Partitions of Z_{m} with the same weighted representation functions

Zhenhua Qu*
Department of Mathematics
Shanghai Key Laboratory of PMMP
East China Normal University
Shanghai 200241, P.R. China
zhqu@math.ecnu.edu.cn

Submitted: Feb 6, 2014; Accepted: Jun 19, 2014; Published: Jun 27, 2014
Mathematics Subject Classifications: 11B34, 05A15

Abstract

Let $\mathbf{k}=\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ be a t-tuple of integers, and m be a positive integer. For a subset $A \subset \mathbf{Z}_{m}$ and any $n \in \mathbf{Z}_{m}$, let $r_{A}^{\mathbf{k}}(n)$ denote the number of solutions of the equation $k_{1} a_{1}+\cdots+k_{t} a_{t}=n$ with $a_{1}, \cdots, a_{t} \in A$. In this paper, we give a necessary and sufficient condition on (\mathbf{k}, m) such that there exists a subset $A \subset \mathbf{Z}_{m}$ satisifying $r_{A}^{\mathbf{k}}=r_{\mathbf{Z}_{m} \backslash A}^{\mathbf{k}}$. This settles a problem of Yang and Chen.

Keywords: Representation function, Partition, Sárközy problem.

1 Introduction

We use \mathbf{N} to denote the set of nonnegative integers. For any subset $A \subset \mathbf{N}$ and $n \in \mathbf{N}$, define the representation functions $R_{1}(A, n), R_{2}(A, n)$ and $R_{3}(A, n)$ to be the number of solutions of the equations

$$
\begin{aligned}
& n=a+a^{\prime}, \quad a, a^{\prime} \in A, \\
& n=a+a^{\prime}, \quad a, a^{\prime} \in A, \quad a<a^{\prime},
\end{aligned}
$$

and

$$
n=a+a^{\prime}, \quad a, a^{\prime} \in A, \quad a \leqslant a^{\prime},
$$

[^0]respectively. Representation functions first appeared in the celebrated paper of Erdős and Turán [12], and were extensively studied by Erdős, Sárközy and Sós (see [7, 8, 11, 9, 10]).

Sárközy asked for each $i=1,2,3$, whether there exist sets A and B with infinite symmetric difference such that $R_{i}(A, n)=R_{i}(B, n)$ for all sufficiently large integers n. There have been quite some work around Sárközy's problem. Dombi [5] observed that the answer is negative for $i=1$, and constructed a subset $A \subset \mathbf{N}$ such that $R_{2}(A, n)=$ $R_{2}(\mathbf{N} \backslash A, n)$ for all $n \in \mathbf{N}$. An analogous example for $R_{3}(A, n)$ was constructed by Chen and Wang [3]. For $i=2,3$, Lev [6], Sándor [13] and Tang [14] determined all subsets $A \subset \mathbf{N}$ such that $R_{i}(A, n)=R_{i}(\mathbf{N} \backslash A, n)$ for all $n \geqslant 2 N-1$. The asymptotic behavior of the representation functions of these special sequences was studied by Chen and Tang (see [1, 2]).

Analogously, for any two positive integers k_{1}, k_{2}, any subset $A \subset \mathbf{N}$, one can define the weighted representation function $r_{k_{1}, k_{2}}(A, n)$ as the number of solutions of the equation $n=k_{1} a_{1}+k_{2} a_{2}$ with $a_{1}, a_{2} \in A$. Cilleruelo and Rué [4] proved that $r_{k_{1}, k_{2}}(A, n)$ can not be eventually constant. Yang and Chen [15] proved that there exists a set $A \subset \mathbf{N}$ such that $r_{k_{1}, k_{2}}(A, n)=r_{k_{1}, k_{2}}(\mathbf{N} \backslash A, n)$ for all sufficiently large n if and only if $k_{1} \mid k_{2}$ and $k_{1}<k_{2}$.

Let $\mathbf{k}=\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ be a t-tuple of integers, and m be a positive integer. For any $A \subset \mathbf{Z}_{m}$ and $n \in \mathbf{Z}_{m}$, denote the number of solutions of the equation $k_{1} a_{1}+\cdots+k_{t} a_{t}=n$ with $a_{1}, \cdots, a_{t} \in A$ by $r_{A}^{\mathbf{k}}(n)$. We call $r_{A}^{\mathbf{k}}$ the weighted representation function on \mathbf{Z}_{m} with respect to A and weight \mathbf{k}. For $t=2, \mathbf{k}=\left(k_{1}, k_{2}\right)$, Yang and Chen [16] characterized all subsets $A \subset \mathbf{Z}_{m}$ with the property that $r_{A}^{\mathbf{k}}=r_{\mathbf{Z}_{m} \backslash A}^{\mathbf{k}}$.

