions of natural numbers with the same weighted representation functions, J. Number Theory 132 (2012), 3047–3055.
- [16] Q.-H. Yang and Y.-G. Chen, Weighted representation functions on \mathbb{Z}_m , Taiwan. J. Math. **17** (2013), no. 4, 1311–1319, Erratum: to appear in Taiwan. J. Math.