Note that if $A \subset \mathbf{Z}_{m}$ satisfying $r_{A}^{\mathbf{k}}=r_{\mathbf{Z}_{m} \backslash A}^{\mathbf{k}}$, then m is even and $|A|=\frac{m}{2}$. Indeed, this follows from the fact that

$$
|A|^{t}=\sum_{n \in \mathbf{Z}_{m}} r_{A}^{\mathbf{k}}(n)=\sum_{n \in \mathbf{Z}_{m}} r_{B}^{\mathbf{k}}(n)=|B|^{t}
$$

For any nonzero integer k, we use $v_{2}(k)$ to denote the largest nonnegative integer l such that $2^{l} \mid k$. The following result is also proved in [16].

Theorem 1. Let k_{1}, k_{2} be nonzero integers, and $\mathbf{k}=\left(k_{1}, k_{2}\right)$. For a subset $A \subset \mathbf{Z}_{m}$ satisfying $r_{A}^{\mathbf{k}}=r_{\mathbf{Z}_{m} \backslash A}^{\mathbf{k}}$ to exist, it is necessary and sufficient that one of the following holds:
(i) $k_{1}+k_{2}$ is even;
(ii) $k_{1}+k_{2}$ is odd and $v_{2}\left(k_{1} k_{2}\right)<v_{2}(m)$.

It is natural to consider the following problem suggested by Yang and Chen [16].
Problem 2. For $t \geqslant 3$, determine all $\mathbf{k}=\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ and m such that there exists a subset $A \subset \mathbf{Z}_{m}$ with the property that $r_{A}^{\mathbf{k}}=r_{\mathbf{Z}_{m} \backslash A}^{\mathbf{k}}$.

In this paper, we give a complete answer to this problem. Since k_{1}, \cdots, k_{t} are only considered modulo m, we may assume k_{1}, \cdots, k_{t} are all positive integers, and write

$$
|\mathbf{k}|=k_{1}+k_{2}+\cdots+k_{t} .
$$

Let $\mathcal{A}(\mathbf{k}, m)$ be the set of all subsets $A \subset \mathbf{Z}_{m}$ such that $r_{A}^{\mathbf{k}}=r_{\mathbf{Z}_{m} \backslash A}^{\mathbf{k}}$. We also identify an integer with its canonical image in \mathbf{Z}_{m}. Our main result is the following.
Theorem 3. The following statements are equivalent:
(i) $\mathcal{A}(\mathbf{k}, m)$ is nonempty;
(ii) $\left\{0,1, \cdots,\left[\frac{m}{2}\right]-1\right\} \in \mathcal{A}(\mathbf{k}, m)$;
(iii) m is even, and either $|\mathbf{k}|$ is even, or $0<v_{2}\left(k_{i}\right)<v_{2}(m)$ for some $i \in[1, t]$.

Currently we have no answer for the following problem.
Problem 4. Determine the set $\mathcal{A}(\mathbf{k}, m)$.
We give an example illustrating the complexity of Problem 4. For any even divisor $s \mid m$, a subset $A \subset \mathbf{Z}_{m}$ is said to be balanced modulo s if for any integer k, we have

$$
|\{a \in A: a \equiv k \quad(\bmod s)\}|=\left|\left\{a \in A: a \equiv k+\frac{s}{2} \quad(\bmod s)\right\}\right| .
$$

Example 5. Let $m=2^{l}, l \geqslant 2, k_{1}=2, k_{2}=\cdots=k_{t}=1$.
(i) If t is even, then $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if $|A|=m / 2$, and A is balanced modulo 2 , in other words, A has same number of odd elements and even elements.
(ii) If t is odd, then $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if $|A|=m / 2$, and for any integer $s \in[2, l]$, A is balanced modulo 2^{s-1} or 2^{s}, or both.

2 Proofs

For a subset $A \subset \mathbf{Z}_{m}$, we always use B to denote the complement $\mathbf{Z}_{m} \backslash A$. Let

$$
f_{A}(x)=\sum_{a \in A} x^{a}
$$

and

$$
T(x)=\prod_{i=1}^{t} f_{A}\left(x^{k_{i}}\right)-\prod_{i=1}^{t} f_{B}\left(x^{k_{i}}\right) .
$$

These polynomials are considered in the ring $\mathbf{Z}[x] /\left(x^{m}-1\right)$.
Lemma 6. $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if $T(x)=0$.
Proof. Since

$$
\prod_{i=1}^{t} f_{A}\left(x^{k_{i}}\right)=\sum_{a_{1}, \cdots, a_{t} \in A} x^{k_{1} a_{1}+\cdots+k_{t} a_{t}}=\sum_{n \in \mathbf{Z}_{m}} r_{A}^{\mathbf{k}}(n) x^{n}
$$

and similarly

$$
\prod_{i=1}^{t} f_{B}\left(x^{k_{i}}\right)=\sum_{n \in \mathbf{Z}_{m}} r_{B}^{\mathbf{k}}(n) x^{n}
$$

we conclude that $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if $T(x)=0$.

Let $d_{i}=\left(k_{i}, m\right), i \in[1, t]$. For any positive integer d, we write $\xi_{d}=e^{2 \pi i / d}$. For $d \mid m$, it makes sense to write $f\left(\xi_{d}\right)$ for $f(x) \in \mathbf{Z}[x] /\left(x^{m}-1\right)$, and we use $I(d)$ to denote the set of indices $i \in[1, t]$ such that $d \nmid d_{i}$.

Lemma 7. For $A \subset \mathbf{Z}_{m}$ with $|A|=m / 2, A \in \mathcal{A}(\mathbf{k}, m)$ if and only if for any positive divisor $d \mid m$ with $|I(d)|$ odd, there exists $i \in I(d)$ such that $f_{A}\left(\xi_{d /\left(d, d_{i}\right)}\right)=0$.

Proof. By Lemma 6, $A \in \mathcal{A}(\mathbf{k}, m)$ if and only if $T(x)=0$. This is true if and only if for every positive divisor $d \mid m$, we have $T\left(\xi_{d}\right)=0$. For any $d \mid m$, if $d \mid k_{i}$, then

$$
\begin{equation*}
f_{A}\left(\xi_{d}^{k_{i}}\right)=f_{B}\left(\xi_{d}^{k_{i}}\right)=m / 2 \tag{1}
\end{equation*}
$$

If $d \nmid k_{i}$, then

$$
f_{A}\left(\xi_{d}^{k_{i}}\right)+f_{B}\left(\xi_{d}^{k_{i}}\right)=\sum_{n=0}^{m-1} \xi_{d}^{n k_{i}}=0
$$

thus

$$
\begin{equation*}
f_{A}\left(\xi_{d}^{k_{i}}\right)=-f_{B}\left(\xi_{d}^{k_{i}}\right) \tag{2}
\end{equation*}
$$

Combining (1) and (2), we have

$$
T\left(\xi_{d}\right)=\left(\frac{m}{2}\right)^{t-|I(d)|}\left(1-(-1)^{|I(d)|}\right) \prod_{i \in I(d)} f_{A}\left(\xi_{d}^{k_{i}}\right) .
$$

If $|I(d)|$ is even, it is always true that $T\left(\xi_{d}\right)=0$. If $|I(d)|$ is odd, then $T\left(\xi_{d}\right)=0$ if and only if $f_{A}\left(\xi_{d}^{k_{i}}\right)=0$ for some $i \in I(d)$. Since $\xi_{d}^{k_{i}}$ is a $d /\left(d, d_{i}\right)$-th primitive root of unity and f has rational coefficients, any primitive $d /\left(d, d_{i}\right)$-th root of unity is a root of f_{A}. In particular $f_{A}\left(\xi_{d /\left(d, d_{i}\right)}\right)=0$ and vice versa. This completes the proof of Lemma 7 .

We are now ready to prove Theorem 3.
Proof of Theorem 3. (ii) \Rightarrow (i) is trivial.
We now show that (i) \Rightarrow (iii). Assuming $\mathcal{A}(\mathbf{k}, m)$ is nonempty, m must be even. Suppose on the contrary that (iii) fails, then $|\mathbf{k}|$ is odd and either $v_{2}\left(k_{i}\right)=0$ or $v_{2}\left(k_{i}\right) \geqslant v_{2}(m)$ for every $i \in[1, t]$, and it is clear that the number of $i \in[1, t]$ with $v_{2}\left(k_{i}\right)=0$ is odd. For any positive number $s \leqslant v_{2}(m)=: l$, consider $d=2^{s} \mid m$. Since $I(d)=\left\{i \in[1, t]: v_{2}\left(k_{i}\right)=0\right\}$, $|I(d)|$ is odd. By Lemma 7, we have $f_{A}\left(\xi_{d}\right)=0$. Since this is true for all $s \leqslant l$, we conclude that the product of all 2^{s}-th cyclotomic polynomials for $s \in[1, l]$ divides $f_{A}(x)$, i.e.

$$
1+x+\cdots+x^{2^{l}-1} \mid f_{A}(x)
$$

For $i \in\left[0,2^{l}-1\right]$, let n_{i} denote the number of elements $a \in A$ such that $a \equiv i\left(\bmod 2^{l}\right)$. Then

$$
f_{A}(x)=\sum_{a \in A} x^{a} \equiv \sum_{i=0}^{2^{l}-1} n_{i} x^{i} \quad\left(\bmod 1+x+\cdots+x^{2^{l}-1}\right),
$$

hence

$$
1+x+\cdots+x^{2^{l}-1} \mid \sum_{i=0}^{2^{l}-1} n_{i} x^{i}
$$

It follows that $n_{0}=n_{1}=\cdots=n_{2^{l}-1}=: n,|A|=2^{l} n$. However $|A|=m / 2, v_{2}(|A|)=$ $v_{2}(m)-1=l-1$, and this contradicts $|A|=2^{l} n$, therefore (iii) is true.

Finally we show that $(\mathrm{iii}) \Rightarrow$ (ii). So m is even, and we put

$$
A=\left\{0,1, \cdots, \frac{m}{2}-1\right\} .
$$

Then

$$
f_{B}(x)=x^{m / 2} f_{A}(x),
$$

and

$$
T(x)=\left(1-x^{|\mathbf{k}| m / 2}\right) \prod_{i=1}^{t} f_{A}\left(x^{k_{i}}\right) .
$$

If $|\mathbf{k}|$ is even, then $x^{m}-1$ divides $1-x^{|\mathbf{k}| m / 2}$, thus $T(x)=0$. By Lemma 6 , we have $A \in \mathcal{A}(\mathbf{k}, m)$. Now suppose $|\mathbf{k}|$ is odd, and there exists $j \in[1, t]$ such that $0<v_{2}\left(k_{j}\right)<$ $v_{2}(m)$. Let d be any positive divisor of m such that $|I(d)|$ is odd. If $d \mid m / 2$, then for any $i \in I(d)$, letting $d^{\prime}=d /\left(d, d_{i}\right)$, we have

$$
f_{A}\left(\xi_{d^{\prime}}\right)=\sum_{i=0}^{m / 2-1} \xi_{d^{\prime}}^{i}=\frac{\xi_{d^{\prime}}^{m / 2}-1}{\xi_{d^{\prime}}-1}=0 .
$$

If $d \nmid m / 2$, then $v_{2}(d)=v_{2}(m)$, and we have $j \in I(d)$. Since $2 \mid\left(d_{j}, d\right)$, therefore $d /\left(d, d_{j}\right) \mid m / 2$. Let $d^{\prime}=d /\left(d_{j}, d\right)$, then again,

$$
f_{A}\left(\xi_{d^{\prime}}\right)=\sum_{i=0}^{m / 2-1} \xi_{d^{\prime}}^{i}=\frac{\xi_{d^{\prime}}^{m / 2}-1}{\xi_{d^{\prime}}-1}=0 .
$$

By Lemma 7, we conclude that $A \in \mathcal{A}(\mathbf{k}, m)$. This completes the proof of Theorem 3.
We now explain Example 5. Assume therefore that $m=2^{l}, l \geqslant 2, k_{1}=2, k_{2}=\cdots=$ $k_{t}=1$, and $A \subset \mathbf{Z}_{m}$ with $|A|=m / 2$.

Lemma 8. For any integer $s \in[1, l], f_{A}\left(\xi_{2^{s}}\right)=0$ if and only if A is blanced modulo 2^{s}.
Proof. For $k \in\left[0,2^{s}-1\right]$, let n_{k} denote the number of elements $a \in A$ such that $a \equiv k$ $\left(\bmod 2^{s}\right) . f_{A}\left(\xi_{2^{s}}\right)=0$ if and only if $\left(1+x^{2^{s-1}}\right) \mid f_{A}(x)$. We have

$$
f_{A}(x)=\sum_{a \in A} x^{a} \equiv \sum_{k=0}^{2^{s-1}-1}\left(n_{k}-n_{k+2^{s-1}}\right) x^{k} \quad\left(\bmod 1+x^{2^{s-1}}\right) .
$$

It follows that $\left(1+x^{2^{s-1}}\right) \mid f_{A}(x)$ if and only if $n_{k}=n_{k+2^{s-1}}$ for any $k \in\left[0,2^{s-1}-1\right]$, i.e. A is balanced modulo 2^{s}.

Explanation of Example 5. If t is even, consider $d \mid m$ with $|I(d)|$ odd, it is easy to see that $d=2$. By Lemma $7, A \in \mathcal{A}(\mathbf{k}, m)$ if and only if $f_{A}\left(\xi_{2}\right)=0$. By Lemma 8 , this is equivalent to A being balanced modulo 2 .

If t is odd, then $d \mid m$ with $|I(d)|$ odd if and only if $d=2^{s}$ such that $2 \leqslant s \leqslant l$. By Lemma $7, A \in \mathcal{A}(\mathbf{k}, m)$ if and only if for any $s \in[2, l]$, we have either $f_{A}\left(\xi_{2^{s}}\right)=0$ or $f_{A}\left(\xi_{2^{s-1}}\right)=0$. By Lemma 8 , this is equivalent to A being balanced modulo 2^{s-1} or 2^{s}, or both.

Acknowledgements

I am grateful to the referee for his/her detailed comments.

References

[1] Y.-G. Chen, On the values of representation functions, Sci. China Math. 54 (2011), 1317-1331.
[2] Y.-G. Chen and M. Tang, Partitions of natural numbers with the same representation functions, J. Number Theory 129 (2009), 2689-2695.
[3] Y.-G. Chen and B. Wang, On additive perperties of two special sequences, Acta Arith. 110 (2003), 299-303.
[4] J. Cilleruelo and J. Rué, On a question of Sárközy and Sós for bilinear forms, Bull. Lond. Math. Soc. 41 (2009), 274-280.
[5] G. Dombi, Additive properties of certain sets, Acta Arith. 103 (2002), 137-146.
[6] V.F. Lev, Reconstructing integer sets from their representation functions, Electron. J. Combin. 11 (2004), R78.
[7] P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences, I, Pacific J. Math. 118 (1985), 347-357.
[8] P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences, II, Acta Math. Hungar. 48 (1986), 201-211.
[9] P. Erdős, A. Sárközy, and V. T. Sós, Problems and results on additive properties of general sequences, IV, Number Theory (Proceedings, Ootacamund, India), Lecture Notes in Math., vol. 1122, Springer-Verlag, Berlin, 1984, pp. 85-104.
[10] P. Erdős, A. Sárközy, and V. T. Sós, Problems and results on additive properties of general sequences, V, Monatsh. Math. 102 (1986), 183-197.
[11] P. Erdős, A. Sárközy, and V. T. Sós, Problems and results on additive properties of general sequences, III, Studia Sci. Math. Hungar. 22 (1987), 53-63.
[12] P. Erdős and P. Turán, On a problem of sidon in additive number theory and some related problems, J. London Math. Soc. 16 (1941), 212-215.
[13] C. Sándor, Partitions of natural numbers and their representation functions, Integers 4 (2004), A18.
[14] M. Tang, Partitions of the set of natural numbers and their representation functions, Discrete Math. 308 (2008), 2614-2616.
[15] Q.-H. Yang and Y.-G. Chen, Partitions of natural numbers with the same weighted representation functions, J. Number Theory 132 (2012), 3047-3055.
[16] Q.-H. Yang and Y.-G. Chen, Weighted representation functions on \mathbb{Z}_{m}, Taiwan. J. Math. 17 (2013), no. 4, 1311-1319, Erratum: to appear in Taiwan. J. Math.

[^0]: *This work was supported by the National Natural Science Foundation of China, Grant No. 11101152.

